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Background and purpose: Prognostication following intracerebral hemorrhage (ICH) 
has focused on poor outcome at the expense of lumping together mild and moderate 
disability. We aimed to develop a novel approach at classifying a range of disability 
following ICH.

Methods: The Virtual International Stroke Trial Archive collaboration database was 
searched for patients with ICH and known volume of ICH on baseline CT scans. Disability 
was partitioned into mild [modified Rankin Scale (mRS) at 90 days of 0–2], moderate 
(mRS = 3–4), and severe disabilities (mRS = 5–6). We used binary and trichotomy deci-
sion tree methodology. The data were randomly divided into training (2/3 of data) and 
validation (1/3 data) datasets. The area under the receiver operating characteristic curve 
(AUC) was used to calculate the accuracy of the decision tree model.

Results: We identified 957 patients, age 65.9 ±  12.3  years, 63.7% males, and ICH 
volume 22.6 ± 22.1 ml. The binary tree showed that lower ICH volume (<13.7 ml), age 
(<66.5 years), serum glucose (<8.95 mmol/l), and systolic blood pressure (<170 mm Hg) 
discriminate between mild versus moderate-to-severe disabilities with AUC of 0.79 (95% 
CI 0.73–0.85). Large ICH volume (>27.9 ml), older age (>69.5 years), and low Glasgow 
Coma Scale (<15) classify severe disability with AUC of 0.80 (95% CI 0.75–0.86). The 
trichotomy tree showed that ICH volume, age, and serum glucose can separate mild, 
moderate, and severe disability groups with AUC 0.79 (95% CI 0.71–0.87).

Conclusion: Both the binary and trichotomy methods provide equivalent discrimination 
of disability outcome after ICH. The trichotomy method can classify three categories 
at once, whereas this action was not possible with the binary method. The trichotomy 
method may be of use to clinicians and trialists for classifying a range of disability in ICH.
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INTRODUCTION

The incidence of intracerebral hemorrhage (ICH) is estimated at 
24.6 per 100,000 per year (1). Despite the advances in stroke pre-
vention and management, a recent meta-analysis has suggested 
that the incidence of ICH and its associated median 1  month 
mortality of 40% have not changed between 1980 and 2008 
(1) (mortality is much lower in Japan). There have been many 
models (2–6) for prediction of poor outcome following ICH. 
These models emphasized the importance of the volume of the 
hematoma and the Glasgow Coma Scale (GCS) (5). Importantly, 
these models have focused mostly on predicting mortality or 
poor outcome (severe disability) (2, 4, 7–10). An earlier review 
in 2005 of prediction models for mortality showed that they 
have high specificity but low sensitivity and consequently do 
not perform well as a clinical triaging tool (2). A more recent 
systematic review a decade later revealed that tools based on 
ICH score had excellent ability to discriminate mortality with 
area under ROC curve between 0.8 and 0.87 (11). However, it is 
less certain if these tools can discriminate the outcome over the 
range of disabilities.

For prognostication, clinicians want to classify mild and 
severe disability outcomes. Because of the way the outcome 
data are dichotomized from the Rankin scale of disability, 
good outcome is buried in a much larger group comprising 
good and intermediate outcome (2, 3, 7). However, clinicians 
and trialists may also want to know about patients with mild, 
moderate, or severe disability (12). Surprisingly, few studies 
have focused on classification of mild disability (10). One 
may speculate that inclusion of patients who are likely to have 
mild disability in clinical trials may have been the reasons for 
the lack of positive results in these randomized control trials  
(13, 14).

Most models have been developed using regression-based 
methods such as logistic regression and only two studies (with 
small sample size) have used classification and regression tree 
(CART) analysis (15, 16). Regression-based methods are used 
for hypothesis testing and generation of predictive models. These 
models assume that all of the variables are required at once to 
formulate an accurate prediction.

Such approaches assume that all of these beta coefficients are 
required at once to formulate a model. Due to the sequential 
nature of typical clinical reasoning, some predictors will be used 
and some will be left out (see Figures 1 and 2). This would make 
some of the elements of any model from regression analysis 
superfluous. By contrast, a decision tree method generates a 
logical flow diagram that resembles a tree (17). This triangulated 
diagram, with repeated partitioning of the original data into 
smaller groups (nodes) on a yes or no basis, resembles clinical 
reasoning.

In order to develop a decision tree model, we sought 
a much larger dataset than previous studies, through the 
Virtual International Stroke Trial Archive (VISTA) (18). This 
archive contains data from available trials on ICH. Our aim 
was to use binary and trichotomy decision trees to predict 
mild, moderate, and severe disability outcomes at 3  months  
following ICH.

MATERIALS AND METHODS

Virtual International Stroke Trial Archive contains data from 
clinical trials including both ischemic stroke and ICH trials (18). 
Patients or their legal surrogates had signed informed consents 
for participation in clinical trials. The data are released in de-
identified manner so that the trials and treatment allocations 
are not known. As such the name of the trials and the dates in 
which the patients were recruited are not provided here. We 
searched VISTA records for the patients with ICH. The following 
fields were used for extraction of imaging data: volume of ICH, 
intraventricular hemorrhage, midline (septum pellucidum) shift, 
location (basal ganglia, lobar and infratentorial hemorrhage); 
baseline clinical data: GCS, physiological variables (systolic blood 
pressure, blood sugar level), demographic data (age, gender), risk 
factors (hypertension, diabetes, antiplatelet drugs), and 3 months 
outcome data [modified Rankin scale (mRS)].

Decision Tree Analyses
We used recursive partitioning (known as rpart, which is a free 
version of CART and available from R foundation, http://cran.r-
project.org/web/packages/rpart/rpart.pdf) to perform binary 
decision tree analyses. The binary term here refers to splitting 
the data into two major outcomes of interest: such as mild versus 
moderate to severe disabilities. The method uses a splitting rule 
built around the notion of “purity.” A node in the tree is defined 
as pure when all the elements belong to one class. When there 
is impurity in the node, a split occurs to maximize reduction in 
“impurity.” In some cases, the split may be biased toward attributes 
that contain many different ordinal levels or scales (19). Thus, the 
selection of an attribute as the root node may vary according to 
the splitting rule and the scaling of the attribute (19).

By contrast, the term trichotomy decision tree analyses refer 
to trees where the data are partitioned into three major outcomes 
of interest: mild, moderate, and severe disabilities. In this paper, 
the term trichotomy is preferred in order to avoid confusion 
with ordinal regression analysis. This analysis is performed using 
rpartScore (20). In this analysis, attributes with greater than 10% 
missing data are not used for the predictive model (20).

Binary Decision Tree Models
In model 1, the variables included GCS in addition to age, gender, 
ICH volume at baseline, glucose, and systolic blood pressure. This 
step was taken in an attempt to replicate part of the ICH score 
(4) (with the exception of location of ICH). In model 2, we used 
baseline NIHSS instead of GCS and keeping the other predic-
tors to be the same. The NIHSS was chosen here because it has 
recently been assessed for use in ICH (21).

Trichotomy Decision Tree Models
The mRS ranges from 0 (no disability) to 6 (death). The mRS of 
1 equates to minimal disability, 2 to mild disability, 3 to moder-
ate disability, 4 to moderately severe disability, and 5 to severe 
disability and bed ridden. We partition the mRS as followed 
good (mRS 0–2), moderate (mRS 3–4), and severe disability and 
death (mRS 5–6) to keep the ordinal structure of the scale (22). 
In this analysis, we did not consider it clinically useful to separate 
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Figure 1 | The binary decision tree split the data into different categories on the basis of intracerebral hemorrhage (ICH) volume, age, and serum 
glucose level. Panel (A) shows model developed without using NIHSS, and panel (B) shows model developed with NIHSS.
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Figure 2 | The ordinal decision tree split the data into different categories on the basis of intracerebral hemorrhage (ICH) volume, age, and serum 
glucose level. Panel (A) shows model developed without using NIHSS, and panel (B) shows model developed with NIHSS. Category 1—mild disability, Category 
2—moderate, and Category 3—poor disability.
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outcome using the full range of the mRS since it would create 
many partitions with poor reproducibility. It has been suggested 
that mRS = 4 should be part of severe disability. We have also 

explored this analysis with a different partition of the mRS: good 
(mRS 0–2), moderate (mRS 3), and severe disability and death 
(mRS 4–6).
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In model 3, we combined models 1 and 2. As such, both vari-
ables such as baseline NIHSS and GCS were used together in con-
junction with the other demographic and physiologic variables.

Validation
For the purpose of validation, we randomly extracted two-thirds 
of the original data to train the models and used the remaining 
one-third for validation. The discriminating ability of the models 
was assessed using the area under the receiver operating char-
acteristic curve (AUC) and interpreted using the guidelines set 
by Hosmer and Lemeshow (23). An AUC of 0.5 is classified as 
no better than by chance; 0.6–0.69 provides poor discrimination; 
0.7–0.79 provides acceptable (fair) discrimination; 0.8–0.89 
provides good (excellent) discrimination; and 0.9–1.0 provides 
outstanding discrimination (23). The trichotomy decision tree 
models were assessed using the area under the ordinal ROC curve 
function. The differences in the AUC between the training and 
validation ROC curves were compared using the Z-score.

RESULTS

Patient Demographics
Using the search criteria described in Section “Materials and 
Methods,” we identified 1,371 patients. From these data, there 
were 957 patients with complete data on important covariates 
such as age, gender, ICH volume, baseline NIHSS, baseline GCS, 
and systolic blood pressure. The mean age was 65.9 ± 12.3 years 
(63.7% males). The baseline ICH volume was 22.6 ± 22.1 ml, and 
the median was 15.2 (IQR 7.7–30.5).

The mean GCS was 13.7 ± 1.8 and the median was 15 (IQR 
13–15). The mean baseline NIHSS was 13.7 ± 5.8 and the median 
NIHSS was 14 (IQR 9–18).

The frequency of hypertension was 64.9% (data available on 
842 of 957 patients) and diabetes was 13.9% (data available on 
842 of 957 patients). The serum glucose was 8.7 ± 13.4 mmol/l 
(data available in 890 of 957 patients) and systolic blood pres-
sure was 176.6 ± 30.1 mm Hg. Patients had CT scan early after 
onset with the average time to CT scan being 3.7 ± 1.2 h. Too few 
patients had data recorded on location of ICH (31%) or presence 
of intraventricular hemorrhage/IVH (37.7%) and midline shift 
(61%) to include these variables in our analyses.

Relationship between NIHSS, GCS, and 
ICH Volume
There was a positive correlation between NIHSS at baseline 
and the ICH volume (Spearman rho 0.62, 95% bootstrap CI 
0.57–0.67). There was negative correlation between NIHSS and 
GCS (spearman rho −0.60, 95% bootstrap CI −0.65 to −0.54), 
and between GCS and ICH volume (spearman rho −0.45, 95% 
bootstrap CI −0.510 to −0.39).

Prediction of Mild Disability with Binary 
Decision Tree—Model 1 (Focusing on 
GCS, ICH Volume, and Demographic and 
Physiologic Variables)
The binary decision tree (Figure  1A) showed that lower ICH 
volume (<13.2 ml) followed by younger age (<66.5 years), serum 

glucose (≤9.0 mmol/l), and systolic blood pressure (<170 mm 
Hg) discriminated between mild disability (mRS 0–2) versus 
moderate-to-severe disability or death (mRS 3–6). The AUC for 
predicting mild disability was 0.79 (95% CI 0.73–0.85) in the 
training data and 0.66 (95% CI 0.57–0.75) in the validation data. 
The Z-score for comparison between the training and validation 
binary decision trees was statistically different, 2.27 (p = 0.02).

The binary decision tree (Figure  1B) showed higher base-
line NIHSS (>12), older age (≥73.5), and blood sugar level 
(>6.4  mmol/l) discriminated between mild disability (mRS 
0–2) versus moderate-to-severe disability or death (mRS 3–6). 
The AUC for predicting mild disability was in the training in 
validation data were 0.82 (95% CI 0.76–0.87) and 0.77 (95% CI 
0.69–0.85). The Z-score for comparison between the training and 
validation binary decision trees was not statistically different, 0.94 
(p = 0.3).

Model 1 (Focusing on GCS, ICH Volume, 
and Demographic and Physiologic 
Variables)—Prediction of Disability with 
Trichotomy Decision Tree
The trichotomy decision tree (Figure  2A) showed that ICH 
volume, age, and serum glucose helped to separate the three 
classes of outcome. The AUC was 0.79 (95% CI 0.71–0.87) for the 
training data and 0.68 (95% CI 0.53–0.83) for the validation data.

The trichotomy decision tree (Figure 2B) showed that high 
baseline NIHSS (≥14) and age (≥69.5) defined the group with 
severe disability; if the age is below 69.5 years old, then it defines 
the group with moderate disability. The group with mild disability 
is defined as having lower baseline NIHSS (<8). Those patients 
with higher baseline NIHSS (≥8) and higher blood sugar level 
(≥6.5 mmol/l) have moderate disability. The AUC was 0.73 (95% 
CI 0.67–0.79) for the training data and 0.68 (95% CI 0.58–0.79) 
for the validation data.

Prediction with Binary Decision Tree—
Model 2 (Focusing on Baseline NIHSS, ICH 
Volume, and Demographic and 
Physiologic Variables)
The binary decision tree showed that NIHSS (<12.5), followed 
by age (<73.5 years old) and serum glucose (<6.35 mmol/l) dis-
criminated between mild and moderate-to-severe disability. The 
AUC for predicting good outcome in the training group was 0.82 
(95% CI 0.76–0.87). The AUC in the validation group was 0.77 
(95% CI 0.69–0.85). The Z-score was 0.94 (p = 0.3), indicating 
no statistically significant difference between the training and 
validation binary decision trees.

Prediction with Trichotomy Decision 
Tree—Model 2 (Focusing on Baseline 
NIHSS, ICH Volume, and Demographic and 
Physiologic Variables)
The trichotomy decision tree (Figure 2) showed NIHSS, age, and 
serum glucose helped to separate the three classes of outcome. 
The AUC for the training data was 0.73 (95% CI 0.067–0.79). The 
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AUC in the validation group was 0.68 (95% CI 0.58–0.79). The 
Z-score was 0.76 (p = 0.4), indicating no statistically significant 
difference between the training and validation trichotomy deci-
sion trees.

Model 3 (Baseline NIHSS, GCS, ICH 
Volume, and Demographic and 
Physiologic Variables)
This model performed the same as model 2 above.

We have also analyzed the data with a different partition of 
disability: mild (mRS 0–2), moderate (mRS 3), and severe (mRS 
5–6). For the model with covariates such as NIHSS, ICH volume, 
and demographic and physiologic variables, the AUC for the 
training data was 0.61 (95% CI 0.53–0.69). For the model with 
covariates such as NIHSS, GCS, ICH volume, and demographic 
and physiologic variables, the AUC for the training data was 0.54 
(95% CI 0.42–0.66).

Prediction of Severe Disability and 
Death—Model 1 (Focusing on GCS, ICH 
Volume, and Demographic and 
Physiologic Variables)
The binary decision tree showed that higher ICH volume 
(>27.9  ml) followed by older age (>69.5  years old) and low 
GCS (<15) discriminated between severe (mRS 5–6) and mild-
to-moderate disability (mRS 0–4). The AUC was 0.80 (95% CI 
0.75–0.86) in the training data and 0.79 (95% CI 0.70–0.88) in 
the validation data (Figure 3A). The Z-score for comparison was 
0.17 (p = 0.9), indicating no difference.

Combining NIHSS and GCS
The binary decision tree showed that higher NIHSS (≥13.5), 
followed by older age (≥77.5 years old) and larger ICH volume 
(44.6  ml) discriminated between severe disability and death 
versus mild-to-moderate disability (Figure  3B). The AUC was 
0.84 (95% CI 0.79–0.89) in the training data and 0.78 (95% CI 
0.69–0.87) in the validation data. The Z-score for comparison was 
1.16 (p = 0.2), indicating no difference.

DISCUSSION

In this exploratory study, we have evaluated the use of trichotomy 
decision tree method for classifying outcome in ICH. These 
models were developed from clinical and imaging information 
that would be available at the time of patient presentation to the 
hospital. The trichotomy and binary methods are simple in both 
concept and usage, requiring very few attributes. These findings 
offer several methodological approaches to defining the group 
with moderate disability and who may benefit from participating 
in clinical trial.

ICH Volume, GCS, and NIHSS
In this study, we had performed decision tree modeling with ICH 
volume and GCS rather than NIHSS; GCS had been used for 
developing prognostic model of mortality in patients with ICH 

(4, 5). Compared to NIHSS, GCS did not remain in the model 
for classifying mild disability probably because these patients 
would have GCS 14 or greater (see Figure 1) (15). By contrast, 
NIHSS provided a better partition for the data than both ICH 
volume and GCS for the prediction of mild disability (models 
2 and 3). There were no differences in discrimination between 
models based on NIHSS and ICH volume and GCS in the models 
for severe disability.

Comparison with Other Models
Our models have not relied on empirical threshold such as 
predefined ICH volume but are data driven (4, 5, 16). Previous 
models have empirically used ICH volume of 30 ml or greater 
to differentiate between severe disability and death (mRS 0–4) 
(2, 4, 5). In our study, an ICH volume approximately less than 
30  ml was compatible with either mild or moderate disability, 
whereas an ICH volume less than 13  ml and glucose level less 
than 5.9 mmol/l occurred predominantly in patients with mild 
disability.

In this study, we were limited to data that have been entered 
into VISTA, and therefore, we do not have complete data on all 
variables that would be present at the time of patient’s presenta-
tion to hospital. Furthermore, we are limited in that the analysis 
in our project should not overlap with other VISTA projects. The 
aim here is to provide an exploration of the trichotomy decision 
tree method, and hence, the results of this analysis should be seen 
as an exploration and not a definitive predictive tool. The paucity 
of coded data on location of ICH and IVH extension meant that 
we cannot extend our analysis into the modifying effect of these 
variables on outcome in a way that has been done with ICH score 
(4). In the recent factor VIIa trial, there were 1.3% of patients with 
infratentorial ICH in the treatment arm and 2.6% in the placebo 
arm (13). It is possible that even if these data were available, there 
would not be enough of these cases to make inference about 
impact of ICH location. This low frequency may have been due 
to the requirement in such trial to exclude patients with plan for 
surgical evacuation within 24 h (13).

Similarly, data on other potential predictor of ICH growth, 
such as the spot sign, were not available for analysis (24). Our 
findings should be seen as example of what can be achieved with 
advancement in decision tree methods rather than finalized 
model for prediction. Consequently, we would seek to collaborate 
with other groups regarding application of such methods in the 
analysis of ICH outcome.

Implications of ICH Volume in Clinical Trial 
Design
Our findings may have implication for clinical trial design, given 
they suggest that patients with ICH volume less than 13 ml are 
likely to have mild disability at 90 days. It is possible that results 
from the recent clinical trials may have occurred because they 
have included many cases of ICH with small volume (and which 
would have a good outcome regardless of treatment) (12, 13, 25). 
The recombinant factor VII trial had an average ICH volume 
24 ± 26 and 23 ± 26 ml in the two treatment arms compared 
to 22  ±  24  ml in the placebo arm (13). In the recent trial of 
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Figure 3 | The binary decision tree split the data into different categories on the basis of intracerebral hemorrhage (ICH) volume, age, and Glasgow 
Coma Scale (GCS). Panel (A) shows model developed without using NIHSS, and panel (B) shows model developed with NIHSS.

7

Phan et al. Decision Tree Analysis from VISTA-ICH 

Frontiers in Neurology  |  www.frontiersin.org February 2017  |  Volume 8  |  Article 64

intensive blood pressure lowering in acute ICH, 39% of the 
treatment arm and 42% of the placebo arm had ICH volume 
less than 15 ml (12).

Decision Trees
Decision trees have been used in machine learning tasks since the 
1960s (17) but have been used sparingly in stroke (particularly 
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ICH) for model development (15, 16). This methodology offers 
the advantage over standard regression methods in that it tolerates 
certain degree of missing number because the data are splitted 
using the available information for that attribute to calculate the 
Gini index (rather than the entire cohort). Despite this advantage, 
it is uncertain how much missing data the method would tolerate 
or whether it biases the results toward those cases that contain 
these data on these attributes. As such, we have conservatively 
chosen to avoid including attributes such as ICH location, IVH, 
and midline shift, where there are greater than 10% missing data. 
By contrast, attribute such as serum glucose has 7% missing 
data, but this number is with acceptable limit for the analyses. 
A potential disadvantage of the splitting rule used here is that it 
may be biased toward attributes that contain many different levels 
or scales. Thus, the selection of an attribute such as the root node 
(at the first split) may vary according to the splitting rule and the 
scaling of the attribute. Coincidentally in this case, the selection 
of ICH volume such as the root node corresponds to how we 
would design a clinical pathway and with previous information 
in the literature on the importance of ICH volume (2).

Decision tree methodology offers a second advantage over 
regression methods in that it resembles clinical reasoning and 
without the need to use equations or remembering the weights for 
each variable. The trade-off is that the user needs to remember the 
order of each variable in the partition. One may want to develop 
mnemonics to aid memorizing the order of the attributes. For 
the attributes in Figure 1A containing ICH volume, age, glucose, 
and systolic blood pressure, one may develop the mnemonics 
“I see Angels and Gods in the Sky” as a way to predict moder-
ate and severe disability. In this study, the attributes are easy to 
remember as they are attributes that have been identified by other 
investigators to be important in ICH outcome (2, 4, 7–10). In 
certain situations, the outcome may be defined at the first, second, 
or third partitions of the tree. By contrast, models from regression 
methods attempt to use simultaneously all the attributes to arrive 
at prediction. Such redundancy in the attributes (as use in regres-
sion equation) can be seen in our decision trees where patients 
with very large ICH volume or high NIHSS are defined to have a 
poor outcome regardless of other variables.

Trichotomy Decision Tree
The trichotomy decision tree method has not been used for clini-
cal prediction rule in the stroke literature. The recent incorpora-
tion of this method in the R statistical package 2012 may be the 
reason why this has been the case (20). We were able to delineate 
the group who have moderate outcome by using the ability of tri-
chotomy decision tree to split the data into three classes or more 
and without sacrificing accuracy AUC. A more cumbersome 
approach would be to perform sequential binary decision trees.

The success of the trichotomy decision tree points to a major 
advantage over regression method such as ordinal regression. 
That method uses a proportional odds model for analysis, which 
treats the odds of moving from one category to the other to be the 
same, i.e., the beta coefficient is constant among categories. That 
type of regression model applies the “parallel regression assump-
tion” and may not be valid when the assumption of proportional 
odds does not hold true. In practice, this ideal situation is not 

always possible in stroke research and researchers have sug-
gested alternative strategy such as the partial proportional odds 
model (with adjustment made for predictor variables which do 
not follow this assumption). Some investigators have suggested 
the combined use of ordinal regression and linear discriminant 
analysis to derive a prediction model (26, 27).

Limitations
A limitation of this study is that it assumes mortality is due 
to disease and does not take into account variation in clinical 
practices such as do not resuscitate orders (28). The frequency 
of use of such orders impacts on mortality in ICH. Furthermore, 
the frequency of intensive blood pressure lowering in these trials 
was not known as the trials in this study were performed prior 
to the recent intensive blood pressure lowering trial (12). While 
this may be a limitation of this study, our finding that higher 
blood pressure is an attribute for prediction of poor outcome is 
in support of investigators evaluating the role of blood pressure 
lowering in ICH (12). Our study can be criticized for including 
subjects with mild stroke given that the median GCS was 13.7. 
However, the mean NIHSS of 13.7 suggests that these patients 
have moderately severe stroke deficit (defined as NIHSS 8–15) 
(29). Finally, there has been discussion on appropriate partition 
of the Rankin disability scale, particularly with regard to the 
threshold for moderate disability on the mRS. Based on recom-
mendations to keep the ordinal structure of the mRS, we had 
chosen the partition as mild (mRS 0–2), moderate (mRS 3–4), 
and severe disability and death (mRS 5–6) (22). This partition 
severe disability and death as mRS 5–6 had been used in stroke 
trials (30, 31) and studies on prediction (32) and is consistent 
with recommendation by panel of experts (33). Nevertheless, 
we had also performed the analysis with the revised threshold 
for moderate disability as mRS equals to 3. Using this revised 
definition, severe disability and death correspond to mRS 4–6. 
However, the trichotomy decision tree analysis performed less 
well using the new threshold, suggesting our original selection 
for partitioning the mRS as appropriate.

CONCLUSION

Decision tree methods can produce models with fair to excellent 
discrimination for disability outcome. We have shown several 
methodological approaches to identifying good and poor out-
come groups. Both the binary and trichotomy methods provide 
equivalent discrimination of disability outcome after ICH. The 
trichotomy method can classify three categories at once, whereas 
this action was not possible with the binary method. These meth-
ods may be of use in clinical trial design and in re-evaluation of 
other trials for possible signals of efficacy (14).
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