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Parkinson’s disease (PD) is a neurodegenerative disorder for which there is no cure. Most 
patients suffer from sporadic PD, which is likely caused by a combination of genetic 
and environmental factors. Braak’s hypothesis states that sporadic PD is caused by a 
pathogen that enters the body via the nasal cavity, and subsequently is swallowed and 
reaches the gut, initiating Lewy pathology (LP) in the nose and the digestive tract. A stag-
ing system describing the spread of LP from the peripheral to the central nervous system 
was also postulated by the same research group. There has been criticism to Braak’s 
hypothesis, in part because not all patients follow the proposed staging system. Here, 
we review literature that either supports or criticizes Braak’s hypothesis, focused on the 
enteric route, digestive problems in patients, the spread of LP on a tissue and a cellular 
level, and the toxicity of the protein αSynuclein (αSyn), which is the major constituent 
of LP. We conclude that Braak’s hypothesis is supported by in vitro, in vivo, and clinical 
evidence. However, we also conclude that the staging system of Braak only describes a 
specific subset of patients with young onset and long duration of the disease.
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iNTRODUCTiON

Parkinson’s disease (PD) is an incurable neurodegenerative disease hallmarked by damage to the 
dopaminergic neurons of the substantia nigra (SN), and αSynuclein (αSyn) containing inclusion 
bodies (Lewy pathology; LP) in the surviving neurons, resulting in characteristic motor impair-
ment. The prevalence of PD in Europe ranges between 65.6 and 12,500 per 100,000, and the annual 
incidence rate ranges between 5 and 346 per 100,000 (1). The variation in these prevalence and 
incidence rates could be due to genetic or environmental factors, differences in case ascertainment 
or diagnostic criteria, or different age distributions in the populations (countries) studied (1). In 
the US population of 65 years and older, PD is more common in Caucasians and Hispanics, than 
Afro-Americans and Asians (2, 3), indicating a genetic factor may be (partially) responsible for the 
differences found in the European study. Current treatments for PD include medicinal treatment 
using levodopa (4, 5), and surgical treatment using deep brain stimulation (6). Although these 
treatments offer relief of symptoms, they do not cure the disease. All in all, it is clear that PD is 
an important neurodegenerative disorder to study, even with the more conservative estimations of 
prevalence and incidence, since currently no cure or preventative treatment exists.

There are two forms of PD: familial and sporadic. The familial form is caused by genetic aberra-
tions, among others in the gene for αSyn [point mutations A30P (7), A53T (8), E46K (9), H50Q (10, 
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FiGURe 1 | A schematic representation of the Braak’s hypothesis of 
Parkinson’s disease (PD). Microbial products come into contact with 
olfactory and/or enteric neurons, which trigger the aggregation of 
α-Synuclein (1 and 2). The aggregated α-Synuclein spreads toward the 
central nervous system via the olfactory bulb and the vagus nerve (3 and 4). 
Eventually, the aggregated α-Synuclein arrives at the substantia nigra (5). 
Genetic factors are likely to contribute to PD, but the exact mechanism 
remains to be elucidated (6).
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11), and G51D (12), or locus duplication (13, 14) or triplication 
(15, 16)]. The cause for sporadic PD is not known, but some pro-
gress has been made in the search for potential causes, implicating 
both genetic and environmental factors. The pesticides rotenone 
and paraquat (17), and the toxin MPTP (18) (1-methyl-4-fenyl-
1,2,3,6-tetrahydropyridine; a toxic byproduct of the opioid anal-
gesic desmethylprodine, MPPP, a synthetic heroin), are known 
to cause PD in humans, explaining some cases of sporadic PD. 
Additionally, two twin studies have found that sporadic PD has a 
significant genetic component (19, 20). As mentioned above, in 
the US, a difference was found in the incidence and prevalence of 
PD between the Caucasian and Hispanic versus Afro-American 
and Asian population, also showing a genetic influence (2). On 
the other hand, a recent review by Pan-Montojo and Reichmann 
suggests an important role of toxic environmental substances in 
the etiology of sporadic PD (21). Although the exact influence of 
genetic and environmental factors in sporadic PD is not known, 
some elements of disease development have been identified, 
most importantly neuroinflammation, oxidative stress, and αSyn 
misfolding and aggregation (22–29). Misfolding and aggregation 
of αSyn is suspected to lead to LP in surviving neurons, and 
thus combatting αSyn aggregation has been suggested to be of 
potential therapeutic value (30). It seems likely that both envi-
ronmental and genetic factors interact to cause sporadic PD. As 
a result, the search for potential environmental factors has been 
ongoing in PD research.

BRAAK’S HYPOTHeSiS

In 2003, Braak et al. postulated the hypothesis that an unknown 
pathogen (virus or bacterium) in the gut could be responsible for 
the initiation of sporadic PD (31), and they presented an associ-
ated staging system for PD based on a specific pattern of αSyn 
spreading (32). These publications were followed by the more 
encompassing dual-hit hypothesis, stating that sporadic PD starts 
in two places: the neurons of the nasal cavity and the neurons in 
the gut (33, 34). This is now known as Braak’s hypothesis. From 
these places, the pathology is hypothesized to spread according 
to a specific pattern, via the olfactory tract and the vagal nerve, 
respectively, toward and within the central nervous system (CNS). 
This process has been visualized in Figure  1. Interestingly, the 
hypothesized spread of disease to the spinal cord only takes place 
after the CNS has already become involved, and so the spinal cord 
is not considered to be a potential route for the spread of the 
disease from the periphery to the brain (33, 35).

Preclinical and Clinical evidence
There is experimental and clinical evidence supporting Braak’s 
hypothesis. Gastrointestinal problems like dysphagia, nausea, 
constipation and defecatory difficulty (36, 37), and the olfactory 
problem of the loss of smell (38) have been reported in PD. 
Additionally, the presence of LP in the neurons of the olfactory 
tract (39, 40) and the enteric nervous system (ENS) (41–43) has 
been confirmed. Severe LP in the ENS is positively correlated 
with constipation and motor problems in PD patients (44). There 
is also clinical evidence that LP in the nasal and gastrointestinal 
regions potentially precedes the diagnosis of the disease (32, 

43, 45), leading to complaints of the digestive tract (46, 47) and 
problems with olfaction (48, 49) during the earlier stages of PD, 
before the onset of motor symptoms [this stage is also known as 
incidental Lewy body (LB) disease (50)].

In animal models, similar results have been found. 
Gastrointestinal problems have been described in models of 
advanced PD suffering from motor impairment (51–58), and in 
both genetic and toxin-induced models for earlier stages of PD 
without motor problems (59–61). Additionally, αSyn aggrega-
tions were found in the gastrointestinal tract of animal models of 
early (59, 60, 62) and advanced (51, 55) PD.

enteric Route: Clinical evidence
From here on, this review will focus on the enteric route of Braak’s 
hypothesis. The importance of the ENS for PD is emphasized 
by circumstantial clinical evidence. The microbiome of control 
subjects contains a higher relative abundance of Prevotellaceae 
bacteria compared to PD patients, and within PD patients, a 
higher relative abundance of Enterobacteriaceae is associated 
with more postural and gait symptoms and less tremors (63). PD 
patients also suffer from increased inflammation in the colon, 
although colonic inflammation does not seem to be related to 
severity of gastrointestinal or motor problems (64). However, in 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


3

Rietdijk et al. Braak’s Hypothesis of Parkinson’s Disease

Frontiers in Neurology | www.frontiersin.org February 2017 | Volume 8 | Article 37

PD patients, another sign of intestinal inflammation, an increased 
permeability of the intestinal barrier, seems to be related to 
increased staining in the intestinal mucosa for bacteria, oxidative 
stress, and αSyn (65). If changes in the microbiome predispose 
the (future) PD patient to a more pro-inflammatory environment 
in the intestines and increased barrier permeability, this could 
potentially lead to oxidative stress in the ENS. This oxidative stress 
could then trigger αSyn misfolding and aggregation, which could 
potentially spread from the ENS to the CNS, and eventually cause 
the hallmark motor problems. Therefore, changes in the microbi-
ome and increased inflammation could directly negatively affect 
neurons of the ENS and be related to PD development, which is 
in accordance with Braak’s hypothesis.

Dietary components and dietary patterns have a considerable 
effect on the composition of the gut microbiome (66). The com-
mensal gut microbiota thrive on the substrates that escape absorp-
tion in the small intestine and are available for colonic bacterial 
fermentation (67). For example, fiber-rich diets can enhance the 
growth of colonic bacteria that produce short-chain fatty acids 
(SCFA). These SCFA have systemic anti-inflammatory effects 
(68) and could therefore influence PD pathogenesis through 
this gut-mediated mechanism. Another example is Western 
diet (high in saturated fat and refined carbohydrates) that might 
result in dysbiotic microbiota (e.g., lower bifidobacteria, higher 
firmicutes, and proteobacteria) (69–71) and that could ultimately 
lead to a pro-inflammatory response and promote αSyn pathol-
ogy. Therefore, it is essential to continue to research specific 
foods and dietary patterns that can improve gut health for PD 
risk reduction.

enteric Route: αSyn Spreading via vagal 
Nerve
Another vital part of Braak’s hypothesis is the spread of αSyn 
pathology from the ENS to the CNS via the vagal nerve and 
the dorsal motor nucleus of the vagus (DMV) in the medulla 
oblongata, and the spread of pathology within the CNS from 
lower brainstem regions, toward the SN, and eventually the 
neocortex. Although these specific areas of the nervous system 
are affected by PD, certain neighboring areas seem to be spared, 
such as the nucleus tractus solitarius that is located next to 
and connected to the DMV. This indicates a non-uniform and 
specific pattern of the spreading of disease, which cannot be 
explained by the nearest neighbor rule (72). This specific pattern 
of spreading is supported by experimental and clinical evidence, 
although discussion about the validity of Braak’s hypothesis is 
still ongoing. In PD patients, LP has been found in the vagal 
nerve (73, 74) and the DMV (73, 75–78), and cell loss in the 
DMV of PD patients has also been reported (79). LP has been 
shown to occur in vagal nerves and DMV before it spreads to 
other parts of the CNS (32, 45, 76, 80), like the locus coeruleus 
and the SN, the mesocortex, the neocortex, and the prefrontal 
cortex (32). Additionally, truncal vagotomy might be associated 
with a decreased long-term risk of developing PD, which could 
be related to a hindrance of the spreading of disease via the vagal 
nerve, although this cannot yet be concluded from this single 
study (81). The spread of αSyn from the ENS to the CNS has 
also been studied in animal models. When the protein αSyn was 

injected in the wall of the stomach and duodenum of rats, it 
was able to spread through the vagal nerve to the DMV (82). 
Additionally, intragastric rotenone treatment of mice resulted in 
αSyn inclusions in the ENS, DMV, and SN, and cell loss in the SN 
(83). This rotenone-induced αSyn spreading could be stopped 
by vagotomy (84). These results show that the vagus nerve is 
involved in and essential for the spread of αSyn pathology from 
the ENS to the CNS in both rats and mice.

enteric Route: Spread of αSyn within CNS
Clinical evidence for the cellular transport of LP within the CNS 
comes from studies of PD patients whose grafts of fetal dopamin-
ergic neurons showed LP and degeneration, indicating potential 
spread of pathology from host cells to graft cells (85–90). Host-to-
graft transmission of αSyn has also been shown for mouse cortical 
neuronal stem cells (91) and mouse embryonic dopaminergic 
neurons (92) implanted in transgenic mice overexpressing human 
αSyn, and for rat embryonic dopaminergic neurons implanted in 
human αSyn overexpressing rats with (93) or without (94) striatal 
dopamine depletion. These results show that healthy neurons in 
the CNS are vulnerable to spread of disease by taking up LP from 
surrounding LP-affected neurons, although it does not indicate 
any specific pattern for this spreading.

Transport of αSyn between Neurons
The ability of LP to spread through the nervous system raises the 
question what is the exact mechanism of transport of LP between 
neurons, and why the spread of LP follows a specific pattern, 
as suggested by Braak’s hypothesis. Both neuronal cell lines and 
primary neurons are able to excrete αSyn monomers, oligomers, 
and fibrils through unconventional calcium-dependent exocyto-
sis from large dense core vesicles or via exosomes (84, 95–97). 
Once the αSyn is present in their environment, both neuronal 
cell lines and primary neurons seem to be able to take up free 
or exosome-bound fibrils and oligomers by endocytosis after 
which they are degraded in lysosomes (SH-SY5Y cells), while 
monomers seem to diffuse across the cell membrane and are not 
degraded (91, 97, 98). In a different study, the uptake was only 
found in proliferating SH-SY5Y neurons, but not in differentiated 
SH-SY5Y neurons, which could be due to the type of αSyn that 
was different from the other studies (radioactively labeled cell 
produced αSyn, versus different forms of recombinant human or 
non-human αSyn) (96). The transfer of specific αSyn molecules 
between cells of neuronal cell lines was proven in a coculture 
study of SH-SY5Y neurons expressing the same human αSyn 
labeled either green or red (92). Coculture resulted in double-
labeled neurons, showing the process of subsequent excretion 
and uptake of αSyn by neighboring cells. After uptake, αSyn 
can be transported anterograde or retrograde through axons 
and passed on to other neurons (82, 84, 99–101), providing 
a potential highway for the spread of LP between connected 
nervous system regions in PD patients. A recent study shows 
that neuron-to-neuron αSyn transmission could be initiated 
by binding the transmembrane protein lymphocyte-activation 
gene 3 (LAG3). The study demonstrated that LAG3 binds 
αSyn preformed fibrils (PFFs) with high affinity and initiates 
αSyn PFF endocytosis, transmission, and toxicity in SH-SY5Y 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Rietdijk et al. Braak’s Hypothesis of Parkinson’s Disease

Frontiers in Neurology | www.frontiersin.org February 2017 | Volume 8 | Article 37

cells. Moreover, mice lacking LAG3 showed delayed αSyn PFF-
induced pathology and reduced toxicity (102).

It is known that the neurons in the areas affected by LP in 
PD have specific characteristics that cause a high metabolic 
burden, which seems to make these neurons especially sensi-
tive to oxidative stress and αSyn misfolding. These neurons 
have high levels of endogenous αSyn, they use monoamine 
neurotransmitters, have long and highly branched axons with 
no or poor myelination, and characteristic continuous activity 
patterns (72, 103, 104). Together this could explain why PD 
pathology develops in the specific pattern proposed by Braak, 
specifically affecting interconnected regions with vulnerable 
neurons like the DMV, while sparing neighboring areas like the 
nucleus tractus solitaries (72).

Neurotoxicity of αSyn
It has been suggested that αSyn acts prion-like in PD. In this 
theory, pathologic, misfolded αSyn is an infectious protein 
spreading toxicity by forming a toxic template that seeds mis-
folding for nearby αSyn protein, turning the previously healthy 
protein into a toxic protein, causing LP. Excellent reviews on the 
prion-like theory of αSyn have been previously published (105, 
106). The prion-like theory fits into Braak’s hypothesis, since the 
staging system of Braak is based on the regional presence (or 
absence) of LP and the spreading of LP, linking LP to severity 
of disease (32). The toxicity of αSyn in its different form is still 
undecided and remains the topic of many experiments, with one 
study reporting a cytoprotective function of αSyn aggregation 
(107), while others suggest that the oligomeric form of αSyn 
is the most toxic form of the protein (108–110). Foreign αSyn 
induces LP-resembling inclusion bodies in recipient neurons 
(91), caused by fibrils acting as exogenous seeds and recruiting 
endogenous αSyn into the inclusion body (92, 111), even in 
cells not overexpressing αSyn (101). Neuronal death resulting 
from αSyn exposure has also been shown (91), with a higher 
toxicity for oligomeric compared to monomeric species (96), 
and a higher toxicity of exosome bound oligomers compared to 
free oligomers (97). Inclusion bodies are linked to cell death, 
involving the loss of synaptic proteins and reduction in network 
connectivity (101).

In animal studies, injection of aggregated αSyn (derived from 
symptomatic transgenic mice) or synthetic αSyn fibrils into 
the brain of young, asymptomatic transgenic mice accelerated 
the formation and spread of αSyn inclusions throughout the 
brain resulted in early-onset motor symptoms, and reduced the 
lifespan of these mice (112, 113). Synthetic αSyn fibrils injected 
in the striatum also induced widespread LP, cell death of dopa-
mine neurons in the SN, and motor deficits in wild-type mice 
(114). It has even been shown that fibril-seeded αSyn inclusions 
specifically increase neuronal death in αSyn transgenic mice in 
an experiment where neurons with or without inclusions were 
followed in vivo, providing direct evidence that αSyn inclusions 
were responsible for neuronal death (115). Injection of wild-type 
mice with patient-derived LB αSyn just above the SN resulted in 
degeneration of the dopamine fibers and cell bodies in the SN, 
and concomitant development of inclusion bodies exclusively 

consisting of endogenous αSyn, and reduced motor coordina-
tion and balance (116). Mice treated with non-LB αSyn (mono-
mers) did not develop these lesions. Similar results were found 
in rhesus monkeys; injection of patient-derived LB αSyn in the 
striatum or SN resulted in reduced nigrostriatal dopaminergic 
innervation, increased αSyn immunoreactivity in connected 
brain regions after striatal injection (but not after SN injection), 
without LP or motor symptoms (116). Taken together, these 
results do not definitively confirm or reject the prion-like theory 
in the context of Braak’s hypothesis. However, a picture emerges 
where αSyn oligomers are likely toxic to neurons, and inclusion 
bodies are linked to neuronal death, which might or might not 
lead to motor symptoms. Although the studies included here 
were performed in the CNS, the emerging picture of oligomer 
toxicity and inclusion body-induced neuronal death could also 
be applicable to the ENS and other parts of the peripheral nerv-
ous system.

CRiTiCiSM TO BRAAK’S HYPOTHeSiS

Criticism to the Specific Pattern of 
Spreading
Despite the in  vitro, in  vivo, and clinical support for Braak’s 
hypothesis, there is also doubt whether it accurately describes 
the development of PD in all patients (117, 118). A large subset 
of 51–83% of PD patients follow Braak’s staging, while a smaller 
subset of 7–11% do not have LP in the DMV while higher 
brain regions are affected (119–124). Additionally, there is no 
correlation between severity of LP in the DMV and in the 
limbic system or neocortex (125). Also, LP in the ENS is not 
correlated to olfactory problems, and 27–33% of PD patients 
did not show any LP in the ENS, which does not support the 
dual-hit hypothesis (64, 126), although it is known that LP can 
be restricted to the olfactory system in the early stage of the 
disease (124). Additionally, people with incidental LB disease 
seem to have a similar distribution but milder expression of 
LP compared to PD patients (50, 127) and can show LP in the 
SN and other areas of the brain without LP or neuronal loss 
in the DMV (77, 122, 128, 129) or LP in the vagus nerve (45), 
favoring multiple origination sites for LP instead of a spread 
from ENS to CNS via the vagus nerve. Additionally, Braak’s 
hypothesis does not explain how or why cardiac sympathetic 
nerves are affected in early PD (129). Therefore, it seems safe to 
conclude that not all PD patients adhere to the specific pattern 
of LP spread proposed by Braak.

Criticism to the Link between LP, Neuronal 
Loss, and PD Symptoms
Other studies have shown that the link between LP and clinical 
PD symptoms should be questioned. Only 45% of people with 
widespread LP in the brain are diagnosed with dementia or 
motor symptoms (121) and only about 10% of people with LP 
in the SN, DMV, and/or basal forebrain are diagnosed with 
PD (130). Additionally, neurodegeneration in the SN might 
precede LP (131). Therefore, the spreading of LP, whether 
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according to Braak’s staging system or not, might not be as 
tightly bound to clinical symptoms as has been suggested by 
Braak.

The basic science underlying Braak’s hypothesis has also been 
questioned (118, 132), because in the initial studies all cases 
were preselected for LP in the DMV (32, 76), systematically 
excluding any cases where LP in higher brain regions was found 
in the absence of LP in the DMV, which seems to have led to a 
selection bias and the inclusion of non-representative samples 
in the preclinical PD group in the original research (132). The 
limited clinical information on the preclinical PD group and 
the absence of information on neuronal cell loss in the original 
Braak papers have also been criticized (117, 118, 132). It has 
been suggested that neuronal loss and activation of glial cells 
should be part of future pathological analysis of PD to better 
describe disease progression, since the clinical significance of 
LP is not yet clear and might be less important than previously 
thought (121, 130, 131).

Studying Neuronal Loss and Glial 
Activation in Future PD Research
Studying neuronal loss together with LP during PD develop-
ment is important because neuronal loss in the SN shows a 
linear relationship with motor symptoms (133), while LP in 
the overall brain only shows a trend for positive correlation 
with motor symptoms (124). Additionally, LP is not related to 
dopaminergic cell loss in the striatum (124), and may (124) or 
may not (134) be related to dopaminergic cell loss in the SN of 
PD patients. Therefore, it can be concluded that neuronal loss 
and LP are not interchangeable hallmarks for PD progression or 
severity of disease, but should rather be seen as complimentary 
to each other.

Studying the activation of glial cells is important because neu-
roinflammation is an important factor in PD development, and 
glial cells are major contributors to neuroinflammation, partially 
through toll-like receptors (TLRs) (22–27). Especially TLR2 and 
-4 are important in PD, since their expression is increased in the 
brain of PD patients, and a polymorphism resulting in lower 
expression of TLR2 tends to be linked to an increased risk of PD 
(135–138). Preclinical research has confirmed the importance of 
TLR2 and -4 for PD and has specifically shown their importance 
in the context of glial-induced inflammation and αSyn uptake by 
glial cells (138–149).

CONCLUSiON

Reviewing the current literature it can be concluded that there is 
much evidence to support Braak’s hypothesis. Enteric and olfac-
tory pathology and dysfunction are well-known characteristics 
of early and late PD. The vagus nerve and DMV form a likely 
route for αSyn pathology to spread from the ENS to the CNS, 
and αSyn is able to spread cellularly within the CNS. Neurons 
are able to transmit different forms of αSyn protein to each other 
and to transport αSyn via their axons, which enables the spread 
of the potentially toxic oligomeric variety of the protein, which 
could be the basic mechanism underlying the specific pattern of 

LP spread in PD as proposed by Braak. It then seems possible 
that a pathogen or environmental toxin might provoke local 
inflammation and oxidative stress in the gut, thereby initiating 
αSyn deposition that is subsequently disseminated to the CNS. 
Hypothetically, the toxic αSyn can lead to neuronal death. 
(Micro)glial cells and surviving neurons can then be activated 
through the release of danger associated molecular patterns and 
subsequent activation of TLRs. This would trigger a vicious circle 
of neuroinflammation.

However, it can also be concluded that a significant portion 
of PD patients do not follow Braak’s staging system. It has 
been discovered that a subgroup of levodopa-responsive PD 
patients who develop PD at a young age and have a long dura-
tion clinical course with predominantly motor symptoms, and 
dementia only at the later stages, seem to follow Braak’s staging, 
while other levodopa-responsive PD patients did not (80). In 
addition to this, a LB staging system has been proposed, which 
encompasses all patient groups, a system wherein LP staging 
correlates well with motor symptoms and cognitive decline 
(124), and allowing for patients who show a spread of LP not 
accounted for in Braak’s hypothesis. Unfortunately, the staging 
system is only describing the different observed patterns of LP 
spread, while not answering the question as to the cause of the 
non-Braak patterns. What is the reason or explanation for these 
other types of patterns to occur? This question remains to be 
answered.

We conclude that Braak’s hypothesis and the Braak staging sys-
tem are valuable and useful for the future study of PD, and these 
theories are likely to accurately describe disease initiation and 
progression in a subgroup of PD patients with young onset and 
long duration of disease. However, a similar theory describing 
the initiation and disease progression in other PD patients is still 
sorely lacking and deserves to be elucidated. To better understand 
the progression of LP and PD in different patient groups, it is 
necessary to study people longitudinally during disease develop-
ment, and especially in the earliest stages of PD. This should 
lead to a larger theory describing different disease processes, all 
leading to PD, including Braak’s hypothesis. This theory could 
offer useful insight into specific targets for disease prevention or 
disease treatment, dependent on the type of LP disease the patient 
is likely suffering from. Either more optimal treatment with cur-
rently available drugs and technology, or the development of new 
treatments could be the result.
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