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Sleep impairment significantly alters human brain structure and cognitive function, but 
available evidence suggests that adults in developed nations are sleeping less. A growing 
body of research has sought to use sleep to forecast cognitive performance by modeling 
the relationship between the two, but has generally focused on vigilance rather than other 
cognitive constructs affected by sleep, such as reaction time, executive function, and 
working memory. Previous modeling efforts have also utilized subjective, self-reported 
sleep durations and were restricted to laboratory environments. In the current effort, we 
addressed these limitations by employing wearable systems and mobile applications to 
gather objective sleep information, assess multi-construct cognitive performance, and 
model/predict changes to mental acuity. Thirty participants were recruited for participa-
tion in the study, which lasted 1 week. Using the Fitbit Charge HR and a mobile version 
of the automated neuropsychological assessment metric called CogGauge, we gath-
ered a series of features and utilized the unified model of performance to predict mental 
acuity based on sleep records. Our results suggest that individuals poorly rate their sleep 
duration, supporting the need for objective sleep metrics to model circadian changes to 
mental acuity. Participant compliance in using the wearable throughout the week and 
responding to the CogGauge assessments was 80%. Specific biases were identified 
in temporal metrics across mobile devices and operating systems and were excluded 
from the mental acuity metric development. Individualized prediction of mental acuity 
consistently outperformed group modeling. This effort indicates the feasibility of creating 
an individualized, mobile assessment and prediction of mental acuity, compatible with 
the majority of current mobile devices.

Keywords: sleep, machine learning, actigraphy, cognition, mobile applications, executive function

inTrODUcTiOn

Sleep is a well-conserved physiological state behaviorally characterized by reduced motor activity  
and response to stimulation, easy reversibility, stereotypic postures, and characteristic patterns 
of brain activity. Sleep duration and quality significantly alters brain structure and function. For 
instance, brain-related changes associated with sleep include alterations to hippocampal function 
(1), metabolic clearance (2), neuroendocrine function (3), and formation of dendritic spines (4). 
Sleep impairment is known to cause learning dysfunction (5), performance degradations (6), and 
is associated with depression (7), and impaired physical health (8). Sleep disturbances are com-
mon across multiple professions, and the proportion of individuals reporting short sleep duration  
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(<6  h per night) is increasing (9), along with accompanying 
medical problems (10). For example, during military deployment, 
poor sleep health is common due to hazardous work conditions, 
inconsistent hours, crowded sleep spaces, harsh environments, 
travel across time zones, and exposure to noise (11). Following 
deployment, sleep disturbance affects a high number of military 
veterans and is associated with mental illness (12).

A growing body of research has sought to model the relation-
ship between sleep and cognitive performance (13). Early efforts 
included the three process model of alertness/performance 
(TPM), developed to predict group performance and alertness 
throughout a day (14). The more recent unified model of perfor-
mance expands on the TPM and more closely models individual 
psychomotor performance variance (15–18). In order to use the 
previous models to predict individual cognitive performance 
using supervised learning techniques, actual cognitive perfor-
mance data, usually provided by the psychomotor vigilance test 
(PVT), is required to update the model–parameter estimates (19). 
The PVT is a simple reaction time exam sensitive to the effects 
of fatigue and sleepiness (20). It requires subjects to respond to 
a rare, random stimulus with an interstimulus interval typically 
between 2 and 12 s over a 5–10 min session. Model inputs from 
the PVT include the number of lapses, defined as misses or 
responses exceeding a pre-defined temporal threshold (19), and 
average response times (RTs) over a PVT session (21). However, 
psychomotor vigilance is only one aspect of changes to cognitive 
function associated with sleep. There is a need for models that 
implement and predict expanded aspects of cognitive function.

Previous modeling efforts have relied on self-reported sleep 
metrics such as sleep duration, bedtime, and sleep quality as model 
inputs. Available evidence suggests that many individuals system-
atically under- or overestimate their sleep habits (22). Given that 
accurate sleep information is critical to modeling sleep-related 
circadian changes to mental acuity, there is also a need for models 
that implement objective sleep features. Wearable systems are 
rapidly expanding (23) and many include algorithms designed to 
estimate an individual’s wakefulness, restlessness, and sleep via 
multi-axis accelerometry. Such algorithms identify the shift from 
high activity during wake to relativity low activity during sleep. 
Wearable systems continue to evolve by including additional sen-
sors such as pulse photoplethysmography (PPG) to assess heart 
rate, which may have added utility in sleep monitoring (24).

The objective of the current study was to develop algorithms 
and a mobile application to quantify and predict sleep-related 
changes to cognitive functions including working memory, 
reaction time, executive function, and psychomotor vigilance 
using wearable technology. We hypothesize that individualized 
mental acuity modeling will outperform group modeling and that 
an expanded mental acuity metric, utilizing vigilance, working 
memory, and linguistic capability will be subject to circadian 
alteration and reduction following sleep loss.

MaTerials anD MeThODs

Participants
Thirty adult participants were recruited from the Orlando, FL, 
USA area for participation in the study, which lasted 1  week. 

Par ticipants were recruited using recruitment flyers posted online  
and through recruitment fairs located at local universities. 
Inclusion criteria included age (18–30  years), good general 
health, no self-reported sleep disorders, no medications that may 
affect sleepiness, and normal or corrected-to-normal vision. In 
order to maintain participant confidentiality, all participants were 
assigned a unique three digit code, from A01 to A30, based on 
order of inclusion.

Materials
The Charge HR (Fitbit, San Francisco, CA, USA) was used to 
quantify metrics associated with sleep and activity. Fitbit data, 
including sleep, activity, and heart rate, was sent to mobile phones 
via Bluetooth. Assessment of mental acuity was accomplished 
using CogGauge (25)—a mobile suite of assessments based on 
the automated neuropsychological assessment metrics [ANAM® 
(26)]. Specific assessments implemented included: mathematical 
processing, which assesses working memory by requiring the 
subject to perform basic arithmetic operations (Pearson correla-
tion coefficient = 0.87); PVT, which assesses reaction time and 
vigilance by requiring the subject to respond to a stimulus that 
appears between 2 and 12 s random interval (PCC = 0.81); run-
ning memory continuous performance test, a 1-Back test, which 
assesses working memory (PCC = 0.80); and logical reasoning, a 
linguistic task requiring the comprehension of simple statements 
and grammatical transformations (PCC = 0.69) (27). The PVT 
lasted 5 min per session; the other assessments lasted 1–2 min 
each per session (Table 1).

A custom application was also created to allow participants to 
input caffeine consumption. Actigraphy data, caffeine consump-
tion, and CogGauge data were implemented on mobile phones, 
including the Motorola Moto-X second generation running 
Android 6.0, the Samsung Galaxy S5 (SGS5) running Android 
5.0, the iPhone 5 and the iPhone 6+ running iOS 9.3.2.

experimental Procedure
Upon arrival, participants provided written informed consent, 
responded to a demographics questionnaire and sleep scales. 
Participants were issued an actigraphy system and a mobile 
phone for data collection. Participants were instructed to wear 
the actigraphy device throughout the week with the exception of  
swimming or bathing, and to respond to the CogGauge assess-
ments during convenient awake hours, three times daily. Noti-
fication reminders were included in the mobile application to  
request CogGauge assessments be taken at a random time 
within three intervals: morning 9:00 a.m.–12:00 p.m., afternoon 
1:00–5:00 p.m., and evening 5:00–9:00 p.m. Verbal instructions 
were also given to vary the times of testing in order to sample 
from their entire circadian rhythm. Participants also tracked their 
caffeine consumption in the custom application. After the 7-day 
data collection, participants returned the actigraphy system and 
phone, and were debriefed and paid $160 for their participation.

subjective Measures
During the initial session with the participant, a number of subjec-
tive measures were provided electronically. The Stanford Sleepi-
ness Scale was used to assess current alertness (28). The Epworth 
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Table 1 | Mobile assessment suite based on the automated 
neuropsychological assessment metric.

assessment Description interface

Psychomotor 
vigilance

Reaction time and 
vigilance assessed 
over 5 min. Subject 
responds as quickly 
as possible when a 
stimulus appears

Logical 
reasoning

Linguistic task 
requiring the subject 
to determine whether 
various grammatical 
relationships describe 
the order of 2+ 
objects

Math 
processing

Working memory 
assessment requiring 
the subject to quickly 
perform basic 
arithmetic operations

1-Back Requires subjects to 
recall the last digits 
that appeared on the 
screen and decide 
if the current digits 
displayed are different

Table 2 | Mental acuity metrics included in feature analysis for each 
assessment.

Measurement Value Psychomotor 
vigilance

logical 
reasoning

Math 
processing

1-
back

Response 
times

Mean X X X X
Median X X X X
SD X X X X

Correct 
response time 
(CRT)

Mean X X X X
Median X X X X
SD X X X X

Correct 
responses

Count X X X X
Rate X X X X
Percentage X X X X

Incorrect 
responses

Count X X X X

Timeout Count X X X X

Lapse Count X

Distracted 
answer

Count X

Misfire Count X

Included metrics are marked with X.
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Psychomotor vigilance test feature definitions differed from 
the other three assessments. While the logical reasoning, math 
processing, and 1-Back assessments presented participants with 
questions that had correct and incorrect answers, PVT questions 
only required a response to a stimulus. If a participant responded 
before the stimulus, the answer was considered a misfire. For 
PVT, incorrect responses were defined as any questions whose 
response was either a timeout or a misfire, defined as a response 
prior to stimulus. Lapses were defined as PVT questions with 
RTs greater than 500  ms. Distracted answers were defined as 
responses over 1,250 ms.

Participant compliance
Participants were asked to respond to a complete session of 
CogGauge, consisting of four assessments, three times daily. A 
complete session was defined as 20 questions each of the 1-Back, 
logical reasoning, and math processing tests, as well as 5 min of 
PVT. Compliance was measured as each participant’s percent 
deviation from 100% use. Participants were not expected to 
wear their Fitbit continuously for the entire week due to removal 
recommendations for bathing and charging requirements. Ideal 
compliance for the time the Fitbit was worn was measured 
as continuous wear with time off wrist of no more than 3.5  h  
(a single 1.75 h charging session plus 15 min daily for bathing). 
Non-zero Fitbit heart rate data were used to define the periods of 
time the Fitbit was worn. The number of main sleep events the 
Fitbit logged was also measured for each user, with ideal compli-
ance represented by seven main sleep events during the week, to 
ensure sleep events were recording properly.

Data Modeling
The feature list in Table 2 was reduced to create an uncorrelated 
feature space of the most descriptive features that would operate 

Sleepiness Scale was also used to assess subject’s general level of  
daytime sleepiness (29). Self-reported sleep habits (average num-
ber of hours of sleep per night) were provided by participants via 
self-report.

Objective Measures
The Fitbit API (http://dev.fitbit.com) provided access to features 
used for modeling in 1-min increments including heart rate and 
activity including number of steps, flights of stairs, and types of 
physical activity, as well as aggregated measures of sleep events 
such as minutes asleep, restless, and awake, and sleep start times 
and durations.

Several features were extracted from the CogGauge battery 
and are listed in Table 2. Feature values were only calculated for 
assessments with responses to over five questions. RT was defined 
as the time a participant took to respond after presentation of a 
question. Correct response time (CRT) represents the RT of ques-
tions answered accurately. Questions that were not answered in 
the allotted time were considered timeouts, and their RT values 
were not included in the calculation of statistical values for RT.
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consistently across phone models where differences in RTs are 
expected due to differences in hardware capabilities. To accom-
plish this, the variability in RT measurements between phone 
models was addressed by disregarding any features that rely on 
the absolute value of the RT. Pearson’s correlation coefficient was 
calculated for each pair of features. Features with known cor-
relations were eliminated. Finally, an exhaustive wrapper feature 
importance measurement was performed to determine the most 
influential features for predicting time asleep. For this process, a 
cross-validated linear regression model was trained for all pos-
sible subsets of the features, and the Bayes Information Criterion 
(BIC) and root mean squared error (RMSE) was measured. While 
the RMSE measures how well the model fits the data, the BIC 
additionally incorporates a penalty term for the inclusion of extra 
features to avoid unnecessary features and overfitting (30). The 
final features selected for input into the model were chosen as the 
feature set with the lowest BIC that still represented at least three 
games, to ensure a broad definition of mental acuity, and at least 
one measure from PVT, to maintain consistency with previous 
models.

An overall mental acuity metric was designed as an equally 
weighted linear combination of all selected features set on an 
approximate 0–100 scale, where 0 represents no responses to any 
CogGauge assessments and 100 represents exceptional perfor-
mance across all features. Unbounded variables, such as SD in 
RT, were scaled with a value double the λ value from a Poisson fit 
to the distribution of values.

Data analysis and statistics
A Kruskal–Wallis test was performed between phone models 
on all RTs, as defined above, to determine if RT varied between 
phone models.

The predictive model was designed to fit the unified model 
of performance to the mental acuity metric (dependent variable) 
and the sleep records (independent variable) using the method of 
least squares. Vertical translation and scaling terms were added to 
convert the unified model of performance output to the mental 
acuity metric scale. The final form of the equation used in the 
model fit is given in Eq. 1:
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(1)

where v is the vertical shift term, β is the circadian rhythm scaling 
term, τ is the period of the circadian rhythm, t is the current 
time, tw is the most recent waking time, φ is the offset of the 
circadian rhythm relative to waking time, α is the homeostatic 
process scaling term, t0 is the time of the most recent transition 
between sleeping and waking, S0 is the homeostatic state at t0,  

U is the upper limit of a sleep reservoir, τw is the time constant of 
the homeostatic process during waking, τs is the time constant of 
the homeostatic process during sleeping, L0 is the lower limit of a 
sleep reservoir at t0, and τLA is an additional time constant of the 
unified model of performance. L0 was calculated from the L0 of 
the previous period of sleeping or waking, L0,previous, and previous 
t0, t0,previous, via Eq. 2:
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t, tw, and t0 were determined from Fitbit data. The time constants 
were fixed at τw = 10 h, τs = 2 h, and τLA = 166 h, as modification 
of their values had minimal effect on the fit quality of the model 
(16). All remaining parameters (y, β, τ, φ, α, S0, U, and L0) were 
optimized via the least squares fit to the model.

Two models were trained on the mental acuity and sleep data. 
The first was a group model trained across all participants’ data 
to predict the mental acuity of a generalized user. The second 
was a set of individual models trained on a specific participant’s 
data to predict the participant’s unique response to sleep. The 
group model was cross validated with three iterations by holding 
out a random participant’s data for testing during each iteration. 
The individual models were cross validated with three iterations 
each by holding out a random day’s data for testing during each 
iteration.

The ultimate goal of this effort was to create an individualized 
model of the effects of sleep on mental acuity. In order to measure 
model performance, the following equation was used:

 fit quality SD /RMSEmental acuity UMP=  

where SDmental acuity is the standard deviation over all mental 
acuity values used in the model and RMSEUMP is the RMSE of 
the unified model of performance fit to the data. This measure 
represents a model that is no different than a measure of mental 
acuity independent of sleep effects, and the larger the value 
greater than one, the better the improvement of the UMP over 
such a model. This fit quality was calculated for both group and 
individual models.

resUlTs

The sociodemographic factors in the study sample are listed 
in Table  3. Most participants were male, of an average age 
23.2 ± 3.88 years, and reported sleeping 7.3 ± 0.64 h per night. 
The mean Epworth Sleepiness Scale score of 6.23 ±  2.47 indi-
cated the study sample to be average compared to population 
norms (31).

Four users had sleep events manually defined based on heart 
rate and actigraphy data. Two users had continuous heart rate 
data for the duration of the study, indicating they were wearing 
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FigUre 1 | boxplot of self-reported sleep duration compared to 
Fitbit-reported sleep duration. Survey response options included <2, 2–4, 
4–5, 6–7, and 8+ h. Blue bars represent participants who selected the survey 
response that accurately described their average sleep duration, as verified 
by the wearable device. Red bars represent participants who selected an 
incorrect description of their average sleep duration on the survey, and gray 
bars represent users who selected one of two possible correct responses.

Table 3 | list of sociodemographic factors in the study sample.

study sample% (n)

gender
Male 63.3 (19)
Female 36.7 (11)

age group
18–21 43.3 (13)
22–25 30.0 (9)
26–30 26.7 (8)

education
High school diploma/GED 46.7 (14)
Some college/university 30.0 (9)
University degree 23.7 (7)

average self-reported sleep duration
4–6 h 3.3 (1)
6–8 h 63.3 (19)
>8 h 33.3 (10)
epworth sleepiness scale 6.23 ± 2.47 (SD)

FigUre 2 | compliance with wearing the Fitbit device and responding 
to the coggauge assessments among all 30 participants over the 
week long course of the experiment. Six participants who did not wear 
the device, did not sync the device, or had a broken device were removed 
from model development.
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the device, but no records of sleep events for periods of 3 days or 
more. Two additional users had intermittent heart rate data.

Less severe heart rate tracking issues caused some sleep events 
to become fragmented, where Fitbit reported a new sleep event 

beginning as little as 1 min after the previous event ended. These 
events were combined if the time awake between events was less 
than 1.5 h, or if the time awake between events was less than 3 h 
and fewer than 85% of those minutes included heart rate data. 
Minutes awake for the intervening time were calculated as the 
number of minutes where the device recorded steps, indicative 
of participant ambulatory movement, and all other intervening 
minutes were considered minutes asleep.

Participants systematically over- or underestimated their sleep 
habits (Figure 1). Since accurate sleep information is critical to 
modeling sleep-related circadian changes to mental acuity and 
performance, we implemented and trained model with objective 
sleep features gathered using the wearable device.

Six participants who did not comply with instructions to wear 
the device and respond to the cognitive assessments, or who 
experience data loss were excluded from model development. 
Users A13 and A30 did not wear the device throughout the week; 
users A14, A21, and A28 experienced unexplained data loss; 
and user A23 had a broken device. User compliance is shown in 
Figure 2. Among all 30 participants, the percentage of time worn 
was 81.1 ± 30.0% of the ideal; night’s sleep was 87.8 ± 28.5% of 
ideal, and number of CogGauge sessions was 95.1 ± 16.2% of the 
ideal. Among the 24 participants used in model development, the 
percentage of time worn was 94.2 ± 9.49% of ideal; night’s sleep 
was 98.8 ± 7.19% of ideal, and number of CogGauge sessions was 
96.8 ± 11.6% of the ideal. Although participants were allowed to 
play through the assessments at their convenience, dispersion of 
gameplay time was high, with only 74 of the 608 sessions recorded 
(12%) played within 3 h of the previous session. This afforded the 
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FigUre 4 | Plot of effects of repeated exposure to coggauge 
assessments on response time (rT). 1-Back, logical reasoning, and  
math processing RT followed an exponential decay relative to sessions 
played with half-lives of 0.67, 1.5, and 2.6 sessions, respectively.

FigUre 3 | Top panel—logarithmic boxplot of psychomotor vigilance 
test (PVT) response times (rTs) by device type. iPhone devices (iP5s, 
iP6+) recorded lower RTs than Samsung Galaxy S5 or MotoX devices. 
p-Values indicated between devices per Kruskal–Wallis testing. Standard PVT 
lapse threshold of 500 ms shown by horizontal line. Bottom panel—Phone 
RT discretization. Histograms of RT by phone model, with binwidths of 
8.33 ms. All phone models show 60 Hz RT discretization.
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model a snapshot of mental acuity throughout the day, allowing 
accurate training of the model.

Temporal effects were observed across devices (Figure 3). RT 
measures of central tendency and spread shifted across devices 
during the PVT. Kruskal–Wallis testing indicated that iPhone 
devices (iP5s, iP6+) recorded significantly lower RTs than SGS5 
(SGS5; iP6+ p = 0.05; iP5s p = 0.007) or MotoX (iP5s p = 0.02). 
Additionally, phones were found to discretize their RTs. Figure 3 

shows histograms of RT for each phone model with bin widths 
of 8.3 ms. Note that no space is plotted between bins. All phones 
show some responses discretized every 16.7 ms, which matches 
expected latency for a 60 Hz device.

For all CogGauge assessments except PVT, metrics such as RT 
and SD in CRT followed an exponential decay over time as par-
ticipants were repeatedly exposed to the assessments. Figure 4 
shows this effect. The half-lives for each assessment with a train-
ing effect were 0.67 CogGauge sessions for 1-Back, 1.5 sessions 
for logical reasoning, and 2.6 sessions for math processing. To 
eliminate these training effects from affecting the model, the first 
three CogGauge sessions, a value chosen to be greater than the 
largest half-life, were excluded from modeling.

The initial feature list was reduced with the goal of moderating 
the feature space to avoid overfitting, developing an uncorrelated 
feature space, and removing features whose value may vary with 
phone model or operating system. RT features and features with 
known correlations were removed, and remaining features were 
input into the exhaustive wrapper feature importance measure-
ment. The final set of features selected for inclusion were chosen 
to have the lowest BIC while including metrics from multiple 
games and metrics from the PVT game to provide a broad 
definition of mental acuity and remain consistent with previous 
models. Table  4 shows the five feature combinations with the 
lowest BIC that matched the search criteria.
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Table 4 | Top five combinations of input features with the lowest bayes 
information criterion (bic) values that both contain metrics from at least 
three games and at least one metric from psychomotor vigilance test 
(PVT).

Feature inputs bic

Logical reasoning CR%
PVT SD in correct response time (CRT)
1-Back SD in CRT

−0.9

Logical reasoning CR%
PVT SD in CRT
Math processing timeout

0.2

Logical reasoning CR%
PVT SD in CRT
Math processing SD in CRT

0.7

Logical reasoning CR%
PVT SD in CRT
Math processing% correct

0.7

Logical reasoning CR%
PVT SD in CRT
1-Back CR%

0.8

FigUre 5 | Timeline of three representative participant’s mental acuity, sleep data, and model fit. Mental acuity results are shown as black dots, sleep 
periods are shown in gray, the group model fit is shown as a red line, and the individual fits are shown as blue lines.

FigUre 6 | Unified model of performance fit as measured by the ratio 
of the root mean squared error (rMse) of the unified model fit to a 
horizontal line fit, representing mental acuity independent of sleep 
effects. Group model is represented by a vertical line.
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The final features selected for incorporation in the model 
were PVT SD in CRT, logical reasoning percent correct, and 
1-Back SD in CRT. The mental acuity metric, an equally 
weighted linear combination of these metrics, was thus defined 
using Eq. 3:

 

Mental acuity Logical Reasoning percent correct=

+



1
3

200 100
3
* 













+





 −










1

600 100
3

1
1

PVT SD in CRT

Back SD in
*

CRT


 
(3)

Group and individual least-squares fits to the unified model 
of performance using this mental acuity metric and cleaned 

Fitbit sleep data for three representative participants are shown 
in Figure 5. The mental acuity metric is associated with circadian 
fluctuation, with the highest mental acuity generally observed 
immediately following sleep and the lowest mental acuity 
observed before bed. The performance of the models, as meas-
ured by the fit quality, is shown in Figure 6. Individual models 
consistently performed better in modeling mental acuity results 
than the group model. Additionally, most models fit the mental 
acuity data better than a model independent of sleep effects and 
exceeded the fit quality of the unified model of performance for 
19/24 participants.
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DiscUssiOn

The current study indicates the feasibility of creating an indi-
vidualized, mobile assessment and prediction of mental acuity 
compatible with the majority of mobile operating systems. The 
custom mobile application, called SHARPR, joins a large number 
of other mobile applications focused on sleep (32) and cognitive 
training (33), but is unique in its ability to utilize sleep infor-
mation to measure and predict temporal changes to cognitive 
abilities.

The current effort utilized the unified model of performance 
to model circadian changes to mental acuity due to time of day 
and sleep. The unified model of performance was developed 
to model changes to vigilance with high accuracy arising from 
total sleep loss or chronic sleep restriction (15) and has been 
utilized primarily in laboratory environments. In contrast, the 
current effort sought to utilize the unified model of perfor-
mance to predict changes to mental acuity, including vigilance, 
working memory, and linguistic metrics for a more complete 
assessment of executive function. Participants were not asked 
to alter their sleep schedules, utilized a wearable device to 
monitor sleep, and responded to a mobile application to meas-
ure mental acuity.

Following recent military operations in the Middle East, a 
significant number of servicemen suffer negative health con-
sequences as a result of military stressors, including changes to 
mental health (12). Sleep disturbance, including insomnia, sleep 
fragmentation, and nightmares has been shown to be a strong 
risk factor and predictor for mental health (34). Disruption of 
normal sleep routines affects an individual’s circadian rhythms, 
causes stress, cognitive decrements, and psychological effects. 
Sleep disturbances are common during military deployment, 
and the effect of such sleep disturbance on soldier mental acuity 
and subsequent changes to mental health should be taken into 
account prior to mission assignment.

An important finding of the current study relates to applica-
tion development across mobile platforms, and that differences 
in hardware have the potential to significantly sway results 
dependent on temporal measures such as RT. Such alterations 
are expected to arise not only from differences in hardware and 
peripheral capabilities (35) but also background computing tasks 
(36) and even the method a user chooses to touch the screen (37). 
Due to such temporal differences observed across devices, feature 
selection for our mental acuity metric utilized features least likely 
to exhibit variability across devices. Additionally, PVT RT over 
1  s were seen in this study. Unlike most previous work where 
subjects were monitored in a laboratory setting, in this study, 
participants were asked to respond to the cognitive assessments at 
their convenience. The longer RT is believed to be due to inatten-
tive answers, when a participant is momentarily distracted from 
the assessment by an outside stimulus. Distracted answers were 
not included in the calculation of statistical values for PVT RT. Of 
note is the gradual increase in PVT RT observed over the course 
of the 1-week study. Such an observation has been described 
previously for the PVT, and may be due to continued exposure to 

a task considered boring or monotonous, resulting in a gradual 
decrease in mean RT reliability and increasing variability (38).

A number of previous efforts have focused on modeling 
cognition or performance based on self-reported sleep. Our data 
and others suggest that self-reported sleep is inaccurate (22). 
More objective options include polysomnography or actigraphy. 
There is a known bias toward overestimation of sleep duration 
inherent in actigraphy systems. A handful of previous studies 
compared Fitbit devices to other actigraphy sensors and poly-
somnography in general, and indicated that Fitbit sleep metrics 
are similar to other actigraphy devices, which, due to the predic-
tion of sleep based on movement rather than gross neural activ-
ity, underperform compared to EEG (39–41). Similar reliability/
validity data have been described for other Fitbit algorithms  
(42, 43).

Technical issues were encountered by a number of partici-
pants during the study, specifically with regard to the wearable 
device. We found that the Fitbit device began to overwrite stored 
data after approximately 5  days without syncing to the cloud, 
with sleep data overwritten before heart rate data. Thus the two 
users reported in this study with continuous heart rate informa-
tion, indicative of wearing the device, with no sleep records was 
likely due to infrequent syncing of the device. Future software 
versions will include sync reminders and notifications of poor 
tracking to remove the need for manual sleep scoring. The users 
with intermittent heart rate data, but other data streams intact, 
are indicative of poor device placement, where accelerometer 
values are obtained but not heart rate via the included PPG 
sensor.

As most commercially available health-care apps remain 
untested (44, 45), we are currently evaluating the approach in 
the initial target population, active duty, and reserve US military 
personnel.
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