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Therapeutic interventions can only be effective when administered during their specific 
“therapeutic window.” A multitude of clinical trials based on highly successful preclinical studies 
performed mostly in rodents have failed to translate into similarly successful clinical outcomes 
(1–4). One potentially important but largely ignored factor contributing to these fiascoes is 
the different biological timescales of rodents versus humans. Here, I compare the rodent and 
human timescales of major biological events and show that while the timescales of biochemical 
processes such as enzyme kinetics might be comparable, more complex biological processes 
such as gestation, sexual maturation, lifespan, etc., run on vastly different timescales in rodents 
compared to humans. These comparisons strongly indicate that a “rat hour” or “rat day” is also 
not equivalent to a “human hour” or “human day”—and vice versa—when it comes to clinically 
relevant complex pathologies, such as sepsis, or inflammation (5).

Rodent models of normal biology and diseases are the backbone of modern biomedical 
research. Species differences have been documented (6), and our lack of understanding between 
the timescales of rodent and human physiological and pathological processes has been raised 
during various scientific meetings. Earlier papers have discussed the time differences between 
rodents and human (7, 8). However, to our knowledge, this is the first paper that summarizes 
available data about time differences in normal biological processes between the two species in a 
comprehensive manner.

Pathological processes, especially in case of acute CNS disorders such as traumatic brain 
injury or stroke, can change rapidly over time so the therapeutic window can be easily missed. 
One potentially important, but mostly ignored factor contributing to the failed translations of 
experimental findings into clinical practice is the different biological timescales of rodents versus 
humans. The simplest biochemical process, such as enzyme kinetics, is on a similar timescale 
in rodents and in humans (9–11). However, as complexity of the biological process grows, the 
differences between the timescales of the two species also grow (Table 1). For example, m/tRNA 
turnover is ~2.5 times faster in rodents (rat) than in humans, whereas protein turnover is ~10 
times faster in rodents (12–15). Basal metabolic rate (BMR) is defined as “the minimal rate 
of energy expenditure per unit time by endothermic animals at rest” (16). The BMR in rats is 
8 W/kg as opposed to 1.25 W/kg in humans; in other words, the BMR is ~6.4 times faster in 
the rodent. Heart rate is on average ~4.7 times faster in the rat than in the human (260–400 
versus 60–80 beats/min), and respiratory rate is ~6.3 times faster in the rat than in the human 
(75–115 versus 12–18/min).

Compared to humans, rodents live short and accelerated lives (Table 1). Rats live up to 3 years 
(1,095  days) (7, 8) compared to humans’ ~80  years (29,200  days) (developed countries average, 
UN World Population Prospects). Generally speaking, rats live ~27 times faster, meaning that 1 rat 
day would be around 27 human days, and ~13.5 rat days would be the equivalent of 1 human year. 
Importantly, the temporal differences between humans and rats vary depending on the phase of 
life. Gestation is completed within 23 days of conception in rats compared to 280 days in humans, 
indicating an ~12 times accelerated process. Weaning is completed by 34 days postpartum in rats 
compared to an average of 180  days in humans, an ~5 times faster process. Rats reach sexual 
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maturity around the age of 50 days, whereas humans reach sexual 
maturity around the age of 11.5 years (4,197 days). Thus, sexual 
maturation is ~84 times faster in rats where ~4.3 rat days are the 
“equivalent” of 1 human year. Adulthood, as determined by full 
musculoskeletal maturity (i.e., the completed fusion of growth 
plates) is reached by 210 days of age in rats and around 20 years 
(7,300 days) in humans. This process is ~35 times faster in rats 
where 1 human year is roughly the equivalent of 10.5 rat days. 
Reproductive senescence in humans begins at around 51 years 
(18,615  days) compared to rats’ 15–20  months (~532  days), 
indicating a 35 times faster process. During adulthood then, one 
human year would be the equivalent of 12 rat days. Rats live post-
senescence for an average of 16 months (486 days) compared to 
the human period of 29 years (10,585 days); thus, in this phase 
of life 1 human year would be roughly equal to 17 rat days.

These differences are not surprising given the striking 
anatomical differences between the species. The “accelerated 
development” of the rodent seems obvious if we take into account 
just the differences in size between the rodent and human bodies 
(0.025–0.4 kg versus 70 kg, a 2,800 − 175 × difference) or brains 
(0.5–1.8 g versus 1,300 g, a 2,500 − 722 × differences) between 
rodents and humans. However, these comparisons suggest 
that complex pathobiological processes, such as inflammatory 
responses, may also run on different timescales in rodents and in 
humans. Indeed, the genomic responses in various inflammatory 
conditions were ~30–50 times faster in the rodent (mice) than 
in human (5). The ability to precisely translate time between 
experimental findings using rodent models and clinical practice 
is especially critical for conditions such as stroke, myocardial 
infarction, or traumatic brain injury, where the pathological 
processes are rapidly changing. The efficacy of pharmacological 
or other interventions that critically depend on timing, e.g., 
the “golden hour” for thrombolytic treatments in myocardial 

infarction or ischemic stroke were determined clinically and not 
by rodent studies (17, 18). Our lack of understanding about the 
temporal differences between rodent and human pathological 
processes has likely contributed to the 100% failure rate of neu-
roprotective treatments showing efficacy in rodent models of TBI 
(3, 19, 20). Rodent models have provided critical insights into 
disease mechanisms and helped to identify drug targets. Their 
usefulness can be greatly increased if we learn how to translate 
time between species.

SUMMARY AnD FUTURE DiRECTiOnS

Available data indicate that there are substantial differences 
between rodent and human timescales in normal biological pro-
cesses. Identifying the differences between the rodent and human 
timescales is especially important to translate successful experi-
mental treatment into clinical practice in acquired disorders such 
as stroke or TBI. In the absence of detailed information however, 
no conversion between the two timescales can be formulated. In 
order to be able to better “translate time” between experimental 
and clinical studies, we need to perform more longitudinal stud-
ies using comparable outcome measures involving both sexes/
genders.
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TABLE 1 | Timelines of basic biological processes in the human and in the rat.

Human Rata Times  
faster  
in rat

One human 
year ≈ rat  

days

One human 
day ≈ rat  

hours

One human 
hour ≈ rat 
minutes

m/tRNA turnover (12, 14, 15) 0.8/day/kg 2/day/kg 2.5
Protein turnover (12, 13) 1.25/day/kg 12/day/kg 9.6
Metabolic rate (16) 1.25 W/kg 8 W/kg 6.4
Heart rate (21) 60–80 260–400 4.7
Respiratory rate (21) 12–18 75–115 6.3
Gestation (21, 22) 280 days 21–23 days 12.7 28.7 1.9 4.7
Weaning (8, 23) 180 days 21 days 8.6 42.6 2.8 7
Reaching sexual maturity (8, 23, 24) 4,197 days (11.5 years) 50 days 84 4.3 0.3 0.8
Reaching adulthood (8, 23, 24) 7,300 days (20 years) 210 days 35 10.5 0.7 1.7
Reaching reproductive senescenceb (21) 18,615 days (51 years) 532 days (1.6 years) 35 10.4 0.7 1.7
Post-senescence (8, 23) 10,585 days (29 years) 486 days 22 16.8 1.1 2.7
Life span (8, 23) 29,200 days (80 years) 1,095 days (3 years) 26.7 13.7 0.9 2.3

aRattus norvegicus.
bFemales only.
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