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The characteristics of the cycles of activity and rest stand out among the most inten-
sively investigated aspects of circadian rhythmicity in humans and experimental animals. 
Alterations in the circadian patterns of activity and rest are strongly linked to cognitive 
and emotional dysfunctions in severe mental illnesses such as Alzheimer’s disease (AD) 
and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been 
prominently associated with the pathogenesis of AD and MDD. However, the potential 
involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not 
been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity 
through the characterization of patterns of behavioral locomotor activity in IL-6 knockout 
(IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length 
of the circadian period or the amount of locomotor activity under either light-entrained or 
free-running conditions. IL-6 KO mice also presented a normal phase shift in response 
to light exposure at night. However, the temporal architecture of the behavioral rhyth-
micity throughout the day, as characterized by the quantity of ultradian activity bouts, 
was significantly impaired under light-entrained and free-running conditions in IL-6 KO. 
Moreover, the assessment of clock gene expression in the hippocampus, a brain region 
involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta 
in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian 
activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, 
we propose IL-6-dependent circadian misalignment as a common pathogenetic princi-
ple in some neurodegenerative and neuropsychiatric disorders.
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inTrODUcTiOn

Changes in the diurnal oscillations of the periods of activity and rest are in the spotlight of basic and 
applied biomedical research on circadian rhythms in humans and other animals (1). The interest 
in analyzing these changes in active wakefulness and quiescent rest rhythmicity relates to the fact 
that alterations of these rhythmic fluctuations are associated with a wide spectrum of pathologies, 
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ranging from metabolic and cardiovascular dysfunctions to tum-
origenesis and cancer. In the neurosciences, the consequences of 
circadian disruptions and chronic misalignments have been most 
prominently studied with regards to their effects on cognitive and 
emotional functions within the framework of some of the most 
severe neurological and psychiatric illnesses. Specifically, strong 
clinical and experimental evidence supports a link between dis-
turbances of the sleep–wake cycle and other physiological func-
tions regulated by the circadian system in the pathophysiology of 
Alzheimer’s disease (AD) and major depression (MDD). These 
dysfunctions include interruptions of the wakefulness during the 
day and bursts of activity during the night in individuals suffering 
from AD (2–6).

In addition, it has been described that part of the clinical 
symptomatology in AD patients is exacerbated at particular peri-
ods of the day, most commonly in the early evening (2, 7–10). In 
addition, a derangement in the circadian rhythmicity of several 
physiological functions (including the regulation of body tem-
perature and hormone release) is frequently observed (11–15).

Similarly, MDD patients often report disrupted sleep–wake 
cycles and impairments in the diurnal patterns of other physi-
ological processes [as reviewed in Ref. (16)]. In parallel to the 
reported “sun downing” in AD, MDD patients often also show 
significant diurnal mood swings with depressive symptoms usu-
ally being strongest in the morning (1).

At the molecular level, polymorphisms and expressional 
changes in several clock genes, the genetic elements constitut-
ing the molecular machinery organizing endogenous circadian 
rhythmicity, have been identified in postmortem samples of 
AD and MDD patients and animal models thereof (15, 17–29). 
Together with the shared involvement of circadian disruptions, 
both MDD and AD have been associated with altered inflam-
matory states (30, 31). The pro-inflammatory cytokine inter-
leukin 6 (IL-6) (32), which is linked to circadian clock-related 
inflammation (33), is considered to play a central role in the 
pathophysiology of MDD and AD (30, 31, 34–39). Indeed, IL-6 
has been proposed as a molecular bridge between circadian and 
inflammatory processes in a chronobiological animal model of 
depression (40) and is implicated in circadian rhythmicity (41) 
and in the circadian regulation of sleep drive (42, 43). Moreover, 
its secretion is determined by a marked diurnal pattern (44–46), 
and several clock genes are known as regulator of its production 
(47, 48).

However, the specific relationship between IL-6 and the diur-
nal rhythms of activity and rest remain poorly understood as 
varying observations regarding IL-6 levels under physiological 
and pathology conditions emerge from literature. These appar-
ent discrepancies may be a consequence of species-specific 
effects and/or depend on the sample type or methodological 
approaches employed (31, 44–46, 49). Hence, further investiga-
tions using specific, genetically engineered animals are war-
ranted. We here, therefore, set out to examine the involvement 
of IL-6 in the regulation of behavioral circadian rhythms by 
studying the changes in the diurnal patterns of locomotor activ-
ity in constitutive IL-6 knockout mice (IL-6 KO) in comparison 
with their wild-type (WT) littermate controls. To determine 
the impact of IL-6 deletion on the orchestration of circadian 

rhythmicity at the molecular level, the expression of 19 clock 
and clock-controlled genes was analyzed in the hippocampus, a 
brain region importantly implicated in the pathophysiology of 
MDD and AD.

MaTerials anD MeThODs

animals
Experiments were carried out in male adult IL-6 KO (B6.129S2-
Il6tm1Kopf/J) and WT littermate control mice (Jackson 
Laboratories, Bar Harbor, ME, USA) (n = 9–11 per group). All 
mice were 8- to 10-week old at the time of experiments. Mice 
were housed individually in Nalgene cages equipped with run-
ning wheels (15  cm in diameter; Actrimetrics, Evanston, IL, 
USA) in a sound-attenuated room with constant temperature of 
22 ± 2°C. Before experimental assessment of the circadian activ-
ity all animals were kept on a light/dark (LD) cycle of 12:12 h with 
lights on at 6 a.m. and off at 6 p.m. During the light phase, mice 
were exposed to a light intensity of ~200 lux. During conditions of 
constant darkness [dark/dark (DD)] defined as LD cycle of 0:24 h, 
the cage cleaning and animal care taking was carried out under 
dim red light (15 W). Mice were supplied with food and tap water 
ad libitum throughout the experimental period. All experiments 
were designed to minimize animal suffering and the number of 
animals used. Animal procedures were approved by the Austrian 
ethical committee (BMWF-66.009/0069-II/36/2011) on animal 
care and use conducted in accordance with international laws 
and policies.

assessment of circadian Wheel-running 
activity
Acquisition
Wheel revolutions were recorded using the ClockLab com-
puter software, with sampling epochs of 1  min (Actimetrics, 
Evanston, IL, USA). After 1 week of habituation to the vivarium, 
the light-entrained daily activity was assessed for 14 days during 
LD followed by the evaluation of the free-running circadian 
activity during DD. On day 29, DD was briefly interrupted by 
a light pulse (30 min, 300 lux) at circadian time (CT) 16 (4 h 
after activity onset) for the induction of a phase-shift response 
to evaluate the response of the endogenous circadian pacemak-
ers to external zeitgebers. After 7 additional days of DD, all 
mice were exposed to LD for 7 days before sacrifice on day 46 
(Figure 1).

Analysis
Wheel-running activity was analyzed using the ClockLab soft-
ware package (Actimetrics, Evanston, IL, USA) as previously 
described (27, 50). The default software settings were used to 
determine the activity onsets, which were manually edited when 
appropriate. Measures of the entrainment period (T) in LD and 
circadian period (tau) in DD and the total activity were derived 
from regression lines fit to the activity onsets. Activity bouts were 
defined as periods during which activity never reached less than 1 
count per minute (bout threshold) for longer than 18 min (maxi-
mum gap length) at a time. All parameters were determined for 
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FigUre 1 | experimental paradigm for the evaluation of light-
entrained and free-running circadian rhythms in interleukin (il)-6 
knockout (il-6 KO) and wild-type (WT) mice. Illustration of the temporal 
course (in days) for the analysis of circadian behavioral locomotor activity in 
IL-6 KO and WT mice under light-entrainment [light/dark (LD): 12 h light and 
12 h dark phase; white boxes] and during settings of free-running rhythms 
[dark/dark (DD): 24 h constant darkness, black boxes].
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each animal under LD and DD conditions. Phase-shift responses 
were evaluated by comparing the predicted activity onset for 
the day after light pulse treatment from extrapolated lines of the 
activity onsets of the days preceding the light pulse and 7 days 
after the pulse.

gene expression analysis
Brain Dissection
All brain dissections were carried out during the light phase of the 
circadian cycle (between 9 a.m. and 11 a.m.). Mice were sacrificed 
by neck dislocation, and brains were rapidly dissected over ice 
and total hippocampi were bilaterally collected and stored in 
RNA later® (Ambion, Austria, Austin, TX, USA) at −20°C until 
used for RNA isolation or kept at −80°C for protein expression 
studies.

RNA Isolation, cDNA Synthesis, and Quantitative 
Real-time Polymerase Chain Reaction (qRT-PCR)
RNA was isolated from hippocampal tissues using the 
miRNeasy kit (Qiagen®, USA, Hilden, Germany) following 
the instructions of the manufacturer. Briefly, 900  ng of total 
RNA was used for cDNA synthesis using the MMLV reverse 
transcriptase first-strand cDNA synthesis kit G1 (Biozym®, 
Hessisch Oldendorf, Germany) following the manufacturer’s 
instructions. The resulting cDNA reaction mix (1:10 dilution) 
was used for PCR amplification using the Fast SYBR Green 
Mastermix (Applied Biosystems, Foster City, CA, USA) on 
a StepOnePlus real-time PCR system (serial no. 271000455; 
Applied Biosystems, Foster City, CA, USA). All reactions were 
carried out in duplicates. Primer sequences for all clock were 
analyzed: brain and muscle aryl hydrocarbon receptor nuclear 
translocator-like 1 (bmal1), circadian locomotor output cycles 
kaput (clock), cryptochrome 1/2 (cry1/2), deleted in esophageal 
cancer 1/2 (dec1/2), neuroD1, neuronal PAS domain-containing 
protein 2 (npas2), period 1–3 (per1–3), reverse erythroblastosis 
virus α/β (rev-erbα/β) and RAR (retinoic acid receptor)-related 
orphan receptor α-γ (rorα-γ) and clock-controlled genes D 
site of albumin promoter (albumin D-box) binding protein 
(dbp), E4 promoter-binding protein 4 (e4bp4), inhibitor of DNA 
binding 2 (id2), and neuronal differentiation 1 are listed in the 
Supplementary Table 1 of Ref. (27).

The C(t) values of β-actin were used for calculation of ΔC(t), 
representing the relative quantification of mRNA amounts in 
each sample. This further allowed the calculation of ΔΔC(t), 
subtracting mean ΔC(t) value of the WT from the mean ΔC(t) 
value for the KO. ΔΔC(t) was then used to express the fold change 
of mRNA levels observed between WT and KO mice, using the 
formula 2−ΔΔC(t).

statistical analysis
BioStat software (AnalystSoft Inc., Alexandria, VA, USA) was 
used for statistical analysis. Comparisons between two groups 
were determined using unpaired two-tailed Student’s t-test. In 
addition, two-way analysis of variance (ANOVA) (light condi-
tion  ×  genotype) was employed for statistical evaluation of 
locomotor activity (alpha, rho, and total) and for bout analysis 
(number of bouts/day, bout length and counts/bout). The level of 
significance was set at p < 0.05 in all instances.

resUlTs

il-6 KO Mice Present with Fragmented 
Daily activity Patterns under lD and DD 
conditions
To characterize the effects of genetic IL-6 deficiency on behavioral 
rhythms of rest and activity, wheel-running activity was moni-
tored in IL-6 KO and WT littermate control mice. The investiga-
tion of light-entrained rhythms under LD conditions indicated 
unaltered length of the entrainment period (T) (Figure 2A) in 
IL-6 KO mice. Similarly, the amount of wheel-running activity 
was comparable between IL-6 KO and WT mice during periods 
of inactivity (rho) and activity (alpha) within the circadian cycle 
(Figures 2B–D). IL-6 deletion, however, was associated with an 
increased quantity of activity bouts (p < 0.05) with unchanged 
duration and amount of activity/bout (Figures  2E–G). 
Calculations of activity onsets and offsets revealed no differences 
between genotypes, and the duration of the active period was 
not statistically different between groups under LD conditions 
(Figure S1 in Supplementary Material).

To determine circadian locomotor patterns during free-
running rhythms, daily behavioral activity was further analyzed 
under DD conditions. In the same way as for the light-entrained 
rhythms, the circadian period, as well as the amount of wheel-
running activity, was undistinguishable between IL-6 KO and 
WT mice (Figures 3A–D). Consistent with the results from the 
LD paradigm, the number of activity bouts was enhanced in IL-6 
KO mice under DD conditions (p <  0.05), whereas no differ-
ences were seen in the duration and quantity of activity/bout 
or in the phase shift response in comparison with WT controls 
(Figures 3E–H). In addition, the duration of the active period 
was shorter in IL-6 KO mice under DD conditions (p < 0.05) 
(Figure S1 in Supplementary Material).

Hence, the temporal architecture of the ultradian rhythms is 
disrupted in IL-6 KO mice under both LD and DD conditions 
as illustrated in the respective actograms of the two genotypes 
(Figures  4A,B). Further examples of representative actograms 
are provided in Figure S2 in Supplementary Material.
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FigUre 2 | entrainment period (T), wheel-running activity, and bout analysis in under light-entrained [light/dark] conditions in interleukin (il)-6 
knockout (il-6 KO) and wild-type (WT) mice. Analysis of the light-entrained circadian behavioral locomotor activity in IL-6 KO and WT mice (n = 9–11 per group) 
demonstrating comparable (a) T and wheel-running activity during the (B) alpha and (c) rho phase and in (D) total amounts. (e) Significantly increased quantity of 
activity bouts in IL-6 KO compared with WT mice with unaltered (F) bout length and (g) activity counts/bout. All data are displayed as mean ± SEM; *p < 0.05.
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In addition, two-way ANOVA analysis (light condition × geno-
type) has been carried out to examine the possible effect of the light 
condition and its interaction with the genotype. The following 

main effects have been observed: for overall activity significant 
main effects of light condition for alpha: F(3,43) = 88.54, p < 0.001 
and rho: F(3,43) = 178.17, p < 0.001. The characterization of the 
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FigUre 3 | circadian period (tau), wheel-running activity, bout analysis, and phase shift response under free-running (dark/dark) conditions in 
interleukin (il)-6 knockout (il-6 KO) and wild-type (WT) mice. Analysis of the free-running circadian behavioral locomotor activity in IL-6 KO and WT mice 
(n = 9–11 per group) demonstrating comparable (a) tau and wheel-running activity during the (B) alpha and (c) rho phase and in (D) total amounts. (e) Significantly 
increased quantity of activity bouts in IL-6 KO compared with WT mice with unaltered (F) bout length and (g) activity counts/bout. (h) Unaltered phase shift 
response to a brief light pulse at CT14 is in IL-6 KO mice. All data are displayed as mean ± SEM; *p < 0.05.
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bouts revealed a significant main effect of genotype [F(3,43) = 10.47, 
p < 0.01] for bouts per day and significant main effects of light con-
dition for bout length: F(3,43) = 29.98, p < 0.001 and counts/bout: 

F(3,43) = 8.57, p < 0.01. The duration of the active periods revealed 
a significant main effect of genotype [F(3,43) = 7.17, p < 0.05]. No 
other significant main effects or interactions were found.
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FigUre 4 | Behavioral actograms exemplifying circadian locomotor activity patterns in interleukin (il)-6 knockout (il-6 KO) and wild-type (WT) mice. 
Sample actograms illustrating wheel-running activity in (a) WT and (B) IL-6 KO mice.
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aberrant mrna expression of cry1, Dec2, 
and rev-erb-Beta in the il-6 KO Mouse 
hippocampus
With regard to the molecular mediators of the observed altera-
tions in the rhythmic oscillation of rest and activity patterns, 

mRNA levels of 19 clock (clock, cry1/2, npas2, per1–3, rev-erbα/β, 
and rorα-γ) and clock-controlled genes (dbp, e4bp4, id2, and 
neuroD1) were assessed in the hippocampus of IL-6 KO and WT 
mice. qRT-PCR analysis revealed a significant increase in levels 
of cry1 (p < 0.05) and dec2 (p < 0.01), whereas expression of rev-
erb-beta (p < 0.01) was reduced in IL-6 KO compared with WT 
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FigUre 5 | mrna levels of clock genes with significantly different expression in hippocampal tissue of interleukin (il)-6 knockout (il-6 KO) 
compared with wild-type (WT) mice. Relative expression of (a) cry1, (B) dec2, and (c) rev-erb beta in hippocampal tissue of IL-6 KO compared with WT mice 
(n = 6–9 per group). All data are data displayed as mean ± SEM. *p < 0.05, **p < 0.01.

TaBle 1 | clock and clock-controlled genes with comparable mrna 
levels in hippocampal tissue of knockout (KO) and wild-type (WT) mice.

gene name WT (rel. expression) KO (rel. expression) p Value

clock 1.000 ± 0.1293 1.0197 ± 0.0038 0.6

cry2 1.000 ± 0.1332 0.9949 ± 0.0168 0.9

dbp 1.000 ± 0.0916 1.0272 ± 0.0140 0.4

dec1 1.000 ± 0.1414 0.9893 ± 0.0406 0.8

e4bp4 1.000 ± 0.1375 0.9952 ± 0.0084 0.8

id2 1.000 ± 0.0902 1.0385 ± 0.0371 0.4

neuroD1 1.000 ± 0.0673 1.0045 ± 0.0038 0.7

npas2 1.000 ± 0.0759 0.9993 ± 0.0192 0.9

per1 1.000 ± 0.0841 1.0516 ± 0.0468 0.3

per2 1.000 ± 0.1055 1.0291 ± 0.0105 0.2

per3 1.000 ± 0.2047 1.0170 ± 0.0206 0.7

rev-erbα/β 1.000 ± 0.0740 1.0367 ± 0.0181 0.2

ror-α 1.000 ± 0.1685 0.9714 ± 0.0344 0.5

ror-β 1.000 ± 0.0731 0.9714 ± 0.0191 0.2

ror-γ 1.000 ± 0.1034 0.9829 ± 0.0092 0.2

bmal1 1.000 ± 0.1180 1.0225 ± 0.0131 0.3

Fold change values in KO mice (normalized to WT means for each transcript) of clock 
and clock-controlled (gray) genes are displayed as mean ± SEM (n = 6–9 per group).  
p Values represent results of statistical analyses using two-tailed Student’s t-tests.
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controls (Figure 5). No differences in the mRNA of any of the 
other clock genes investigated were found (Table 1).

DiscUssiOn

Most species living on the surface of earth have evolved under 
conditions of rhythmically changing daily variations in funda-
mental environmental constituents, such as light. To anticipate 
and respond to these oscillating physical properties, organisms 
have developed systems to accordingly fit their physiology. Hence, 
the most essential functions of the body, including those of the 
nervous and the immune systems, are determined by these intrin-
sic timing regulations. Thus, the association between disruption 
in “biological clocks” and pathologies of the brain (31, 51–53) 
and the immune response is unsurprising [see for review Ref. 
(54)]. Indeed, the circadian regulation of the behavioral states 
of activity/rest (as fundamental output of brain function) is well 
described. Similarly, evidence for the impact of the endogenous 
clockwork on the most pivotal elements of the body’s defense 
mechanisms, such as the release of immune modulatory sub-
stances, is augmenting (55–58) [see for review Ref. (59)].

The current report is, to the best of our knowledge, the first 
comprehensive, long-term assessment of the impact of a genetic 
deficiency in a central element of the immune response (the pro-
inflammatory cytokine IL-6) on circadian wheel-running activ-
ity rhythms in the mouse. This interrelationship is particularly 
noteworthy within the framework of diseases and disorders in 
which all these functions are of pathophysiological relevance, as is 
the case for the neurodegenerative AD and the neuropsychiatric 
MDD, where the involvement of the circadian and the immune 
systems have been extensively demonstrated (31). In the case of 
both these mental illnesses, frequent presentations of aberrant 
diurnal oscillations of behavioral activity have been reported in 

patients and in subjects of the respective experimental animal 
models (15–29, 31, 60–62).

In the herein studied IL-6 KO mice, traditional parameters 
of diurnal behavioral rhythmicity were unaltered under light-
entrained and free-running conditions, as tau and the amount of 
activity during active and inactive phase were comparable with 
those of WT controls but were determined by the light conditions 
(LD versus DD) for both genotypes. Interestingly, the duration of 
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the active period was shortened in IL-6 KO mice. In a previous 
short-term evaluation of home cage behavior, higher activity 
of IL-6 KO compared with WT mice has been reported (63). 
However, the analysis of home cage activity does characterize a 
behavioral output distinct from circadian wheel-running activity 
(64). Although home cage activity reflects the baseline activity, 
wheel running is an elective action, which is driven by additional 
endogenous factors, such as motivation (64). However, it is the only 
system to reliably address some distinct features of the internal 
timekeeping system, such as the modulation of the endogenous 
circadian machinery by environmental stimuli. Indeed, an unal-
tered phase-shift response in IL-6 KO mice indicated an intact 
responsivity of the endogenous CT keeping system to an external 
zeitgeber. Hence, the 24-h structure of the behavioral locomotor 
rhythm seemed largely preserved IL-6 KO mice. However, a 
close examination of the activity bouts as indicators of units of 
ultradian activity revealed a significant difference in the number 
of bouts between genotypes, independent of the external light-
ing conditions: IL-6 KO mice presented with an augmentation 
in the number of bouts/circadian day, while the bout length and 
activity/bout remained unchanged. This result is also reflected in 
the two-way ANOVA analysis, which revealed a significant main 
effect of genotype for the number of bouts, whereas interestingly 
the bout length and activity/bout were significantly dependent on 
the light conditions for both WT and KO mice.

The nature and regulation of ultradian rhythms and activ-
ity bouts is less well described than is the case for the classical 
indicators of diurnal rhythms, e.g., length of the circadian period 
tau and activity onsets and offsets, which are largely dependent 
on the suprachiasmatic nucleus (SCN) of the hypothalamus as a 
central circadian pacemaker (65–70). The SCN also orchestrates 
rhythmic activities in other regions of the brain and peripheral 
parts of the body with synchronization of clock gene expression 
as a pivotal molecular event.

To examine potential neurobiological mechanisms contrib-
uting to the observed phenotype of IL-6 KO mice, we decided 
to focus on the hippocampus, a brain region involved in the 
pathophysiology of AD (71–73) and MDD (74, 75). Examination 
of the expression of major clock genes as molecular mediators of 
circadian rhythmicity revealed a selective effect of genetic IL-6 
deficiency on the hippocampal mRNA levels of cry1, dec2, and 
rev-erb-beta.

Although the statistically significant expressional differ-
ences between IL-6 KO and WT mice were modest in magni-
tude, they may be well of biological relevance considering the 
role of these genes in the tightly controlled feedback loops of 
transcription–translation from which circadian rhythms are 
generated at the molecular level (20, 24, 28, 76). The increased 
levels of cry1 in IL-6 KO are paralleling observations in plasma 
levels of sepsis patients were an increase in IL-6 was associated 
with a decrease in cry1 mRNA (77). A modulatory influence of 
several immune mediators on the expression of dec2, which is 
here to be reported significantly reduced in the hippocampal 
tissue of IL-6 KO mice, has been described. Interestingly, IL-6 is 
a direct activator of AMP-activated protein kinase (78), which 
has been found to mediate the regulatory effects of dec2 in 
several tissues (79).

Previous work reports that rev-erb expression in peripheral 
blood leukocytes of human subjects, together with several 
other clock genes (including cry1), is dampened by endotoxin 
treatment, which leads to a concomitant increase in circulating 
levels of IL-6. This description is in line with our observation on 
augmented rev-erb-beta and cry1 levels in IL-6 KO.

Alternatively or additionally to a mechanistic involvement of 
clock gene expression, the alteration in the ultradian architecture 
of behavioral activity in IL-6 KO mice may relate to the direct 
regulatory effect of IL-6 on the serotonin transporter (SERT) (80). 
Indeed, multifaceted interactions between the circadian and the 
serotonergic systems have been demonstrated with a proposed 
role of these interrelationships for several mental illnesses, 
including MDD [see for review Ref. (81, 82)]. However, although 
a defined role for dopamine and the dopamine transporter in the 
regulation of ultradian rhythms of locomotor behavior have been 
proposed (83), a potential involvement of SERT in the control of 
ultradian activity architecture remains to be examined in future 
studies.

Some conceptual restrictions, which were imposed by the 
study design, such as the determination of clock gene expression 
at a single time of the day in a  priori selected brain region of 
interest have to be considered for the interpretation of the results 
obtained. Hence, the observed differences in clock gene expres-
sion between IL-6 KO and WT mice do not allow for conclusions 
regarding the diurnal oscillation in the expression of these genes 
in the two genotypes, an important mechanistic insight that will 
be addressed in follow-up investigations. Within this framework, 
however, this study allows for the deduction of three major 
conclusions: first, IL-6 is not required for diurnal time keeping of 
the circadian period under either light-entrained or free-running 
conditions; second, genetic IL-6 deficiency is associated with 
aberrant ultradian activity patterns as reflected in an increased 
number of activity bouts with unaltered length and activity counts 
per bout, independent of the external light conditions; and third, 
a selective modulation of hippocampal clock gene expression 
proposes an involvement of disrupted mRNA levels of cry1, dec2, 
and rev-erb-beta in the circadian phenotype of IL-6 KO mice.

Collectively these data suggest a potential pathophysiologi-
cal involvement of the pro-inflammatory cytokine IL-6 in the 
circadian alterations associated with severe neurological and 
psychiatric disorders and invite further investigations on the 
underlying molecular mechanisms.
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of the active period in IL-6 and WT mice (n = 9–11 per group) under (a) light/
dark and (B) dark/dark conditions. (c) Activity onsets and (D) offsets in circadian 
hours in IL-6 compared with WT mice. All data are displayed as mean ± SEM; 
*p < 0.05.

FigUre s2 | Behavioral actograms exemplifying circadian locomotor 
activity patterns in interleukin-6 (il-6) and wild-type (WT) mice.  
Sample actograms illustrating wheel-running activity in (a) WT and (B)  
IL-6 mice.
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The Supplementary Material for this article can be found 
online at http://journal.frontiersin.org/article/10.3389/fneur. 
2017.00099/full#supplementary-material.

FigUre s1 | Duration of the active period (alpha) and activity onsets and 
offsets in interleukin-6 (il-6) and wild-type (WT) mice. Analysis of the length 
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