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Chronic pain is a pathological developing course of pain. In clinic, an objective indicator  
is needed for diagnosing and better controlling chronic pain. The abnormal neural 
responses in chronic pain are reflected by multiple event-related potentials (ERPs) in 
time, frequency, and location domain, respectively. However, multiple changes in ERPs 
are not applicable in clinic. So, the principal feature covered the most informative 
changes extracted from these three domains of ERP during the development of chronic 
pain is needed. In the present study, a parallel factor analysis method was employed to 
extract time–frequency–channel features of laser-evoked potential (LEP) simultaneously 
from rats with chronic inflammatory pain. Results showed that the main feature of LEP 
in channel domain locates in the frontal brain region in rats with chronic inflammatory 
pain while in the parietal brain region in control rats. In the frequency domain, the main 
frequency of LEP was significantly higher in chronic inflammatory pain rats than that 
in control rats. These findings indicate that the frontal region with higher frequency 
response to nociceptive information is the principal feature in the chronic pain state. 
Our study provided not only a principal feature of LEP but also a promising strategy for 
chronic pain, which is potential for clinic application.

Keywords: chronic inflammatory pain, event-related potentials, parallel factor analysis, wavelet transform, rat

inTrODUcTiOn

Chronic pain is a pathological pain state characterized by pain persistence (1). It is believed that 
chronic pain is not a simple condition of persistent pain perception, but a course of pain chronifica-
tion that involves sensation, emotion, and cognition (2, 3). Clinically, diagnosis of chronic pain 
mainly relies on subjective pain report lasting for several months; however, dependence of subjective 
pain report results in unsatisfied treatment of pain in clinic because of missing the optimal treat-
ment window. Detection of chronic pain with objective measurement at early stage, but not with 
traditional subjective report is required (4). Thus, it is of importance to explore a measurement or 
an indicator that is applicable in clinic.
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FigUre 1 | The sketch map of electrodes locations. Anterior to the 
bregma (A+); posterior to the bregma (A−); left lateral to the bregma (L+); 
right lateral to the bregma (L−); electrodes 4 and 9 (A 0.0 mm, L ±4.5 mm); 
electrodes 3 and 10 (A −3.0 mm, L ±4.5 mm); electrodes 6 and 7 (A 
+4.5 mm, L ±1.5 mm); electrodes 8, 5, 11, 2 (A ±1.5 mm, L ±4.5 mm); 
electrodes 1 and 12 (A −4.5 mm, L ±1.5 mm); electrode 13 operated as the 
reference electrode. The reference electrode and ground electrode were 
positioned 2 and 4 mm caudal to lambda, respectively.
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Event-related potentials (ERPs) are a measurement that reflects 
neuronal processes by frequency, time course, and topography 
changes (5). ERPs have been applied to study the abnormal neural 
response in chronic pain conditions (5–7). Most studies employ 
painful laser stimuli to evoke cortical neural responses that are 
named laser-evoked potential (LEP). It is widely used in chronic 
pain clinically (8). Previous researches indicated that LEP in the 
time, location, and frequency domain was altered in chronic 
pain. For example, one study found that oscillatory activities in 
the theta frequency band were enhanced in chronic pain patients 
in parietal areas (9), indicating changes in the frequency and 
location domain. In another study, the N170 component (a nega-
tive potential appeared at 170 ms after stimulation) of LEP was 
enhanced in the fronto-central region (10), showing alternation 
in the time domain at another location domain. In addition, 
chronic pain patients showed both changes for the N1 component 
(a negative potential appeared at 100 ms after stimulation) in the 
temporal region and the N2/P2 component in the vertex region 
(11). These results demonstrate that multiple time and frequency 
responses recorded at a number of regions alter in chronic pain 
condition. Although these multiple changes are sufficient for 
understanding the mechanism of chronic pain, it is still unclear 
which are the principal characteristics covered the most informa-
tive changes related with chronic pain, and it is not suitable for 
clinic application. Therefore, a principal feature extracted from 
abundant information is required for clinic usage.

Effective reduction methods such as principal component 
analysis (PCA) are traditionally applied for ERPs to explore 
the principal components and to characterize ERPs (12, 13). 
However, the PCA method only describes the time and frequency 
characteristics within single recording area. It cannot extract 
components for multichannel ERPs (14). The parallel factor 
analysis (PARAFAC) is a method that could extract features in the 
time–frequency–channel domain simultaneously from original 
multichannel EEG data (15). It takes into account the frequency 
of oscillations in certain time periods among all the recording 
channels (16) and has been successfully applied to detect abnor-
mal oscillatory activity in epilepsy and Alzheimer’s disease (17).

Therefore, in the present study, in order to explore the prin-
cipal feature of LEP during the development of chronic inflam-
matory pain in three domains, we recorded LEP obtained from 
the electrocorticogram (ECoG) of rats with chronic pain model 
and applied the PARAFAC method to decompose multichannel 
LEP data. Components of each rat are the main characteristics 
of the time–frequency–channel information for brain oscillatory 
activities.

animals anD meThODs

animals
Thirteen male Sprague-Dawley adult rats (weight 300–350  g) 
were used. These animals were provided by the Department of 
Experimental Animal Sciences, Peking University Health Science 
Center. The animals were housed individually in cages at room 
temperature of 22 ± 1°C and kept on a 12 h light and dark cycle. 
Food and water were available ad libitum. The rats were allowed 

to habituate to the environment and handled by the experimenter 
daily for 1 week before surgery.

surgery and electrodes implantation
Rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.).  
Fourteen stainless steel screws (tip diameter 1 mm, impedance 
of 300–350  Ω, Kanpu Medical Ltd., China) equipped with a 
socket were implanted as epidural electrodes on the skull. The 
locations of the electrodes were determined by the method pro-
posed by Shaw (18), as shown in Figure 1. The electrodes were 
fixed to the skull with dental cement. Penicillin (60,000 U, i.m.)  
was administrated in the following 3  days after operation to 
prevent possible infection. The EEG recording was started 7 days 
after electrodes implantation operation.

chronic inflammatory Pain model of rats: 
monoarthritis Procedure
A chronic inflammatory pain model of monoarthritis in rats was 
established according to a previously described method by Butler 
(19). The procedure was briefly as follows: the complete Freund’s 
adjuvant (CFA) component includes Mycobacterium butyricum 
(60  mg), paraffin oil (6  ml), NaCl 0.9% (4  ml), and Tween 80 
(1 ml). After being mixed and autoclaved, the mixture (0.05 ml) 
was injected into the left tibiotarsal joint cavity to induce the 
monoarthritis pain model (CFA group). Six rats in the control 
group were injected with an equal volume of vehicle (0.9% NaCl) 
to the left tibiotarsal joint cavity [normal saline (NS) group]. After 
injection, rats in the CFA group developed thermal hyperalgesia, 
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which is confirmed by the rat’s hind paw withdrawal response to 
a lower laser intensity compared with that before injection.

laser stimulation
On the day prior to intra-articular injection (D0) and 1, 7, 14, and 
28 days after intra-articular injection (D1, D7, D14, and D28), 
rats received thermal nociceptive stimulation with a laser beam 
(wavelength 10.6 µm, beam diameter 2.5 mm, pulse width 20 ms), 
which was delivered by a CO2-laser stimulator (DIMEI-300, 
Changchun Optics Medical Apparatus Co., Ltd., China). Laser 
stimuli were applied to the plantar of hind paw when rats were 
awake and quiet. The appropriate intensity of the laser beam for 
each individual rat was determined by using an ascending series 
of laser beam intensities with a 1  W increment. The intensity 
that generated four to five hind paw withdrawal responses out 
of six stimuli was selected as the intensity of stimulation. Each 
rat received 15 stimuli that could induce hind paw withdrawal 
responses. Each stimulus was targeted at slightly different posi-
tions. The interstimulation interval varies from 40 to 150 s.

recordings of laser-evoked ecog
The EEG/ERP system (CogniTrace ERP, ANT Inc., The 
Netherlands) was used for EEG data collection. Twelve recording 
electrodes and one reference electrode were connected to the 
digital preamplifier, and the ground electrode was connected the 
GND connector of the amplifier. All signals were referenced to 
the electrode that was located 2 mm caudal to lambda (the #13 
electrode in Figure 1). The sampling frequency of EEG recording 
was 1,024 Hz. Rat behaviors were videotaped while the ECoG was 
recording.

Preprocessing
The preparation and preprocessing of data were carried out as 
follows. The duration of each epoch was set as 1,500 ms (500 ms 
before and 1,000  ms after the laser stimulation onset). Large 
baseline drift was checked and removed for all trials and chan-
nels. Then, the epoch signals were re-referenced to an average of 
all channel recordings. Finally, the laser-evoked ECoG data were 
preprocessed with a band-pass filter of 1–70  Hz (eegfilter.m at 
EEGLAB software: http://sccn.ucsd.edu/eeglab/), and the ERP 
data were generated by averaging.

Wavelet Transforms and ParaFac
Wavelet transformation and PARAFAC were performed as 
described by Wang (16). Briefly, first, wavelet transforms were 
used to transform ERP into time-frequency energy for each 
channel, obtaining a time  ×  frequency matrix. Next, matrices 
from 12 channels were put together to form a dataset contain-
ing time, frequency, and channel information. Then, PARAFAC 
method was applied to this dataset to obtain its main component. 
PARAFAC projects the dataset in the time domain, frequency 
domain, and channel domain and extract several orthogonal 
components to maximally represent the original dataset. The 
number of components is controlled by core consistency method 
(17, 20). After PARAFAC, components consisting of three coef-
ficients matrices, i.e., matrix of time, frequency, and channel 

was obtained, reflecting the main characteristics in the time, 
frequency, and channel domain, respectively.

Then, the time points with biggest coefficients and the 
frequencies with biggest coefficients were selected. For further 
channel domain analysis, the coefficients of every channel were 
plotted.

statistical analysis
Two-way analysis of variance was used to compare the frequency 
and time difference between the two groups.

resUlTs

ParaFac analysis of leP
In order to test the accuracy of PARAFAC method, the feature 
extracted by PARAFAC was compared with original LEP. With 
PARAFAC analysis, one or more components that represent 
main characteristics of EEG are obtained for each data. Within 
each component, it contains three-way information in the 
time–frequency–channel domain. A representative example 
with the PARAFAC analysis is shown in Figure 2. These data 
have two components, which are shown in Figures  2A,B, 
respectively. In each component, three-dimensional informa-
tion at the time–frequency–channel domain was obtained. The 
information in the first component is shown in Figure  2A, 
a–c. Based on the peak of coefficients, the main characteristic 
of this multichannel EEG signal was located in the prefrontal 
region with a frequency of around 6 Hz at approximately 240 ms 
after the stimulus onset. The corresponding LEP obtained by 
across-trial averaging in EEGLAB from the channel 6 is plotted 
in Figure 2A, d. It was obvious that the time feature extracted by 
the PARAFAC method (~240 ms, seeing Figure 2A, a) matched 
well with the LEP latency in channel 6 in the prefrontal region 
(~250 ms, seeing Figure 2A, d). For the second component, the 
decomposition is shown in Figure 2B, a–c. The main character-
istic of this multichannel EEG signal was located in the parietal 
region with frequency around 2  Hz at approximately 250  ms 
after the stimulus onset. From the LEP waveform in channel 2 
in parietal region, the latency of the LEP was at around 250 ms 
in the parietal region (Figure 2B, d).

The Feature of leP during the 
Development of chronic Pain
Table 1 showed that pain threshold, measured by laser intensity 
that induces rat’s hind paw withdrawal response, was lower in rats 
with CFA than rats with NS [Fgroup(1,44) = 24.48, P < 0.001], indicat-
ing that rats with CFA injection developed thermal hyperalgesia. 
Post hoc analysis revealed lower threshold at all days in rats with 
CFA (P < 0.05 for D1, D7, D14, and D28).

After the PARAFAC analysis, there were several components 
extracted by each rats. Each component consisted of three coef-
ficients matrices, i.e., matrix of time, frequency, and channel, 
reflecting the main characteristics in the time, frequency, and 
channel domain, respectively. We further collected all the compo-
nents in each group and then compared each of the three domains 
between two groups.
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FigUre 2 | components extracted by the parallel factor analysis (ParaFac) method model from one representative example in a chronic arthritic 
rat. Two components (a,B) were extracted by PARAFAC. In each component, it contained the characteristic in time domain (a), frequency domain (b), and location 
domain (c) of three-dimensional information; (d) was the corresponding laser-evoked potential and stimulation trials from a single channel marked with red point in a 
chronic arthritic rat. Based on the peak of these coefficients, component (a) is over frontal region with a frequency of 6 Hz at approximately 240 ms after the 
stimulus onset; component (B) is over parietal region with a frequency of 2 Hz at 250 ms after stimulation onset.
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To find out the difference in the channel domain between 
the CFA and NS groups, coefficients of each channel from both 
the NS and CFA groups at different days before and after pain 
induction were plotted (Figure  3A). In the CFA group, we 
found the activity over the prefrontal region increased along the 
development of chronic pain. The coefficients of the channel 7 

were bigger at day 7 (t = 2.21, P < 0.05) and day 28 (t = 2.69, 
P < 0.05) compared with the coefficients of channel 7 at day 0. 
Unlike the CFA group, no channels showed difference among all 
these days in the NS group. The topographic difference between 
the two groups indicates main feature of LEP locates in the frontal 
regions in the chronic pain.

http://www.frontiersin.org/Neurology/
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TaBle 1 | changes of pain threshold relative to baseline (D0).

Time
group D0 (%) D1 (%) D7 (%) D14 (%) D28 (%)

CFA group* 100 −32.4 ± 12.1 −28.0 ± 15.7 −35.0 ± 19.0 −48.9 ± 15.2
NS group 100 −4.9 ± 12.0 −5.3 ± 7.6 −6.2 ± 6.5 −6.5 ± 5.8

Data are expressed as mean ± SEM.
CFA, complete Freund’s adjuvant; NS, normal saline.
*P < 0.05 for all comparisons 1, 7, 14, and 28 days after injection by post hoc analysis.

5

Wang et al. Principle LEP Feature in Chronic Pain

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 155

The difference in the time domain and the difference in 
the frequency domain between the two groups were plotted 
in Figures 3B,C, respectively. We found that there was no dif-
ference between groups at each time point in the time domain 
[Fgroup(1,69) = 0.63, P = 0.42]. The time information of both groups 
was around 250 ms.

In the frequency domain, there was a statistically significant 
higher frequency response in the CFA group than the NS groups 
[Fgroup(1,69) = 5.3, P = 0.024]. Post hoc analysis revealed no specific 
day showed difference between groups (P > 0.05).

DiscUssiOn

ParaFac method
Previous studies showed that the PARAFAC was a promising 
approach to process multiple channel EEG signals (21) and has 
been successfully used to characterize the structure of epileptic 
EEG data (17, 22, 23). In this study, the PARAFAC method was 
used to extract the information in the time–frequency–channel 
from the ERPs of rats with chronic pain. The feature extracted 
by PARAFAC was around 250 ms in the prefrontal and parietal 
regions. It is noticeable that the feature matches with the cor-
responding ERP results (Figure 2A, d and Figure 2B, d) and with 
previous LEP findings that the N2/P2 complex components peaks 
in the frontal region at approximately 250 ms after stimulus onset 
(24). These results provided further evidence as suggested by 
Wang (16) that the PARAFAC is an interesting method to detect 
the principal character of LEP.

nociception-corrected leP during  
the Development of chronic Pain
Laser-evoked potential is dependent on intensity of nociceptive 
perception (25). Equivalent stimulus intensity leads to significantly 
different intensity of nociceptive perception between CFA rats and 
control due to the thermal hyperalgesia in chronic pain. In order to 
eliminate the influence of stimulus-induced perceptional intensity 
on the laser-evoked potentials, we corrected the laser intensity for 
both CFA and NS group based on their nociceptive behavioral 
response. Laser intensities that produced equivalent nociceptive 
perception for both CFA and NS rats were used. Thus, the differ-
ence of LEP in our study between chronic pain and control is more 
likely reflect the innate difference in the neural system instead of 
the difference due to the external stimulus-induced perception.

Based on the definition of chronic pain that pain lasts even 
after the original tissue damage has cured, the nature of chronic 
pain is the persistence of pain. Traditional researches that study 
changes at one time point of chronic pain are limited for providing 

the ongoing and developmental characteristic of chronic pain. In 
this study, we explored longitudinal study to find the dynamic 
changes of ERP features during the development of chronic pain.

location Feature of leP during  
the Development of chronic Pain
The frontal and parietal brain regions were found to be the prin-
cipal feature response to the laser nociceptive stimulation at day 0 
(Figure 3A). The parietal region is shown to process the sensory 
component of pain information (26, 27). Besides, the frontal 
area, the location of the anterior cingulate cortex and prefrontal 
cortex, which are mainly responsible for in the emotional and 
cognitive aspect of pain (28), is also involves in processing the 
laser nociceptive information. This result is in accordance with 
previous findings in healthy people, showing the sources of the 
LEP were located in the primary somatosensory cortex of parietal 
region (28, 29).

Results showed that the coefficients in the frontal region 
increased in rats with chronic inflammatory pain but did not 
change in the control rats. It indicates rats with chronic inflam-
matory pain process the nociceptive information predominantly 
in the frontal regions. It was in line with previous functional 
magnetic resonance imaging and electrophysiology studies 
indicating activity in the prefrontal region was increased in 
chronic pain condition (9, 30). The difference in channel domain 
between the control rats and the rats with chronic pain suggests 
the network for processing pain information changes as chronic 
pain develops—from the sensory dominant network centered 
at the parietal brain region to the affective dominant network 
centered at the frontal region. This dynamic change of network 
over time supports the idea that the affective aspect of pain gradu-
ally outweighs the sensory aspect of pain in the development of 
chronic pain (31).

The contribution of the frontal region seemed to become 
smaller over recording days in the NS control group though 
statistic results showed no difference. This phenomenon was 
probably due to pain habitation, i.e., reduction of pain and 
pain-related response by repetitive stimulation (6, 32). Rennefeld 
reported that pain rating of healthy people was reduced after 
several days of repeated painful stimulation, indicating subjects 
are habituation to pain (32). During our experiment, rats received 
repetitive painful stimuli and became familiar with the nocicep-
tive stimulation and the experimental procedures over time, so 
the unpleasant component reflected in the frontal region should 
have decreased gradually due to pain habitation. Interestingly, 
we found rats with chronic pain did not exhibit reduction of the 
frontal region activation as control rats did (Figure 3A). It sug-
gests lack of habituation to pain in chronic pain condition.

Frequency Feature of leP during  
the Development of chronic Pain
In the frequency domain, the frequency response was found to 
be higher in rats with CFA than the control. It is consistent with 
previous finding that the frontal network predominantly oscil-
lated at higher frequencies in chronic pain (33). It was reported 
that activity at both delta and theta frequency band (1–3 and 
3–8 Hz) was associated with P300 component of ERP (34–36). 
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FigUre 3 | The channel, frequency, and time characteristics in the complete Freund’s adjuvant (cFa) induced monoarthritis and normal saline (ns) 
control groups. (a) Topography of channel coefficients. The upper picture was average value of coefficients for each channel in control rats at days 0, 1, 7, 14, and 
28. The lower picture was the average value of coefficients for each channel in rats with chronic pain at days 0, 1, 7, 14, and 28. (B) The results of the time feature 
in comparison between the CFA pain and NS control groups at days 0, 1, 7, 14, and 28. There is no difference between groups at each time point in the time 
domain. (c) The results of the frequency feature in comparison between the CFA pain and NS control groups at days 0, 1, 7, 14, and 28. There is main effect of 
group [Fgroup(1,69) = 5.3, P = 0.024], indicating the frequency response to the nociceptive stimulation was higher in the CFA group than that in the NS group.
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From this perspective, these frequency responses are all belong 
to the P300 component. In view of the idea that higher frequency 
oscillations are incline to promote neural synchronization within 
focal areas and facilitate neural plasticity than lower frequency 
(37), the higher frequency in the frontal region in our results 

is probably related to neural sensitization of local brain region 
in the chronic pain condition. Results from in  vitro studies 
demonstrating that synaptic plasticity and neural sensitization 
occur in frontal cortex under chronic pain conditions (38, 39) 
support this explanation. Although the frequency of ERP could 
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provide extra information that overlaps in traditional time 
domain studies, the meaning of the frequency of ERP is unclear 
yet. Therefore, whether the difference between two groups in 
our results is physiological significance deserves further work. 
Anyway, our results provide a more detailed characterization of 
LEP in chronic pain.

Frequency response is usually studied as frequency bands, 
which could eliminate the individual variation. However, the 
edge of frequency band is artificial, and the trend of researches 
is to apply the dominant peak frequency rather than frequency 
band (40). In our study, we performed specific dominant fre-
quency. Accordingly, it could be a reason for 1 Hz variations in 
the frequency domain shown at day 0 between two groups and at 
day 14 between other days.

limitations and Future Directions
Our exploratory research has several limitations. First, LEP from 
ECoG of rats with chronic pain could not be transformed to 
patients, though rats study allows longitudinal study and high 
ratio of signal to noise. Further experiment from patients and 
ongoing pain would be performed. Second, the limited spatial 
resolution of rat ECoG and PARAFAC method is not allowed to 
be focused on specific brain areas, which is hard to explain the 
underlying neurophysiology mechanism. Third, the casual and 
unique relationship between these features and chronic pain is 
hardly determined from the current study. Intervention research 
is needed in future. Fourth, small sample size is a weak point 
because of long-time recordings.

In conclusion, we applied the PARAFAC analysis in the 
multichannel LEPs during the development of chronic pain. It 
was found that the frontal region with higher frequency was the 
principal feature of neural response in the chronic pain condition. 
These features provide a potential neural network characteristic 
for chronic pain. Besides, our study provides a promising strategy 

of applying LEP combined with PARAFAC for assisting chronic 
pain diagnosis and treatment.
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