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Stroke is a leading cause of worldwide disability, and up to 75% of survivors suffer from 
some degree of arm paresis. Recently, rehabilitation of stroke patients has focused on 
recovering motor skills by taking advantage of use-dependent neuroplasticity, where 
high-repetition of goal-oriented movement is at times combined with non-invasive 
brain stimulation, such as transcranial direct current stimulation (tDCS). Merging the 
two approaches is thought to provide outlasting clinical gains, by enhancing synaptic 
plasticity and motor relearning in the motor cortex primary area. However, this general 
approach has shown mixed results across the stroke population. In particular, stroke 
location has been found to correlate with the likelihood of success, which suggests 
that different patients might require different protocols. Understanding how motor 
rehabilitation and stimulation interact with ongoing neural dynamics is crucial to 
optimize rehabilitation strategies, but it requires theoretical and computational models 
to consider the multiple levels at which this complex phenomenon operate. In this 
work, we argue that biophysical models of cortical dynamics are uniquely suited to 
address this problem. Specifically, biophysical models can predict treatment efficacy 
by introducing explicit variables and dynamics for damaged connections, changes in 
neural excitability, neurotransmitters, neuromodulators, plasticity mechanisms, and 
repetitive movement, which together can represent brain state, effect of incoming 
stimulus, and movement-induced activity. In this work, we hypothesize that effects of 
tDCS depend on ongoing neural activity and that tDCS effects on plasticity may be 
also related to enhancing inhibitory processes. We propose a model design for each 
step of this complex system, and highlight strengths and limitations of the different 
modeling choices within our approach. Our theoretical framework proposes a change 
in paradigm, where biophysical models can contribute to the future design of novel 
protocols, in which combined tDCS and motor rehabilitation strategies are tailored to 
the ongoing dynamics that they interact with, by considering the known biophysical 
factors recruited by such protocols and their interaction.
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stroKe reHaBiLitation: reCrUitinG 
CHanGes in Brain aCtiVity to 
indUCe MoBiLity reCoVery

Cortical activity after a stroke
Stroke, due to the interruption of blood supply to the brain 
determining an acute neurologic condition (1), is a major cause 
of disability worldwide, often resulting in limited motor recovery 
in the paretic upper limb. Up to 75% of survivors maintain an 
arm paresis even in a chronic stage, with substantial limitations 
during participation in daily life activities (2, 3). The hemiparesis, 
in which the movement ability is affected on a single side, is due 
to the interruption of the motor signal through the corticospinal 
tract (CST) to the spinal cord motor neurons. Stroke research 
in humans is performed using techniques, such as functional 
magnetic resonance (fMRI) characterized by an excellent 
spatial resolution or transcranial magnetic stimulation (TMS), 
which explores cortical excitability through the induction of an 
electromagnetic field (4) at a high temporal resolution. Animal 
models of stroke have been influential in describing functional 
map reorganization (5) via electrophysiology, pharmacology (6), 
and optogenetics (7, 8).

A stroke initiates a large amount of changes in cortical excit-
ability, connectivity (i.e., the synaptic wiring within and across 
brain regions), and ultimately coding (i.e., the specific neural 
spiking patterns that encode for movement are likely different 
after stroke). These changes, although not completely understood, 
occur on different time scales: some immediately after the injury 
and some are slowly established on the course of months (the 
chronic phase). However, times at which a stroke is considered 
entering the chronic phase, or exiting the subacute phase, are not 
universally agreed upon. Since measured changes in neural prop-
erties have been shown to affect the chances of motor recovery (9, 
10), the design of effective neurorestorative approaches requires 
knowledge of the mechanisms of brain injury and neural repair 
after stroke.

Early after a stroke, cell deaths results from several biological 
pathways, including toxicity induced by excessive excitability, 
ionic imbalance, inflammation, and apoptosis. In an early 
response to stroke, several neurotrophic factors are upregulated, 
and in the first 1–4  weeks local axonal sprouting, dendritic 
spine expansion and synaptogenesis occur (11). In humans and 
animals, the affected brain areas (in particular the CST) show 
decreased activation in TMS studies (10), with concurrent 
activation of the contralateral cortex (12). Such reduced activity 
is related to increase in GABAergic tonic inhibition close to the 
lesion, which has been hypothesized to be neuroprotective in 
the acute phase, to counterbalance the excitotoxic cascade (13). 
At the same time, fMRI studies show that bilateral activation in 
both the ipsilesional (affected) and controlesional (unaffected) 
hemispheres occurs, revealing the development of early cortical 
reorganization processes (14, 15). These findings suggest that 
a damaged brain is still plastic and possibly amenable to be 
influenced by experiences.

In a chronic stage after stroke, a new functional cerebral 
architecture is determined, based on several variables (side of 

lesion, age, pre-stroke comorbidities). Since the disruption of the 
cortical motor network triggers a major reassembly of inter- and 
intra-areal cortical networks, it is reasonable that some of the 
functions of the injured regions could be redistributed across 
the remaining cortical and subcortical motor network in due 
time (12). In fact, several weeks after stroke, functional map 
changes are consolidated (16). Specifically, correlations between 
structural motor cortex connectivity and motor impairment 
(17) or fMRI activation in ipsilesional primary and pre-motor 
cortex and good upper limb recovery (15) have been highlighted, 
and impaired motor function seems related to persistent con-
tralesional M1 activation (18). Though a rebalance between 
hemispheres is considered a sign of good recovery in chronic 
phase, whether such bilateral activation is adaptive or maladap-
tive is still on debate (19, 20).

recovery depends on network state
The progression of recovery can be seen as a relearning process of 
lost functions and as an adaptation and compensation of residual 
functions. Experimental animal data show that in absence of 
rehabilitation, functional spontaneous recovery occurs (21). 
However, it was limited and largely reflected the development of 
compensatory motor patterns far from normal kinematics.

The recovery process impinges on a damaged, reorganized 
network, and some of the changes in the acute to chronic phase 
after stroke can be predictive of rehabilitation outcomes. Even 
though a clear correlation between neurophysiological and 
neuroimaging findings and motor outcome in stroke survivors 
is not fully established, algorithms to predict motor recovery 
have been postulated (22). The imbalance between reduced 
excitability in the affected cortex and enhanced excitability of 
the unaffected hemisphere was predictive of motor recovery in a 
TMS study (9). In contrast, increases in contralesional primary 
motor cortex (M1) activity over the first 10  days after stroke 
correlated with the amount of spontaneous motor improvement 
in initially more impaired patients (23). Furthermore, repeti-
tive training of the affected forelimb is related with a decreased 
motor representation of the intact hemisphere (24). These find-
ings support the idea that after stroke an ipsilesional activity 
is rewired in patients with good recovery; whereas in patients 
severely impaired, the contralesional hemisphere can contribute 
to motor recovery.

Studies on animal models are essential to explore the time-
windows more suitable to deliver rehabilitative interventions 
in order to achieve optimal neuroplastic changes (25, 26). For 
example, the upregulation of proteins occurs over a relatively 
narrow window of time after injury, which might be the optimal 
time to induce use-dependent cortical reorganization processes 
(16). Improvement in motor performance is associated with 
reorganization of cortical motor maps, but the temporal relation-
ship between performance gains and map plasticity is not clear. 
Training-induced motor improvements are not reflected in motor 
maps until substantially later, suggesting that early motor training 
after stroke can help the evolving poststroke neural network (27). 
Also, in animals, a reduction of the increased tonic inhibition 
after injury induced functional recovery (6), which highlights the 
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FiGUre 1 | diagram of top-down and bottom-up stroke 
neurorehabilitation strategies. Sensory–motor training and brain 
stimulation contribute to rehabilitation protocols that exploit neural plasticity. 
The bottom-up approach includes sensory–motor training, which can be 
aided by robots, electrical stimulation of the periphery, and constrains. The 
top-down approaches include methods to stimulate the brain non-invasively.
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potential for animal models of stroke to provide new pharmaco-
logical targets.

Use-dependent plasticity
Plasticity refers to an intrinsic property of the human brain to 
adapt to environmental pressures, physiologic changes, and 
experiences (28). Since experiences and practices play a funda-
mental role in neural reorganization processes both in healthy 
and damaged brains, neural plasticity is believed to be the 
basis for both learning in the intact brain and relearning in the 
damaged brain, which occurs through physical rehabilitation. 
Plasticity involves the brain at multiple system levels: intracel-
lular (i.e., mitochondrial functions, genome changes), cellular 
(neurons and glia, including changes in synaptic strength, and 
sprouting), and network (changes in neuronal activation and 
cortical maps).

Motor behavior is extremely adaptive and may change 
during motor experiences. Skill training, which refers to the 
acquisition of new and complex movements’ combination, 
is able to induce cortical network reorganization, leading to 
increased synaptic number and strengths, and changes in the 
cortical topography closely related to the trained movement. 
These findings have been highlighted both in animals (29) and 
humans (30). It  has been shown that cortical reorganization 
occurs if the tasks are challenging and quite new. In rat models, 
motor skill level increases rapidly over the first few days of 
skill training (31, 32), which are characterized by an increase 
in the synthesis of various proteins (including cAMP and the 
immediate early gene c-fos), and later phases of skill training 
are accompanied by significant increases in synapse number 
and motor map reorganization (31, 32). In humans, an intensive 
five-fingers motor training was able to modify significantly 
finger cortical motor maps (30).

Neuroscience research has made significant advances in 
understanding experience-dependent neural plasticity, and these 
findings are beginning to be integrated with research on the 
degenerative and regenerative effects of brain damage, leading 
to 10 experience-dependent plasticity principles by Kleim and 
Jones (33), which postulate that exercise to induce use-dependent 
plasticity should be intensive, task-specific, and salient from the 
patient perspective.

neurorehabilitation techniques:  
Bottom-Up and top-down approaches
Even after damage to the central nervous system (CNS), a subject 
might achieve a functional recovery influenced by experiences 
and rehabilitative interventions. Recently, bottom-up and top-
down approaches to enhance cortical reorganization and motor 
recovery after stroke have been introduced (34) (Figure 1). The 
former includes multimodal, external inputs that act at a periph-
eral level (bottom) with the aim of influencing CNS and neuro-
plastic changes. They are mainly represented by sensory–motor 
training. The latter enhance motor recovery with non-invasive 
brain stimulation (NIBS) techniques (35).

Within the bottom-up approaches, robotic devices have 
been developed for upper extremity stroke rehabilitation. To 

date, several studies (34, 36–39) highlight how robot-assisted 
therapy can improve arm motor function after stroke. Also, 
robots can be used to understand the stroke recovery process, 
such as the anticipatory control of arm movement (40) or motor 
synergies (41). Conversely, constraint-induced movement 
therapy (CIMT) uses limiting movements to promote recovery. 
Hemiplegic patients show inhibition of purposive movement 
of the affected arm in everyday life, mediated by compensation 
by the healthy arm (called “learned non-use”). CIMT promotes 
the reduction of this phenomenon, by inducing functional 
reorganization with repetitive, task-oriented practice (42) with 
the affected arm. Animal research shows that CIMT mediates 
unique functional reorganization processes of the CNS (43), and 
in stroke survivors, CIMT leads to improvement in real-world 
motor performances (44).

Electrical stimulation is used both in bottom-up and top-
down approaches. Neuromuscular electrical stimulation gener-
ates joints movements by contracting muscles in an organized 
pattern, to generate functional movements such as hand grasping 
(45). This bottom-up modality is named functional electrical 
stimulation and has been shown to increase motor function (46) 
and cortical activation (47–49). In top-down strategies, NIBS 
techniques, such as repetitive transcranial magnetic stimulation 
(rTMS) or transcranial direct current stimulation (tDCS), are 
used to induce motor recovery in neurorehabilitation (50, 51). 
rTMS can modulate cortical plasticity and brain activity via 
the production of electromagnetic currents delivered by a coil 
placed over the scalp (52). tDCS applies weak direct currents to 
the scalp to modify cortical excitability for up to 90 min from 
the end of stimulation (53). It has advantages over rTMS, such 
as the greater portability and lower cost, the ability to stimulate 
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FiGUre 2 | neurorehabilitation protocol with tdCs shows mixed 
results across stroke patient population. For the same treatment, 
patients who had chronic subcortical stroke damage showed a higher 
recovery than those who had a different stroke type. Those who had the least 
improvement were patients with acute cortical stroke damage. Shown here is 
our data (58), which is one of many examples highlighting the need for 
optimized neurorehabilitation protocols, potentially different across stroke 
types and duration.
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both hemispheres simultaneously (54, 55), the long-lasting effects 
on cortical excitability with no significant adverse effects, and the 
lower level of discomfort experienced by patients. So far, tDCS 
effects on motor learning and arm function in stroke population 
have been extensively addressed testing the “interhemispheric 
competition model” where anodal tDCS is applied over the 
affected M1 and cathodal stimulation over the unaffected M1 
(56). Moreover, tDCS can be combined with a behavioral training 
with an augmenting effect on motor learning (55, 57–59). Both 
rTMS and tDCS show large variability in the cortical excitability 
responses (60, 61), which emphasizes the need for a more deep 
understanding of how these neural stimulation techniques induce 
a response in the first place.

All these strategies are commonly applied in protocols which 
take advantage of the principles of use-dependent plasticity to 
induce functional recovery. However, definitive scientific evi-
dence for the benefits of these restorative interventions is lacking 
so far. In addition, the neural mechanisms by which they may 
enhance recovery remain undefined.

Clinical Hypothesis: neural dynamics 
during neurorehabilitation determines 
Motor recovery
Overall, neurorehabilitation is a multifaceted process, which 
includes behavior and stimulation in an effort to conjure appro-
priate brain plasticity and mediate motor recovery. The aim of 
combining tDCS and motor training is to modulate the response 
of motor cortex area to a behavioral therapy via the modulatory 
effect of tDCS. So far, encouraging results have been shown in 
human studies (55, 57, 62). However, not all stroke patients 
improve equally after neurorehabilitation protocols.

Up to date, optimization of the effects of coupling tDCS and 
motor training still need further investigations. Presumably, 
important factors are the time since stroke, lesion site, the site 
and type of stimulation, the timing of stimulation in relation 
to physical intervention, and the motor task. tDCS stimulation 
can be delivered just before the motor task, priming functional 
networks for the physical intervention; during the behavioral 
intervention when it might preferentially interact with the 
networks selectively recruited by the ongoing task; or after 
motor training to promote a long-term consolidation of new 
neural pathways. Anodal tDCS delivered to M1 over the affected 
side was tested in subjects with chronic stroke in experimental 
designs (63, 64), and recently reviewed in Ref. (65, 66). Reduction 
of the excitability in M1 over the unaffected side with cathodal 
tDCS-promoted improvements in motor task lasted for the same 
amount of time (67). Recently, a bilateral tDCS montage has 
been proposed in stroke survivors to reduce interhemispheric 
inhibition (via cathodal stimulation over M1 unaffected) and 
to enhance cortical excitability (via anodal stimulation over M1 
affected) with the final goal to decrease cortical excitability in 
the unaffected motor cortex and increase it in the affected motor 
cortex as demonstrated before (68).

In our recent work (58), we employed such bilateral tDCS 
stimulation combined with upper extremity robot-assisted 
therapy on stroke survivors to reduce arm impairments, 

measured by a clinical assessment scale (69). Our findings 
suggested that bilateral tDCS was more effective for chronic 
stroke subjects with a subcortical lesion and less effective for 
patients in a subacute phase after stroke or with a cortical 
stroke (data shown in Figure 2). These findings are in line with 
previous studies that reported positive effects of bilateral tDCS 
on chronic stroke survivors when combined with CIMT (59) 
or with a meta-analysis that highlighted better tDCS results 
in chronic stroke population (50, 66, 70). Conversely, in an 
acute stage, all tried montages were found to be not effective 
in restoring motor function (71–73). Several reasons may 
explain differences among recovery stages: in the acute–suba-
cute phase, the enhanced excitability of the intact hemisphere 
can be compensatory (74) and neuromodulation effects may 
be masked by spontaneous recovery. Also, in animal models, 
stroke training-induced motor improvements early after are 
not reflected in cortical reorganization until substantially later, 
suggesting that early motor training after stroke can help the 
evolving poststroke neural network (27). Regarding brain stroke 
localization, our findings are in line with a previous meta-
analysis that found a larger effect size in subcortical stroke (75). 
Furthermore, variability in tDCS response has been shown to 
be strong among healthy individuals (60), and can contribute 
to the overall differences found in our data.

Overall, these data suggest that incoming neuroreha-
bilitation interacts with the specifics of network dynamics 
(excitability, plasticity, cortical map reorganization) that are 
depending on multiple factors, such as stroke location, time 
since stroke, and residual network architecture (76). This 
produces a picture like the one reported in Figure  3, where 
motor training, stimulation, synaptic plasticity, and the effects 
of stroke, all contribute to determining network dynamics 
during neurorehabilitation, ultimately shaping the potential 
for sensorimotor recovery.
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FiGUre 4 | Biophysical models include explicit equations for all the 
components influencing neurorehabilitation dynamics. The equation 
summarizes a formalism in which the change of a cell voltage in time is equal 
to a non-linear function of the voltage itself and the state of intrinsic currents, 
summed to incoming synaptic currents. The formalism builds on Hodgkin–
Huxley equations (89), which relate the dynamics of transmembrane channels 
in time (which will have their own equations) and how voltage changes in 
time. Intrinsic currents and synaptic currents (each with their own equations 
and variables) can be added once the formalism is in place. The arrows 
emphasize where in the biophysical model the role of behavior, synaptic 
plasticity, and stimulation can be included.

FiGUre 3 | the many components of stroke neurorehabilitation 
dynamics. Stroke rehabilitation protocols impose goal-oriented behavior 
paired with tDCS on a poststroke network to recruit appropriate synaptic 
changes resulting in lasting improved performance. This schematic 
highlights the main components that interact during rehabilitation to 
mediate recovery.
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ModeLinG HoW Brain dynaMiCs 
interaCts WitH stiMULation and 
neUroreHaBiLitation

Understanding how motor rehabilitation and stimulation 
interact with ongoing brain dynamics is paramount to 
optimize rehabilitation strategies, but it requires theoretical 
and computational models to consider the multiple levels at 
which this complex phenomenon operates (77). Computational 
neuroscience is an emergent field of brain research which has 
been extremely successful in understanding both pathologi-
cal [e.g., epilepsy (78, 79), Parkinsonism (80), Schizophrenia 
(81)] and normal [e.g., sleep (82–84), attention (85), sensory 
coding (86, 87)] brain processes. Computational modeling is 
most effective when the complexity of the problem and the 
underlying unknowns are vast, which is the case with stroke 
rehabilitation (88).

There are many different approaches when it comes to mod-
eling brain activity, depending which level of detail is appropriate 
to represent a given phenomenon and introduce a possible expla-
nation. In particular, biophysical models can include explicit vari-
ables and dynamics for damaged connections, changes in neural 
excitability, neurotransmitters, neuromodulators, and many 
different plasticity mechanisms; which together can represent 
a brain state, the effect of incoming stimulus, and task-related 
spiking activity (Figure 4).

In the following, we introduce the separate steps that compose 
the path toward a biophysical model of neurorehabilitation 
combined with NIBS, and for each step, we propose strate-
gies to take advantage of what is known about stroke, tDCS, 
and neuroplasticity to design and adjust the parameters of a 
biophysical model.

Modeling the dynamics of M1 after stroke
In a biophysical model of neural network activity, each cell is 
represented by its membrane voltage (changing in time) and a 
set of variables encoding the intrinsic cell dynamics (e.g., states 
of different intrinsic currents, like sodium, potassium, calcium, 
etc.). Cells are connected by synapses, with different expressions 
to represent excitatory and inhibitory connections, and synaptic 
currents are introduced by combining synaptic conductances 
with postsynaptic cell voltage. When the voltage of a presyn-
aptic cell crosses a threshold, an action potential is generated 
and synaptic currents affect the voltage of all its postsynaptic 
cells (to hyperpolarize or depolarize for inhibitory or excitatory 
synapses, respectively). To represent synaptic plasticity, the 
strengths of synaptic conductances can be expressed as vari-
ables; with rules (equations) establishing changes in strengths, 
e.g., depending on timing of pre and postsynaptic cell spikes 
in the case of spike-timing dependent plasticity (STDP) (90). 
The overall network activity is then found by observing all cell 
spikes in time.

A model of stroke dynamics should minimally include excita-
tory pyramidal cells and inhibitory basket cells from different 
cortical layers. Within a layer, cells can be expressing AMPA, 
NMDA, or GABAA synapses. In particular, a cortical layer 
should in general include feedback inhibitory (from basket cells 
to pyramidal cell) connections and recurrent excitatory (from 
pyramidal cells to other pyramidal and basket cells) synapses 
(Figure  5). Pyramidal cells in layer IV should show stronger 
recurrent connections. Across layers, pyramidal cells in layer II/
III receive strong excitatory synapses from layer IV and deliver 
excitation to layer V pyramidal cells. Furthermore, pyramidal cells 
in layer IV will receive subcortical input, and the spiking activity 
of layer V pyramidal cells will be considered the output of the 
region, to be received and integrated by downstream structures 
(91–93), hence controlling, for example, motor response. This 
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FiGUre 6 | Components of a biophysical model of stroke dynamics. In 
the top panel, we show two hemispheres with multiple layers. Each layer, 
apart from layer I, is populated by pyramidal cells and basket cells, with 
connectivity as shown in Figure 5. Across layers, projections respect the 
canonical model of cortical connectivity: layer IV pyramidal cells receive input 
from subcortical regions (in green), they project to layer II/III pyramidal cells 
which in turn send their axons to layer V pyramidal cells where the cortical 
output is prepared and then projected toward other structures (in blue). The 
two hemispheres inhibit each other (red arrows) at both the layer II/III and 
layer V level (less strongly). In the middle panel, a subcortical stroke induces 
cell deaths among subcortical structures, leading to interrupted or strongly 
reduces input coming into the affected hemisphere (right side) and output 
being delivered to target regions. Red crosses mark the steps at which the 
flow of information is interrupted. Note that interhemispheric inhibition comes 
more strongly onto the affected hemisphere, which is suppressed by both 
augmented inhibition from a dis-inhibited unaffected hemisphere and reduced 
incoming subcortical input. In the lower panel, dynamics of the brain after a 
cortical stroke includes cell death (both excitatory and inhibitory) in the 
affected hemisphere. Red crosses mark the cells that could be removed. 
Severity of the damage will be represented by the percent of cells removed 
from the network. Note that interhemispheric inhibition is imbalanced in this 
case, as well as the subcortical case.

FiGUre 5 | Biophysical models of cortical layers include excitatory 
and inhibitory cells and synapses. In the diagram, pyramidal cells are 
represented as triangles and basket cells are circles. Arrows represent 
excitatory connections (which can be AMPA or NMDA receptor mediated) 
and inhibitory (GABAergic) connections. The equation shows the basic 
principle on which the network model is constructed: each cell voltage 
changes in time according to the combined effect of intrinsic (voltage-
dependent) currents and synaptic currents.
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description is clearly a strong simplification compared to actual 
cortical anatomy, which includes a multitude of interneuron 
types (94) and subtle differences among pyramidal cells across 
and within layers (93). Nonetheless, the model design we suggest 
includes feedback inhibition and recurrent excitation within lay-
ers, and three separate processing layers across which subcortical 
input is converted into output.

Typically, in a stroke event, one affected and one unaffected 
hemisphere are identified, and their competition/interaction is 
relevant to rehabilitation approaches (56, 95). Hence, a model 
of motor cortex which suffered a stroke event will include two 
hemispheres, connected by reciprocal inhibitory synapses, most 
dense between layers II/III and less dense between layers V of 
the two hemispheres. In a healthy version of the model, the two 
hemispheres will show identical properties. Conversely, the 
stroke will affect only one of the two hemispheres, and damage 
could be subcortical (leading to removal of incoming input to a 
portion of pyramidal cells in layer IV of the affected hemisphere) 
or cortical (leading to removal of a group of pyramidal and 
basket cells in the affected hemisphere, in addition to removed 
subcortical input) (Figure 6). The size of the damage, whether 
subcortical or cortical, can be represented by removing a different 
percent of the network incoming input and/or cell population in 
the hemisphere which suffered a stroke.

Consistently with the interhemispheric inhibition model of 
stroke (56), a network showing subcortical or cortical damage to 
one hemisphere should show dis-inhibited activity in the unaf-
fected hemisphere, suppressing activity in the damaged one.

Understanding the effect of tdCs 
on stroke Brain dynamics
Another crucial step in this process is exposing the M1 model, in 
either the healthy or stroke-damaged condition, to non-invasive 
electrical stimulation, in our case tDCS. Most modeling efforts 
dedicated to tDCS have been concentrated on developing a 
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detailed understanding of the current flow induced in the tissue 
by stimulation, using finite-element techniques [FEM (96–98)]. 
In fact, it is known that the reciprocal orientation of a pyramidal 
cell and the current field, it is immersed into factors into the 
possible polarization of the cell voltage (99–101). In a different 
approach, neural mass models have been introduced to address 
the comparison between the average activity of large groups of 
neurons and physiological (and clinical) measures of average 
changes induced by tDCS (53, 102). Finally, in few studies detailed 
biophysical models have been used to test effect of stimulation 
(103) and endogenous electric fields (104) on neuronal activity. 
However, even if research produced a perfect reconstruction of 
the current flow in the brain of a given patient exposed to a spe-
cific tDCS protocol, or an exact match between EEG measured 
in patients and predicted by a mass model, we would still be at 
a complete loss toward knowing what exactly was changed in 
network activity by incoming tDCS.

While the mechanisms that enable tDCS to induce lasting 
changes in network activity in humans and animals are not 
completely understood, research has uncovered a number of 
specific changes that tDCS imposes on brain tissue, and these can 
be applied to the design of a biophysical model. In fact, research 
has shown that tDCS is capable of inducing many changes: 
polarization of cell voltage (105, 106), scaling of synaptic gain 
(107) (where the efficacy of synapses can be locally enhanced 
or reduced), modulation of spontaneous firing (108), reduction 
of overall phasic GABA available to a cortical region (109), and 
control of the input–output function of pyramidal cells (110). All 
these are elements capable of modifying strongly not only the 
spiking of a single cell or a single synapse but the entire network 
activity profile. Considering the ability of tDCS to change these 
fundamental properties of neural activity, it is no surprise that 
tDCS can induce measurable changes in gamma synchrony (111), 
MEP amplitude (108), and ultimately performance in behavioral 
tasks (112).

In a biophysical model setting, membrane polarization, 
synaptic gain, cell input/output functions, and degree of intrinsic 
spiking of cells are all factors that can be explicitly changed by 
changing specific model properties (113, 114). Hence, each and 
every one of these effects of tDCS on the network can be studied 
separately or together. Furthermore, results about current flow in 
damaged tissue derived by FEM models (97, 98) can be used to 
make informed choices as to where in the network the effects of 
tDCS should be present, and how strong they should be.

representing different tdCs stimulations 
in a Model
Not all tDCS protocols are created equal, even if in the field of 
stroke rehabilitation a general consensus on the “interhemispheric 
inhibition” model has led to anodal stimulation delivered to the 
affected hemisphere, while cathodal stimulation is delivered to 
the healthy hemisphere, in an effort to promote re-balancing of 
the activation levels across the brain. Common variants across 
different tDCS protocols used in stroke motor rehabilitation are 
electrode placement and total charge, the latter then inducing 
scaling in waveform duration and intensity, hence ultimately 

affecting current density in the tissue, while the slope of current 
ramp-up (and down) can be used to obtain comparable data in 
sham/stimulation protocols. As mentioned before, the current 
field induced by tDCS has been thoroughly investigated with 
the use of FEM techniques, which have produced unexpected 
results which highlight the non-uniform effect that tDCS has on 
brain tissue (77). In a biophysical model, these different effects 
of stimulation can be taken into account by selecting which cells 
(and in which layers) will be changed by tDCS.

Modeling How synaptic plasticity 
Mediates Long-lasting Changes in Brain 
dynamics
Synaptic plasticity is a broad concept encompassing the many 
ways in which a synapse can change depending on network 
activity and signaling (115–117). The relevance of plasticity for 
learning (whether motor or otherwise) has been theorized in the 
Hebbian principle, where cells that spike in close time vicinity 
will show increased synaptic coupling, to promote a bond that 
would lead the two cells to preferentially firing together in the 
future (118).

Among the types of plasticity, STDP is the mechanism that 
most directly shows the Hebbian principle. In STDP, the time 
difference between a spike in the presynaptic cell and the post-
synaptic cell controls the degree of change of synaptic strength: 
the smaller the time gap, the larger the change induced (90). If pre 
precedes post, the effect is to potentiate a synapse. Conversely, a 
synapse is depressed if post precedes pre. These changes can be 
short-lived or lasting for hours (or days). The latter case is called 
long-term potentiation or depression (LTP/LTD) (118). While 
the specifics of cellular mechanism that mediate LTP/LTD are not 
completely understood, it is common to associate LTP/LTD with 
strengthening/weakening of NMDA conductances (119).

Other plasticity mechanisms that could prove relevant in 
neurorehabilitation after stroke include heterosynaptic plastic-
ity (120, 121), in which a synapse is strengthened/depressed 
depending on spillage of neurotransmitter from nearby synaptic 
clefts, and homeostatic plasticity (122, 123), in which the overall 
network activity influences the re-balancing of synaptic strength. 
Both heterosynaptic and homeostatic plasticity are needed to 
prevent “runaway synapses” (where synaptic weights distribution 
is strongly split between groups of very strong synapses reaching 
the ceiling of synaptic strength and very weak synaptic connec-
tions). Moreover, a number of neuromodulators (like ACh, dopa-
mine, serotonine) can shape network plasticity, through reward/
punishment signaling or promoting attention (115). Recent 
research in synaptic plasticity during and after tDCS has shown 
that long-term efficacy of tDCS requires NMDA signaling (124), 
ACh is necessary to increase spontaneous excitability with tDCS 
and modulate stimulation-induced LTP/LTD (125), and dopa-
mine and serotonine have non-linear concentration-dependent 
influence on the lasting effects of tDCS (126–128). Furthermore, 
basic homeostatic plasticity seems to be involved in the effects of 
anodal tDCS, but not cathodal (129).

Biophysical models have standardized formalisms for the 
different synaptic plasticity mechanisms mentioned above. In 
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basic STDP, the spike pattern of pre and post synaptic cell at a 
synapse and the strength of the synaptic conductance between 
the two cells are connected by an explicit relationship [see Ref. 
(82) for an example], and homeostatic plasticity can be expressed 
as synaptic scaling (79). The role of neuromodulators in plasticity 
can be introduced via reward/punishment components in STDP 
equations (130), or they can also play an indirect role, in affect-
ing cell excitability rather than directly synaptic strength (131). 
Hence, a biophysical model of tDCS effect on stroke neuroreha-
bilitation will likely need to include progressively more complex 
synaptic mechanisms, starting from STDP at NMDA synapses 
between pyramidal cells and pyramidal cells to interneurons, and 
progressing toward reward–punishment signals. Each plasticity 
mechanism (specific neuromodulators, heterosynaptic and 
homeostatic plasticity) can be introduced as needed, depending 
on the specific questions being addressed by the model.

Indeed, a similar approach was successfully applied to 
explore a novel hypothesis regarding role of homeostatic plas-
ticity in epileptogenesis after brain trauma. It was shown using 
biophysical models that damage to the afferent inputs to the 
neocortex leads to disfacilitation and initial reduction of corti-
cal activity. While homeostatic plasticity normally maintains a 
moderate level of activity in the cortex, it may fail to control 
excitability levels in heterogeneous networks, where there are 
subpopulations of neurons with severely different levels of 
activity—conditions found in traumatized cortex. In that case, 
upregulation of neuronal activity can lead to instabilities and 
epileptic seizures (132, 133).

representing repetitive, Goal-oriented 
Behavior in network dynamics
The overall factors that are influencing network dynamics during 
a stroke neurorehabilitation protocol revolve around one—or 
many—goal-oriented movements, repeated multiple times in 

each session. Hence, a repetitive task being performed during 
stimulation needs to be introduced in the biophysical model.

Repetitive behavior in the network (the task) can be repre-
sented by stimulating a group of cells multiple times, to induce a 
specific cell firing pattern (task pattern). For a task to be consid-
ered goal-oriented, it should recruit synaptic plasticity, potentially 
modulated by reward signals (130, 134). The test phase can be 
represented stimulating only a small fraction of the cells involved 
in the task and measuring the spike pattern evoked (test pattern). 
Performance can be then measured by the ability of the network 
to complete the pattern. This method has been successfully used 
in a number of models of behavioral experiments that included 
sequential activity (82, 130, 135). The difference between the test 
response and the task pattern can be quantified, to compare with 
the model that did not receive training.

More specifically, a subset of cells can be chosen to represent 
the activation sequence in M1 that would induce a “correct” 
movement response (task pattern), and those cells will receive 
short-lived subcortical inputs that cause them to spike in the 
correct order during training. Testing can rely on quantifying the 
degree of pattern completion when only a subset of cells in the 
task pattern is stimulated. In our specific case, the chosen meas-
ure can be scaled to match the range of the FM measure, which 
quantifies progress in the rehabilitation motor task considered.

Combining all the parts to design a Model 
of tdCs and neurorehabilitation protocol 
for stroke recovery
While above we have listed the many pieces that compose this 
puzzle, they are only means to the goal of assembling a unified 
computational model, which could be progressively built on 
the smaller components that we identified here. The process 
can be articulated in parallel developments (Figure 7): a model 
of two hemispheres, with cortical layers and the ability to 
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represent healthy and stroke-affected activity, a model of tDCS 
affecting the biophysics of a network, changing excitability, 
synaptic strengths, and recruiting plasticity, and a model of 
goal-oriented learning, where task and test patterns are defined 
and measures of performance in the model are related to clini-
cal outcomes. The three lines then can merge in one objective: 
a model of the dynamics of stroke neurorehabilitation with 
stimulation.

BiopHysiCaL HypotHesis: tdCs Can 
proMote tHe roLe oF pHasiC 
inHiBitory siGnaL on pLastiCity

Neurorehabilitation is based on facilitating relearning of motor 
skills, which is mediated by the many forms of synaptic plasticity. 
An effective rehabilitation protocol will induce spiking activity 
able to code for movement, and promote its consolidation. A 
balanced excitatory/inhibitory background activity, mediated by 
a combination of feed-forward excitation and feedback phasic 
inhibition (136), guarantees that cortex can process stimuli 
without runaway excitability (137). In other words, a balanced 
inhibitory tone allows cortex to compute effectively, while too 
low or too high inhibitory signal interferes with network coding. 
After a stroke, the level of inhibitory tone is de-regulated, and 
effective recovery promotes returning to a functional equilib-
rium. In general, lost connections after stroke would prevent a 
return to exactly the same conditions, but increased efficacy of 
residual connections can compensate for lacking ones, at least 
within a range.

While, in all strokes, a degree of imbalance in the interhemi-
spheric inhibition is present and increased tonic GABA signaling 
is expected, the changes in phasic GABA signals seem to be more 
subtle. Recent work (138) on animal models shows that GABA 
receptors present at perisomatic synapses on pyramidal cells 
increase their efficiency during stroke recovery. Interestingly, 
this enhancement was found to be constrained to layer V, which 
is where information is finally processed before being translated 
into behavioral response. Increased phasic GABA at layer V 
pyramidal cells synapses is considered to contribute positively 
to recovery, because when phasic GABA efficacy was increased 
pharmacologically with Zolpidem, recovery was accelerated. 
It is, therefore, plausible that when tDCS facilitates neurore-
habilitative interventions, it recruits activity to effectively 
increase phasic GABA signaling on layer V pyramidal cells. In 
this framework, the mechanism by which tDCS could promote 
recovery of network function could be different, depending on 
the circuitry it impinges on, hence depending on the specifics of 
the stroke event.

If one of the mechanisms involved is the phasic inhibition 
on layer V pyramidal cells, it can be recruited by driving local 
inhibitory neurons to spike, through excitatory synaptic inputs. 
Excitatory cells in layer V are able to trigger local feedback inhibi-
tion, and translaminar connectivity can also drive feed-forward 
inhibition, in particular through projections from pyramidal cells 
in layer IV to layer V fast spiking interneurons (139). Note that 
input from layer II/III neurons seems to preferentially target layer 

V interneurons which route inhibition to the apical dendrites of 
the target cells, and so it would not be capable to recruit phasic 
somatic inhibition in layer V.

In subcortical strokes, layer IV pyramidal cells have their 
input from subcortical systems reduced, the loss of incoming 
excitatory input leads to disfacilitation and activity in the layer 
decreases [in a process similar to immediate the reduction 
of slow oscillation activity in deafferented cortex (140)]. In 
time, homeostatic compensation mechanisms can induce an 
enhanced excitability in pyramidal cells, which results in an 
imbalanced network state. When the missing afferent signals are 
compensated by tDCS (albeit from superficial cortex stimula-
tion), the cortical network recovers an excitability state which 
is balanced, which contributes to balancing the local phasic 
inhibitory tone. Hence, use-dependent plasticity promoted 
during tDCS stimulation tends to consolidate a network state 
able to relearn, including potentially enhancing phasic inhibitory 
activity in layer V.

Conversely, in cortical strokes it is possible that the local 
circuitry is too damaged to find a newly effective coding state 
in the presence of a general shift toward excitability as induced 
by locally applied tDCS. This could explain why using identical 
protocols in neurorehabilitation with tDCS has different effects 
on subcortical and cortical stroke: while in the subcortical case 
generalized drive can help the local network recover a balanced 
state by promoting a recovery of the phasic inhibitory feedback, 
in cortical strokes the local network is too damaged, and the same 
tDCS intervention cannot induce enough re-balancing of excita-
tory/inhibitory signal.

CHanGinG tHe paradiGM: UsinG 
Brain dynaMiCs to optiMiZe 
protoCoLs

It is important for the stroke rehabilitation field to embark in 
research that relies upon appropriate biophysical modeling of net-
work dynamics. While FEM models are bridging between brain 
connectomics and tDCS input, and mass models are connecting 
clinical data to the average spiking in brain regions, biophysical 
models have the ability to build on these findings, contributing 
to a higher detail, and offering tools to investigate separately all 
the effects of behavior, stimulation, and stroke condition. In fact, 
simple biophysical models of tDCS applied to decision-making 
are already producing result (135).

In this work, we have shown the principles that can define 
an overall biophysical model capable to undergo a rehabilitation 
protocol and highlighted the different complexity levels that 
can be introduced depending on the specific hypothesis under 
investigation, for example introducing reward among plasticity 
mechanisms to represent goal-oriented physical training. A lot 
of knowledge in stroke neurorehabilitation and tDCS effects 
can pour in a properly designed biophysical model, while 
parameters can be adjusted by comparing to known clinical 
outcomes, and measured effects on the network. Subsequently, 
different models—modified appropriately—can make predic-
tions about the efficacy of a given rehabilitation protocol, and 
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which mechanism(s) might underlie the overall performance 
improvement—or lack thereof.

The mixed results brought by current tDCS neurorehabilita-
tion protocols shed a light on the open questions underlying 
motor recovery after stroke. At present, however, we can only 
suggest that available data points toward the necessity of different 
protocols for different stroke types. As biophysical models are 
developed, these questions can find new ways of being addressed, 
including possibly the design of novel tDCS protocols to pair 
with motor neurorehabilitation, based on model predictions. 
This is a particularly appropriate time to start introducing com-
putational modeling of brain dynamics into stroke rehabilitation 
research, because progress is ongoing into the specific effects that 
tDCS has on a cortical network, and data connecting stroke state 
to quantifiable measures, such as TMS and high-density EEG, 
is available in large numbers. These progresses on the clinical 

and basic science side will now make possible the design and 
implementation of a new computational neuroscience of stroke 
neurorehabilitation.
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