
May 2017 | Volume 8 | Article 1881

Mini Review
published: 22 May 2017

doi: 10.3389/fneur.2017.00188

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Tony L. Strickland,  

Sports Concussion Institute

Reviewed by: 
Roberto Vagnozzi,  

University of Rome Tor  
Vergata, Italy  

Joseph Bleiberg,  
Walter Reed National Military 

Medical Center, USA

*Correspondence:
Giovanni Messina 

giovanni.messina@unifg.it

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted  

to Sports Neurology,  
a section of the journal  
Frontiers in Neurology

Received: 21 January 2017
Accepted: 19 April 2017
Published: 22 May 2017

Citation: 
Chieffi S, Messina G, Villano I, 

Messina A, Valenzano A, Moscatelli F, 
Salerno M, Sullo A, Avola R, 

Monda V, Cibelli G and Monda M 
(2017) Neuroprotective Effects of 

Physical Activity: Evidence from 
Human and Animal Studies. 

Front. Neurol. 8:188. 
doi: 10.3389/fneur.2017.00188

neuroprotective effects of Physical 
Activity: evidence from Human and 
Animal Studies
Sergio Chieffi1†, Giovanni Messina1,2*†, Ines Villano1, Antonietta Messina1, Anna Valenzano2, 
Fiorenzo Moscatelli 2, Monica Salerno2, Alessio Sullo1, Roberto Avola3, Vincenzo Monda1, 
Giuseppe Cibelli 2 and Marcellino Monda1

1 Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy, 2 Department of 
Clinical and Experimental Medicine, University of Foggia, Foggia, Italy, 3 Department of Biomedical and Biotechnological 
Sciences, University of Catania, Catania, Italy

In the present article, we provide a review of current knowledge regarding the role played 
by physical activity (PA) in preventing age-related cognitive decline and reducing risk of 
dementia. The cognitive benefits of PA are highlighted by epidemiological, neuroimaging 
and behavioral studies. Epidemiological studies identified PA as an influential lifestyle 
factor in predicting rates of cognitive decline. Individuals physically active from midlife 
show a reduced later risk of cognitive impairment. Neuroimaging studies documented 
attenuation of age-related brain atrophy, and also increase of gray matter and white 
matter of brain areas, including frontal and temporal lobes. These structural changes are 
often associated with improved cognitive performance. Importantly, the brain regions that 
benefit from PA are also those regions that are often reported to be severely affected in 
dementia. Animal model studies provided significant information about biomechanisms 
that support exercise-enhanced neuroplasticity, such as angiogenesis and upregulation 
of growth factors. Among the growth factors, the brain-derived neurotrophic factor seems 
to play a significant role. Another putative factor that might contribute to beneficial effects 
of exercise is the neuropeptide orexin-A. The beneficial effects of PA may represent an 
important resource to hinder the cognitive decline associated with aging.
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inTRODUCTiOn

Clinical and epidemiological studies suggest that the physical activity (PA) can play an important and 
positive role in the prevention and treatment of age-related cognitive decline, as well as of a range 
of medical conditions, including type II diabetes, hypertension, heart disease, stroke, osteoporosis, 
cancers, and obesity. In support of the beneficial effects of PA on cognitive performance, there are a 
number of epidemiological, behavioral, and neuroimaging studies.

Physical activity was identified as an influential lifestyle factor in predicting rates of cognitive 
decline (1, 2) and the subsequent development of age-related neurodegenerative diseases such as 
Alzheimer’s disease (AD) (3, 4). Women who reported being physically active at any point over the 
life course, especially as teenagers, showed a lower likelihood of cognitive impairment in late life (1). 
Yaffe et al. (2) performed an interesting prospective study in which cognitive function of an older 
adult population was measured at baseline and subsequently. Over 8 years, 30% of the participants 
maintained cognitive function, 53% showed minor decline, and 16% had major cognitive decline. 
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The authors (2) found that maintainers were more likely to engage 
in moderate to vigorous exercise compared to cognitive declin-
ers. Neuroprotective effects of PA were also found by Larson 
et al. (5). They (5) followed a cohort of older adults (>65 years) 
over 6 years and found that regular exercise is associated with a 
delay in onset of dementia and AD. In particular, they reported 
a reduced incidence rate of dementia for persons who exercised 
three or more times a week compared with those who exercised 
fewer than three times per week. Subsequently, Buchman  
et al. (6) employed actigraphy to obtain an objective measure of 
total daily PA, circumventing in this way recall bias associated 
with traditional PA questionnaires. In the study (6) partici-
pated older adults [81.6 (7.12) years] who were followed for an 
average of 3.5  years. Participants in the lowest PA percentiles  
(10th percentile) had more than twofold higher risk of develop-
ing AD as compared to participants in the highest PA percentiles 
(90th percentile). Finally, two significant meta-analyses examined 
the association between PA and risk of dementia and found that 
PA was inversely associated with risk of dementia (3, 4).

Several neuroimaging studies also suggested a protective role 
of PA in preventing age-related decline related to brain atrophy. 
Comparing MRI images of older adults (60–79  years) col-
lected before and after a 6-month aerobic fitness intervention, 
Colcombe et al. (7) observed significant increases in both gray 
matter and white matter (GM and WM) volumes as a function 
of fitness training. Interestingly, the increase of brain tissue vol-
umes was primarily located in prefrontal and temporal cortices 
(7). In a subsequent research, Erickson and colleagues (8, 9) 
demonstrated that highly fit or aerobically trained participants 
showed preservation and increase of volume of the hippocam-
pus, located in the inner (medial) region of the temporal lobe, 
and better performance on the spatial memory. Erickson et al. 
(9) reported an increase of the anterior hippocampus volume 
by 2% in older adults who followed 1-year aerobic exercise 
training, whereas there was a 1.4% decline in the control group 
that followed 1-year stretching intervention. This decline is 
comparable to the 1–2% shrinkage of hippocampus volume that 
was reported occurring annually in older adults (10). Other 
researches showed that increases in total PA were positively 
associated with increases in local GM volume in prefrontal and 
cingulate cortex (11) and greater WM integrity in the frontal 
and temporal lobes (12). Two interesting follow-up studies 
provided further support of a protective effect of PA against age-
related decline (13, 14). In older adults (65 years old and older 
at baseline), greater amounts of PA were associated 9 years later 
with greater GM volume in prefrontal and temporal regions, 
including the hippocampus and entorhinal cortex (13). In turns, 
greater GM volume was related to a lower risk for experiencing 
cognitive impairment (13). In another study, participants were 
studied in midlife (early fifties) and re-examined on average 
21 years later (14). Individuals who actively participated in PA 
at midlife tended to have larger total brain and GM volume, 
especially at level of the frontal lobes, in late life than sedentary 
persons (14). Rovio et al. (14) suggested that PA by activating 
the motor cortex localized in the frontal lobe also activated 
frontal structures related to cognitive functions, decreasing 

in this way the risk of dementia. Colcombe and Kramer (15) 
conducted an interesting meta-analytic study to examine the 
relationship between aerobic fitness training and cognition in 
healthy but sedentary older adults. They (15) found that fitness 
training had robust but selective benefits for cognition, with 
the largest benefits occurring for executive control processes. 
Some factors influenced the efficacy of the treatment: training 
duration (long-term training programs yield larger effect sizes); 
session duration within the training period (sessions exceeding 
30 min had larger effect sizes); and the combination of strength 
and aerobic training regimens were more effective than aerobic 
exercise alone (15).

Then, the studies we have reported show that the frontal region 
is one of the brain regions that get more benefit from PA. Frontal 
areas subserve critical executive control processes, including 
the inhibition of irrelevant information (16–20). Flanker (21) 
and Stroop (22) tasks, and Digit Symbol Substitution Test (23) 
were employed to examine whether PA enhanced the ability in 
inhibiting irrelevant information in older adults. In the flanker 
task, participants were asked to respond to the direction of the 
central arrow while ignoring the two flanking arrows on either 
side (21); in the Stroop task, to respond manually to the color 
of ink in which the word was printed, rather than respond-
ing to the semantic meaning of the word (22); in the DDS, to 
match a number–symbol pair (probe) to a previously showed 
number–symbol pair (cue) (23). Highly fit or aerobically trained 
participants showed a better behavioral performance and greater 
task-related activity in prefrontal and parietal cortices, i.e., in 
regions consistently implicated in attentional selection and the 
resolution of response conflict.

MiLD COGniTive iMPAiRMenT  
(MCi) AnD AD

The studies reported above support the view that PA seems not 
only to spare brain volume but also increase both GM and WM 
mainly in the prefrontal and temporal cortices. These brain areas 
play a critical role in cognitive functions. Prefrontal regions 
are associated with working memory and executive functions 
(24–28) and temporal lobes with long-term memory function 
(29–31). Interestingly, these regions are also those same regions 
that are often reported to deteriorate with aging (7, 23) and be 
severely affected in AD (32, 33).

Experimental evidence suggests a positive effect of aerobic  
exercise training on cognitive function in MCI and AD popu-
lations. MCI is a potential transitional stage between normal 
cognitive function and AD (34). MCI patients experience mainly 
memory loss to a greater extent than is expected for age and 
education, but do not meet criteria for AD (34). Two studies 
investigated the effects on cognitive performance of a 6-month 
aerobic exercise training in MCI participants (35, 36). Baker et al. 
(35) found that aerobic exercise had beneficial effects on cogni-
tive performance of amnestic MCI participants (55–85  years). 
However, women improved on multiple tests of executive func-
tion, men only on a single test. Only women (70–80 years) with 
probable MCI participated to the study of Nagamatsu et al. (36). 
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They showed an improvement of verbal memory and spatial 
memory. In another study, MCI (70–80 years) individuals partici-
pated to 1 year of a moderate-intensity aerobic walking program 
(37). The walking program was efficacious in improving memory 
and attention in women and memory in men, but only in those 
with better adherence (37).

Alzheimer’s disease is considered a neurodegenerative disease 
that brings about a variety of cognitive disorders and motor 
perturbations. In AD, subsequent to the loss of memory, the 
deficits carry over into the areas of language (aphasia), motion 
organization (apraxia), visual recognition (agnosia), and the 
executive functions (38). Also in the case of AD, several studies 
lend support for neuroprotective effects of PA. In the Kemoun 
et  al.’s study (39), AD participants [81.8 (5.3)  years] benefited 
from a 15-week PA program. There was an improvement in cog-
nitive capacities and walking capacities (39). Conversely, the AD 
control group who did not practice any PA showed a deterioration 
of cognitive functions and walking capacities (39). In the study by 
Yágüez et al. (40), AD individuals [70.5 (8) years] who received 
6-week exercise intervention showed significant improvements 
in sustained attention, visual memory, and a trend in working 
memory, whereas the AD control group deteriorated significantly 
in attention. Interestingly, PA seems to exert a beneficial effect 
on the hippocampus, a brain region particularly sensitive to 
age-related decay (9). Hippocampus shrinks with age (10) and its 
atrophy predicts shorter time-to-progression from MCI to AD 
(41). Erickson et al. (9) found an increase of anterior hippocam-
pus size and better spatial memory performance with aerobic 
exercise intervention in older adults. Gains in hippocampal blood 
flow and memory performance were also observed by Chapman 
et al. (42) in healthy sedentary adults (57–75 years) with shorter 
term exercise (3 months).

AniMAL STUDieS: HiPPOCAMPAL 
neUROGeneSiS

Since the approach of human neuroscience is basically non-
invasive, it does not allow direct measurement of exercise effects 
on the brain at the cellular and molecular level. To overcome this 
limitation, research employs animal models. In this context, the 
study of hippocampal changes produced by exercise attracted  
the interest of many research groups mainly for two reasons. 
First, as stated above, the hippocampus is a region sensitive to 
the beneficial effects of PA, but at the same time it is particularly 
vulnerable to age-related decay (7, 23). Note that the hippocam-
pus is critically involved in memory processes (29, 30). Second, 
the hippocampus, along with the olfactory bulb, is the place in the 
adult in which new neurons are generated throughout life (43). 
Therefore, it is very important to accurately define the cellular and 
molecular mechanisms that support hippocampal neurogenesis. 
Some factors have been identified that seem to favor neurogen-
esis, including environmental enrichment, voluntary exercise, 
and associative learning (44–46). Early studies showed that the 
exposure to enriched environment increased neurogenesis in the 
dentate gyrus and improved also spatial memory performance 
of adult rodents (47, 48). However, in the enriched environment, 

more factors might contribute to enhance the neurogenesis,  
e.g., social, cognitive, and physical stimulations. van Praag et al. 
(44) tried to define the relative importance of some of these fac-
tors. They (44) assigned adult mice to various conditions, includ-
ing enriched and standard housing, and voluntary and forced 
exercise. van Praag et  al. (44) observed that voluntary exercise 
doubled the number of surviving newborn cells in amounts 
similar to enrichment condition. The authors (44) proposed 
that voluntary exercise was sufficient for enhanced neurogenesis 
in the adult mouse dentate gyrus. Hippocampal neurogenesis 
diminishes with aging (49), but this decrease may be partially 
opposed by exercise (46). Exercise-enhanced hippocampal 
neurogenesis and learning in aged mice (46). Interestingly, the 
morphology of new neurons did not differ between young and 
aged runners, suggesting that local hippocampal environment of 
the aged dentate gyrus is effective in sustaining neurogenesis (46).

A different line of research investigated the effects of hyp-
pocampal lesion on behavioral performance. Clark et  al. (50) 
irradiated with gamma rays the region of mice hippocampus 
reducing neurogenesis by 50%. The authors (50) observed that in 
non-irradiated animals running increased neurogenesis fourfold 
and gains in performance for the Morris water maze (spatial learn-
ing and memory), rotarod (motor performance), and contextual 
fear (conditioning). Conversely, irradiation, besides reducing neu-
rogenesis, selectively eliminated gains in water maze performance 
that depends on hippocampus. The decrease in neurogenesis and 
cognitive skills, induced by irradiation, might be mitigated by 
exercise. Rats that received whole-brain irradiation and, following 
irradiation, were forced to perform exercise showed a significant 
amelioration of the impaired neurogenesis and cognition (51).

The morphological and functional changes in hippocampus 
produced by exercise likely depend on the contribution of dif-
ferent factors, including the enhancement of vascularization and 
upregulation of growth factors.

AnGiOGeneSiS

Experimental evidence suggests that exercise increases angiogen-
esis (i.e., the growth of new blood vessels) in the hippocampus 
(46) and angiogenesis is closely linked to hippocampal neurogen-
esis (52). In a seminal study, Pereira et al. (52) used MRI imaging 
to measure cerebral blood changes related to exercise in mice 
and humans. Note that some studies reported the existence of 
a tight relationship in the brain between regional blood volume 
and angiogenesis (53). Pereira et al. (52) observed that in mice 
cerebral blood volume increased with exercise and presented a 
positive correlation with newly born cells (52). Also in humans 
(21–45  years) who participated to a 12-week exercise training, 
there was a significant increase of hippocampal dentate gyrus 
blood volume over baseline (52). Pereira et al. (52) proposed that 
the increase of hippocampal blood volume might be considered 
an in vivo correlate of neurogenesis.

GROwTH FACTORS

Exercise upregulates expression of growth factors including 
brain-derived neurotrophic factor (BDNF), vascular endothelial 
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growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) 
(54, 55). Among these, the BDNF is considered to be the most 
important factor. A lot of studies suggest that the upregulation 
of BDNF plays a significant role in hippocampal neurogen-
esis, dendritic complexity, and synaptic plasticity (44–46, 56). 
Importantly, these structural changes in the hippocampus 
appeared associated with improved spatial learning and memory 
(44–46, 50, 57). Note that BDNF levels in serum and plasma 
are highly correlated with BDNF levels in the central nervous 
system, as BDNF freely crosses the blood–brain barrier (58). In 
humans, more researches reported that exercise increased BDNF 
concentrations serum suggesting a key role for this neurotrophic 
factor in enhancing hippocampal volume and cognitive function 
(9, 59, 60). Interestingly, circulating BDNF levels were reduced 
in patients with AD (61, 62). Furthermore, AD patients whose 
condition was rapidly declining have significantly lower serum 
BDNF concentrations than those whose condition was slowly 
declining (61, 63).

Angiogenesis factors, especially VEGF, are now known to have 
roles in neurogenesis and neuroprotection (64). Fabel et al. (65) 
showed that peripheral vascular endothelial VEGF is necessary 
for the effects of running on adult hippocampal neurogenesis. 
Peripheral blockade of VEGF abolished running-induced neuro-
genesis but had no detectable effect on baseline neurogenesis in 
non-running animals (65).

Exercise also increases the levels of IGF-1 in several brain 
structures, including the rat hippocampus (66). In aged rodents, 
circulating IGF-1 levels decrease (67). An increase of IGF-1 with 
exercise has been also reported in humans (68). Note that IGF-1 
can cross (69) and increased levels of circulating IGF-1 result in 
increased IGF-1 levels in the brain (66). Blocking the entrance 
of circulating IGF-1 into the brain followed a complete inhibi-
tion of exercise-induced neurogesis in the hippocampus (70). A 
meta-analysis revealed a highly significant positive association 
between IGF-I levels and cognitive functioning in older adults 
(71). Patients with AD had significantly lower circulating IGF-1 
levels than controls, and these levels were inversely correlated 
with cognitive impairment (72).

OReXin-A AnD OReXin-B

Another factor that acting on the hippocampus might contribute 
to the beneficial effects of physical exercise on cognition is the 
orexin-A. The orexin-A/hypocretin-1 (OxA/Hcrt-1) and orexin-
B/hypocretin-2 (OxB/Hcrt-2) are neuropeptides synthesized by 
a cluster of neurons in the lateral hypothalamus (73, 74). Orexins 
selectively act on two G protein-coupled receptors: the orexin 1 
receptor (Ox1R), which has higher affinity to OxA, and the orexin 
2 receptor (Ox2R), which has equal affinity to both OxA and OxB 
(73, 74). Ox1R and Ox2R are generally excitatory and mediate 
both acute and long-lasting effects (74). Orexinergic neurons 
receive a variety of signals related to environmental, physiologi-
cal, and emotional stimuli and project broadly to the entire CNS 
(75). Orexinergic system is involved in regulating wakefulness 
and arousal, motivation and emotions, and motor and autonomic 
functions (76–84). Furthermore, orexinergic system may induce 

structural changes in the hippocampus influencing hippocampal 
learning and memory processes. Local dentate gyrus perfusion 
with OxA enhanced long-term potentiation (LTP) in anes-
thetized rats, suggesting that orexins positively regulated hip-
pocampal synaptic plasticity (85). Conversely, the pretreatment 
with SB-334867, a specific Ox1R antagonist, blocked LTP (85) 
and impaired spatial memory in Morris water maze (86). In rats 
treated with Pentylenetetrazol that induces hippocampal atrophy 
and spatial learning and memory deficits, the administration of 
OxA enhanced hippocampal neurogenesis and attenuated learn-
ing and memory deficits (87).

Physical exercise produces an increase of OxA level in cer-
ebrospinal fluid of rats (88), dogs (89), and cats (90). An increase 
of plasmatic OxA with exercise was reported in humans (91–95). 
The source of peripheral orexins is still unclear. Tsunematsu and 
Yamanaka (96) proposed that OxA might be directly released 
from the pituitary into the blood stream, or leaked from the 
cerebrospinal fluid, or produced by peripheral tissues, e.g., 
gastrointestinal tract and pancreas. Interestingly, OxA may 
rapidly cross the blood–brain barrier highly lipophilic (97). 
Taken together, the experimental data we have reported allow 
to hypothesize that the increase of OxA levels with exercise 
might contribute to improve cognition, enhancing hippocampal 
plasticity and function.

COnCLUSiOn

In this review are discussed researches that support the view that 
PA is an effective tool for attenuating cognitive decline related 
to aging. PA would induce both morphological and functional 
changes of those regions that play central roles in successful eve-
ryday functioning, such as frontal and temporal cortices. In par-
ticular, exercise-induced hippocampal changes have attracted the 
interest of many researchers since the hippocampus, along with 
the olfactory bulb, is the place in the adult in which mammalian 
brain continues to generate new neurons throughout life. A better 
microcirculation and increased levels of growth factors seem to 
contribute to hippocampal neurogenesis. Another putative factor 
that might contribute to the beneficial effects of PA is the OxA. 
In favor of this hypothesis, there are the following observations: 
(1) hypothalamic orexinergic neurons have connections to hip-
pocampus; (2) OxA enhances hippocampal neurogenesis and 
functions; and (3) OxA levels increase with exercise.

The regions that benefit from PA are also those that seem more 
vulnerable to aging, loading to a decline in a broad array of cog-
nitive processes. In this context, PA may constitute a promising 
support for a neuroprotective effect against cognitive decline in 
MCI and AD. This is very important if we consider the continu-
ous and progressive increase in the number of adults surviving to 
advanced age, and consequently the significant increase of health 
problems. Dementia represents the major threat of aging decline 
resulting in a considerable worsening of life quality not only of 
the patients but also of their family members, and in a dramatic 
increase of healthcare service costs. In this context, the PA may 
represent a simple, but effective and low cost, therapeutic inter-
vention to improve neurocognitive functions. PA is accessible to 
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