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Since the invention of functional magnetic resonance imaging (fMRI), thousands of studies 
in healthy and clinical samples have enlightened our understanding of the organization 
of cognition in the human brain and neuroplastic changes following brain disease and 
injury. Increasingly, studies involve analyses rooted in complex systems theory and anal-
ysis applied to clinical samples. Given the complexity in available approaches, concise 
descriptions of the theoretical motivation of network techniques and their relationship to 
traditional approaches and theory are necessary. To this end, this review concerns the 
use of fMRI to understand basic cognitive function and dysfunction in the human brain 
scaling from emphasis on basic units (or “nodes”) in the brain to interactions within and 
between brain networks. First, major themes and theoretical issues in the scientific study 
of the injured brain are introduced to contextualize these analyses, particularly concern-
ing functional “brain reorganization.” Then, analytic approaches ranging from the voxel 
level to the systems level using graph theory and related approaches are reviewed as 
complementary approaches to examine neurocognitive processes following TBI. Next, 
some major findings relevant to functional reorganization hypotheses are discussed. 
Finally, major open issues in functional network analyses in neurotrauma are discussed 
in theoretical, analytic, and translational terms.
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1. iNTRODUCTiON

What can functional neuroimaging tell us about the injured brain? Quite a lot. There has been 
explosive growth in functional neuroimaging technology and methods since the invention of blood 
oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI (1)). fMRI allows us 
to examine cognitive resilience and dysfunction, changes in brain dynamics, and neuroplasticity 
following brain trauma. With ongoing developments in the field, it is useful to identify theoretical 
frameworks that concisely integrate findings and produce testable hypotheses.

Here, I describe past, current, and future directions in fMRI research applied in traumatic brain 
injury (TBI) within an integrating perspective known as “cognitive network neuroscience” (2). In 
this theoretical framework, cognitive function depends on time-evolving (3, 4), multiscale (5), 
heterarchical (6) processes in brain networks. Traditional neuroimaging combined with modern 
tools from network science allows researchers to investigate the nature of cognitive function within 
brain networks, how networks and cognition are disrupted by brain trauma, and how they change 
over time following injury. To achieve this, I review three core areas for fMRI research in TBI: how 
to understand BOLD fMRI signals in the injured brain, major analytic approaches applied to fMRI 
data in TBI, and important frontiers to achieve a mature network science in fMRI research applied 
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FiGURe 1 | Approximate ranges of spatiotemporal sensitivity of neural 
measurement techniques. A time by space diagram of the sensitive ranges of 
various neural recording techniques. fMRI occupies a large space of 
sensitivity over a scale from seconds to hours and from slightly above the 
level of neural columns to the entire brain. Importantly, fMRI can measure a 
range of spatiotemporal organization not accessible to other modern 
approaches, contributing unique value in characterizing functional changes 
and testing cognitive hypotheses following TBI. PET, positron emission 
tomography; MEG, magnetoencephalography; EEG, electroencephalography.
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to TBI. First, some observations about the nature of TBI in the 
population and its pathophysiological effects provide a broader 
context for this effort.

2. THe TBi ePiDeMiC AND BASiC 
PATHOPHYSiOLOGY

As context to understand any functional changes following TBI, 
a brief overview of the nature of TBI and its pathophysiological 
effects is essential. Closed TBI can result from events that cause 
the brain to move rapidly within the skull, such as impacts, blast 
waves, and rapid acceleration and deceleration (7). In addition, 
open or penetrating TBI occurs when the dura mater is breached 
by an external object or bone fragments (7). TBI occurs at an 
epidemic scale, with over 2.8 million new TBI-related medical 
visits per year and over 50,000 deaths (8). The high survival rate 
following TBI indicates that the vast majority of patients live 
afterward with some degree of permanent cognitive loss (9, 10) 
and psychiatric disturbance especially marked by depression (11).

Within and between mechanisms of injury, TBI is highly 
variable and no two cases are identical (12, 13). Moreover, two 
injuries can appear superficially to be very similar in terms of 
mechanism of injury and the distribution and severity of damage 
but be associated with very different outcomes (14–16). Some 
observations about common TBI pathophysiology provide a 
context to understand the general anatomical contributions to 
cognitive phenomena. At a high level of brain organization, closed 
TBI is frequently associated with direct damage to cell bodies in 
the gray matter due to coup and contre coup compression of the 
cortex during injury (17, 18). In addition, focal and diffuse dam-
age to axons can be observed due to rotational forces that stretch 
and shear axons (19). Typically, TBI severity is classified using 
the Glasgow Coma scale into mild, moderate, and severe ranges 
(20, 21). More severe or repeated mild TBI is associated with 
greater risk of neurodegenerative disease, such as Alzheimer’s 
(22), chronic traumatic encephalopathy (23), and Parkinson’s 
disease (24). While the specific pattern of TBI varies, TBI out-
come is highly related to age of injury and initial injury severity: 
younger individuals with less severe injuries demonstrate the best 
recovery (25).

Despite vast heterogeneity in TBI profiles, some basic 
microscopic pathophysiological effects can be observed. In the 
acute phase post-injury (<1 h), the excitatory neurotransmitter 
glutamate is released rapidly and disrupts ionic equilibrium at 
the postsynaptic membranes (26, 27). Extracellular potassium 
ion levels also increase, potentially secondary to increased neural 
firing (26, 27) due to excitatory neurotransmitters that scales with 
injury severity (26, 27). Intracellular calcium ion concentrations 
increase as early as 6 h after injury, approximating healthy levels 
between 4 and 7 days after injury. Cognitive deficits in the spatial 
memory domain have been observed to resolve with calcium 
renormalization by 30 days post-injury in animal models (28), 
and faster calcium renormalization has been observed in younger 
rodents (29).

Finally, research examining glucose metabolism following TBI 
broadly indicates that TBI is associated with a rapid increase in 

glucose uptake shortly (<30 min) post-injury in animal models 
(27) and up to 8  days after severe human head injury (30). 
Following this period, glucose metabolism decreases from 5 to 
14 days post-injury in animal models (31, 32) with greater and 
longer-lasting depression in the penumbra (33). In animal mod-
els, the magnitude and duration of glucose metabolism changes 
are greater in older rodents (33, 34), suggesting an energy-based 
mediator for cognitive decline following TBI. Indeed, focal 
glucose metabolism rates following TBI in the thalamus, brain 
stem, and cerebellum are positively correlated with consciousness 
measured by the Glasgow Coma Scale (35).

3. UNDeRSTANDiNG fMRi  
FiNDiNGS iN TBi

Considered in the context of the complex pathophysiology and 
variable outcomes observed in TBI, fMRI is one of several tools 
used to examine functional responses to TBI. However, it is 
critical to note that while fMRI occupies a sensitive range that 
is not well sampled by other techniques, it samples only a small 
portion of the spatiotemporal scale of brain organization and 
neural activity. To realize a comprehensive picture of the effects of 
pathophysiology on neural activity following TBI and associated 
cognitive changes, multimodal approaches are necessary, and 
we should always be mindful of basic limitations of fMRI when 
making neurocognitive inferences (see Figure 1).

To review the specific role of fMRI to indirectly examine 
the neural substrates of cognition following TBI, I first briefly 
introduce the basis of neural inferences in fMRI data via the 
hemodynamic response function. Then, I introduce cognitive 
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FiGURe 2 | The hemodynamic response function. A schematic 
representation of the HRF, which describes neurovascular coupling and the 
basis of the BOLD signal. A discrete episode of neural activity occurs at time 
= 0 s. A characteristic increase in the BOLD signal occurs with a latency to 
peak of about 6 s following the neural activity, followed by a decline below 
baseline between 10 and 15 s, and finally return to baseline by about 20 s. 
Stimulus time courses in behavioral task designs can be convolved with the 
HRF to predict time courses of BOLD activity which are thought to represent 
cognition-relevant neural changes. a.u., arbitrary units.
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network neuroscience as a general approach to integrate tra-
ditional and network approaches to neuroimaging in cognitive 
neuroscience. Lastly, I discuss the frequent emphasis on brain 
reorganization hypotheses in fMRI research and offer opera-
tional definitions for fMRI research in TBI that can apply to 
neurological disorders at large.

3.1. Hemodynamics and Neural  
Dynamics in TBi
fMRI analyses rely on our knowledge that there is a relation-
ship between neural activity and the flow of blood to neural 
tissue. Hemodynamics and neural dynamics are linked through 
the hemodynamic response function (HRF). The HRF forms 
the foundation for inferences about neural function in fMRI 
research in cognitive neuroscience. Researchers capitalize on the 
fact that the HRF expresses a predictable relationship between 
neural firing and oxygen intake. A “canonical” HRF model is 
often used in studies that use general linear models to examine 
the differences in the BOLD signal as a function of experimen-
tal conditions or behavioral measurements. In particular, it is 
thought that cognitive activity alters the frequency and intensity 
of neural firing, which in turn modulates the BOLD response in 
predictable time courses via the HRF (see Figure 2).

In time series analyses where fMRI data are measured as a 
series of consecutive events, an explicit canonical HRF model 
may not be used. In this case, we may examine the BOLD 
fMRI time series in a narrow frequency band that is thought to 
represent neural firing without contamination by physiological 
nuisance variables such as respiration or heart rate. In these 
cases, the time series is thought to represent “spontaneous” 
neural activity, which can be investigated in paradigms in which 
subjects are at rest, looking at a fixation cross, or performing 
cognitive tasks (36).

3.2. The Hemodynamic Dilemma
The simple diagram of the HRF above exists in a context of 
complex relationships between neural activity, the brain, and 
behavior. While we are often interested in neural responses 
as the basis of cognition and behavior in health and TBI, the 
relationship between neural activity and the BOLD response 
is far from completely understood. Notably, even in health the 
BOLD response varies substantially across individuals, chal-
lenging the widely applied practice of using “canonical” HRFs 
in general (37). It may be that most of us have the impression 
that the BOLD signal is a surrogate for action potentials. 
However, it is not known which specific neural responses do 
and do not result in a BOLD response across the entire human 
brain in vivo.

The contributions of glia and astrocytes to both cognition and 
the shape of the HRF are not completely understood. It is not 
fully known how non-neural physiological effects and regional 
and individual BOLD variability influence the results presented 
in thousands of studies since the introduction of fMRI. In light of 
this, our interpretations based in BOLD imaging should be quite 
circumspect, and we should continue to examine and clarify what 
neural activity we are talking about. See Ref. (38) for an excellent 
review of these issues.

Moreover, TBI represents a special case in which the nature 
of the injury may fundamentally alter the relationship between 
neural activity and hemodynamics, thus resulting in a different 
HRF. If this is the case, the standard challenges to interpreting 
the BOLD signal are further complicated. Evidence that the 
HRF could be affected in TBI comes from several sources. TBI 
has been shown to reduce cerebral perfusion in humans (39), 
decrease vascular CO2 reactivity (40) and decrease both the 
density and diameters of capillaries at the injury site and dif-
fusely (41). Metabolic failure after TBI can occur in the presence 
of normal perfusion (42). This involves a decoupling between 
cerebral blood flow and the cerebral metabolism rate for glucose 
during baseline states, followed by generally reduced cerebral 
metabolism (39, 43). Animal models suggest that alterations 
in cerebral blood flow and the cerebral metabolic rate of glu-
cose are long-lasting physiological effects of concussion (43). 
The decoupling between cerebral blood flow and the cerebral 
metabolic rate of glucose in animal models have mostly been 
observed during anesthesia, when a tight coupling (44) exists 
between cerebral blood flow and the cerebral metabolic rate of 
glucose. How these findings generalize to conscious humans 
during cognition is unknown.

One study applied a simple sensorimotor task in mild TBI 
in vivo in humans and found more spatially distributed and ear-
lier times to peak in the TBI group relative to controls, inferring 
that additional compensatory neural resources were recruited 
to support the task in the context of matched performance (45). 
Unfortunately, this does not directly address the fundamental 
relationship between local neural firing and hemodynamics 
following TBI. While we can identify BOLD profiles that may 
be consistent with cognitive reallocation or latent resources, the 
full nature of the HRF in TBI remains an area in need of focused 
research with ground truth data. Our interpretations can be aided 
by convergent analyses from many perspectives.
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FiGURe 3 | Cognitive network neuroscience as a way to integrate nodes and networks. (A) Brain regions are organized into cytoarchitectonically distinct areas. (B) 
Each cytoarchitectural configuration has structural properties with different implications for computational functions. (C) Cytoarchitectural regions can be 
represented as nodes in a network. The nodes have functional associations, represented as edges, that extend beyond spatial boundaries evident in 
cytoarchitectural organization. Subsystems can be described as network modules. Modules have varying intra-connectivity and inter-module connectivity in the 
human brain. (D) An example topology of the modular organization of functional brain networks demonstrating the communication between computational 
resources of different types. Distinct brain networks are recruited as “modules” to support specific cognitive functions via within- and between- system interactions. 
Figure and caption reproduced from Ref. (2) with permission; see the same article for a full exposition.
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3.3. Nodes, Networks, and TBi
There are two predominant ways to analyze fMRI data in TBI and 
studies at large. The first emphasizes BOLD activity within regions 
of the brain, where local changes in BOLD signal amplitude are 
compared between TBI and a reference (control) group, or related 
to behavioral or demographic variables. The second emphasizes 
BOLD activity between regions of the brain over times. Either 
approach can involve analysis conducted on individual voxels in 
an fMRI image or summaries (e.g., averages) of the activity across 
many voxels within regions. In principle, there is no limit to the 
number of analytic techniques that can be used on BOLD fMRI 
data.

To provide a useful conceptual foundation, a theoretical 
framework can provide a context in which to understand find-
ings, discriminate among hypotheses, and identify new scientific 
questions. Human brain networks involve neurons connected in 
complex patterns that enable cognition. Mathematically, a brain 
network can be defined as a graph G composed of N nodes (for 
current purposes, typically voxels, brain regions) and E edges 
(region-region relationships). In network science, the term graph 
refers to the join-the-dots pattern of connections (edges) between 
nodes, rather than to a visual representation of data on axes. 
We examine the pattern of edges linking nodes by quantifying 
the graph’s structure using a variety of diagnostics, which each 
provide complementary but not necessarily independent infor-
mation (46–49). Network representations of complex systems 
facilitate quantitative analysis of heterogeneous interactions 
higher order multivariate patterns within a unified mathematical 
framework (50).

These advantages are particularly powerful in the study of the 
human brain. Since 1909, we have known that different brain 
regions exhibit distinct microanatomical configurations (51), 
and numerous studies in the past century validate the notion that 
distinct brain regions support different functions. From network 

analyses, it is also clear that distinct brain regions are organized 
into modules that communicate over time at rest (52) and are 
recruited as systems under different cognitive conditions (52, 
53). Thus, across levels of brain organization, cognitive network 
neuroscience focuses on complex interactions between spatially 
discrete brain regions (or “connectome” (54)), represented by 
graphs, and seeks to link these patterns of interaction to measured 
behavioral variables (2, 55) (see Figure 3).

In fMRI research in TBI, cognitive network neuroscience 
offers a perspective that can help integrate across disparate 
methods and findings. Brain trauma inflicts damage to the brain’s 
anatomy, which in turn affects its dynamics and associated cogni-
tive function. Thus, a connectomic account of TBI requires study 
of the local (neuron or region-level) and distributed (functional 
connectivity and module-level) changes caused by injury, their 
links with cognitive resilience and deficits, and neuroplastic 
changes over time following injury. Given the aforementioned 
complexity in pathophysiology and variability underlying the 
BOLD response, it is critical that BOLD fMRI studies in TBI 
anchor analyses to independent biomarkers or measurable 
behavioral performance to interpret BOLD signal changes. The 
latter has largely been couched under efforts to understand brain 
“reorganization,” which I will use to frame current challenges in 
cognitive network neuroscience applied to study neuroplastic 
change in TBI.

3.4. Brain “Reorganization”
To interpret fMRI signals in the context of brain injury and 
behavior, a conceptual framework is necessary. In particular, 
a core notion known as “brain reorganization” has emerged 
in brain trauma and neurological research. What does “brain 
reorganization” mean, and how can we identify it when we see it? 
For a term to be scientifically useful, it must be clearly defined. 
Here, it is first useful to distinguish anatomical from functional 
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reorganization. Anatomical organization in TBI refers to the 
adaptive neuroplastic changes that occur after the primary (e.g., 
damage to cell bodies and white matter pathways) and secondary 
(e.g., Wallerian degeneration of axons and local excitotoxic effects) 
effects of TBI. Gradually, cortical pathway activity expresses 
excitatory activity accompanied by neuronal proliferation and 
synaptogenesis. Neurons, endothelial progenitors, glial cells, 
and inflammatory cells replace damaged cells, promote glial scar 
tissue, and revascularize (56). In the weeks post-injury, synaptic 
markers and axonal sprouting are upregulated (57), resulting in 
neural remodeling that supports recovery. While the distribution 
of these effects is difficult to examine in humans, comparative 
work indicates that long-lasting remodeling occurs in the hip-
pocampus after TBI (58, 59). These microcellular changes can be 
thought to support general structural basis for de novo general 
reorganization following TBI.

Quite distinct from anatomical studies, in the functional 
neuroimaging literature, “brain reorganization” typically refers 
to one of two distinct concepts: either (1) the change functional 
signals following brain trauma (such as those quantified with 
BOLD fMRI or other functional techniques) or (2) when one 
region obtains a cognitive function previously supported by 
another region following brain trauma. The use of two defini-
tions creates a difficult situation if we do not carefully state the 
intended meaning of our usage, and indeed leads to challenges 
in interpreting a broad literature (60). Here, I will discuss how 
the first usage is scientifically unproductive and potentially 
misleading. Then, I will suggest how researchers may meaning-
fully detect the second. For simplicity, I refer to fMRI findings 
as “BOLD statistics” in the exposition and examples that follow 
rather than to a specific analytic technique. This is to emphasize 
that we can apply a potentially universal approach to interpret-
ing BOLD findings in TBI regardless of the statistical analysis 
we use.

3.4.1. Brain Reorganization As Changes in  
Functional Signals
Anatomical disruption to the brain alters the hemodynamic and 
neural processes in surviving tissue. Detecting these changes 
with fMRI is often referred to as evidence for “brain reorganiza-
tion,” which is a tautologous expression. To detect whether this 
meaning is in use, we can check whether the word “change” 
could replace “reorganization” in a sentence without affecting 
the meaning of the sentence. For example, if a researcher states 
something like “We observed increases in prefrontal cortex 
BOLD amplitude during working memory performance, indi-
cating that the brain reorganized to support task performance,” 
we could instead state that “the brain changed to support task 
performance” without any obvious difference in the meaning of 
the sentence. Here, the use of “reorganization” gives us the false 
impression that something has been learned about the change 
in the prefrontal cortex, but this cannot occur without a notion 
for how to assess a mechanism1 responsible for the observed 

1 Unfortunately, this term is frequently used very loosely in cognitive and clinical 
literatures. The reader should consult Ref. (61) for a rigorous treatment of the issue 

BOLD change. Thus, it is preferable simply to describe the 
observed physiological in terms of the quantitative statistic used 
to quantify the difference in the TBI sample, as it is important 
to document physiological changes even when a cognitive inter-
pretation is not facilitated by the data or analysis. If instead a 
cognitive interpretation is desired, a logical framework express-
ing the relationship between the brain signal and behavior in 
principle is important to clarify. Then, we can explicitly test this 
relationship, anchoring BOLD signals to an outside measure to 
lend interpretive value.

3.4.2. Brain Reorganization As Reallocated  
Cognitive Mechanisms
The second meaning of “brain reorganization” is an interesting 
area of research that can be grounded in a cognitive framework. 
Neuroplastic changes that reallocate cognitive functions in the 
brain are among the most important concepts in clinical cogni-
tive neuroscience. If we can design studies that detect this type of 
“brain reorganization,” we can advance scientific knowledge that 
elucidates why some cognitive functions are more vulnerable than 
others and how to produce therapies that capitalize on models 
of cognition-relevant neuroplastic changes. For clarity, I refer to 
this meaning of brain reorganization as “cognitive reallocation.” 
To identify reallocated cognitive mechanisms, it is necessary to 
clarify the cognitive framework and how it relates to statistical 
analyses. As a case to serve the point, let us imagine that, relative 
to controls, we observe a new set of BOLD signals in a damaged 
brain during a cognitive function, such as altered amplitudes, 
connectivity, or a time-varying network pattern. In the context of 
brain reorganization, an important starting point is to ask “how 
can we know when a brain region obtains the function of another 
region?”

There are reasonable starting points to answer this question. If 
the functional activity of a brain region A has a consistent BOLD 
response profile in some cognitive conditions but not others, we 
can construct experiments that detect its response and clarify its 
mechanistic role. Indeed, this is a foundation for fMRI research in 
cognitive neuroscience. As a simple example, assume that region 
A is necessary for working memory load maintenance. Now, 
imagine that a brain trauma destroys region A. By definition, 
a missing region cannot perform the function that it once per-
formed. However, imagine that we obtain convincing behavioral 
evidence that working memory load maintenance, at least in 
some form, persists despite the destroyed region. Logically, either 
the assumption of necessity was incorrect, or some other brain 
region B now performs the function A once performed to support 
working memory maintenance.

How can we find region B? Knowing nothing else, we should 
aim to detect a new BOLD signal profile similar to A in all 
respects.2 In this best-case scenario, we perform the same experi-
mental design to elicit the same BOLD profile as A and detect 
its spatiotemporal signature. If we successfully identify such a 

and the stakes for science at large.
2 While outside the scope of this perspective, “multiple realizability” may be a chal-
lenge for this approach in principle (62).
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FiGURe 4 | Identifying reallocated cognitive function. Hypothetical diagram illustrating how to identify candidates for a brain reorganization represents reassigned 
cognitive function. (A) In an intact brain, we might observe that a brain region can be functionally dissociated into two parts. Left: Brodmann’s area 46 separates into 
two regions that communicate with area 40. Middle: the purple region’s BOLD signal or functional connection exhibit a measurable relationship with performance 
during a cognitive task, whereas (right) the blue region’s signal or connection does not. In this case, we identify the purple region to be involved in the cognitive 
process of interest in health. (B) In a damaged brain, (left) the original purple region is destroyed entirely and (middle) can no longer contribute a cognitive function. 
Right: we observe that the blue region’s signals or functional connections now occur in a similar pattern to the purple region in the healthy sample. We can identify 
the blue region as a possible site of a reassigned mechanism. The schematic of the relationship between brain signals and performance is arbitrary; the direction 
and shape of the relationship between the BOLD statistic and performance may vary across the brain and cognitive domain (64).
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signature in the same conditions, it is a reasonable candidate for 
B (see Figure 4). In general, we often have prior hypotheses about 
the possible candidates for region B, such as the idea that homo-
topic brain regions are the most likely to obtain the reorganized 
function (63). Note that this same logical approach can apply to 
regions as well as functional connections among regions, entire 
circuits or systems, or any other brain quality we can use fMRI 
to investigate.

This account relies on a key idea: understanding how a 
system normally works is often important to interpret changes 
when it is damaged. This framework also connects the study of 
brain reorganization using BOLD fMRI to the essential logic of 
necessity and sufficiency, double dissociations (65), and forward 
inference in cognitive neuroscience (66). The logic of cognitive 
neuroscience research design and hypothesis testing can form a 
strong framework to clarify the nature of cognitive reallocation 
in neurological research.

3.4.3. The Perils of Brain Reorganization
If brain reorganization can be synonymous with both “change” 
in brain signals and “cognitive reallocation,” confusion may 
ensue. There are two potential ways to maintain clarity. The 

first is that we can be very clear to indicate what we mean by 
“brain reorganization” by stating it explicitly in writing and 
conversation. The second is to replace it altogether with more 
specific and meaningful terminology. If it is reasonable to do 
the former, then it may be preferable to do the latter in every 
case. If we intend “brain reorganization” to refer to a change in 
brain signals, then it is always clearer to refer to the signals by 
name, whether they are BOLD signal amplitudes or measures of 
functional connectivity. If we intend “brain reorganization” to 
mean “reallocated cognitive mechanism,” then it is more precise 
to state the hypothetical signals associated with the cognitive 
function and create research designs to identify them. In either 
case, “brain reorganization” serves as a vague proxy for a more 
meaningful term. Thus, we should be circumspect in using 
the term and consider dropping it altogether to the benefit of 
scientific discourse.

3.5. Compensation and Latent 
Mechanisms
Once we identify a candidate for a reallocated cognitive mecha-
nism, it is critical to dissociate cognitive reallocation from other 
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FiGURe 5 | Identifying compensation following TBI. Hypothetical diagram 
illustrating how to identify possible latent compensatory mechanisms. (A) In 
an intact brain, we observe the same initial relationship described in 
Figure 4. However, suppose that we are interested in whether activity 
involving BA 40 may represent a compensatory mechanism following TBI.  
(B) In a damaged brain, the original purple region is again destroyed entirely 
and can no longer possibly contribute to the cognitive function. (C) We 
examine the relationship between BOLD signals involving BA 40 and 
measures on cognitive tasks. In the intact brain, unlike a reassigned cognitive 
function, a relationship is observed between the BOLD signal and BA 40. 
Following TBI, we observe the same relationship between the BOLD statistic 
and performance, but the mean BOLD statistic value is higher following injury, 
and mean performance is lower. This is one possible sign that a 
compensatory latent mechanism is recruited in BA 40 [see also Ref. (60, 67, 
68)]. The higher mean BOLD statistic may make it easier to detect in the TBI 
sample, suggesting that thresholding is an important decision point in this 
case. As in the previous example, the direction and shape of the relationship 
between the BOLD statistic and performance may vary across the brain and 
cognitive conditions.
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sources of BOLD responses following TBI. This distinction is 
important because if the brain has two types of response to inju-
ries, it is possible that the mechanisms governing these responses 
operate differently, with different practical and translational 
consequences. For example, if we aim to create smart therapies 
that elicit specific types of neuroplastic changes, we would not 
want to induce a cognitive reallocation if instead another process 
was at work. At best, the therapy could fail, and at worst, we could 
interfere with another intact process.

Two other bases for altered functional brain responses follow-
ing TBI include compensation and latent resources/mechanisms 
(67, 68). Compensation typically refers to a cognitive function 
that is brought online following brain injury in reaction to the 
loss of a different function. Distinct from cognitive reallocation, 
compensation involves mechanisms that existed before the injury 
but were not relied on as heavily. For example, if a patient suffers 
from fluency impairments due to frontal lobe damage, we might 
hypothesize that they compensate by using non-verbal strategies 
represented by signal recruitment in visuospatial processing 
systems. In another scenario, an individual with diffuse axonal 
injury may rely heavily on cognitive control mechanisms to main-
tain items in memory or execute plans. This latter phenomenon 
is expressed in increased BOLD amplitude in fronto-parietal 
control systems after closed brain trauma (60, 68) and will serve 
as an example henceforth. As in cognitive control in TBI, there 
are some scenarios where it is possible to detect a compensatory 
response that is distinct from cognitive reassignment based on 
the nature of the brain region’s BOLD response profile in health 
compared to after TBI. Importantly, a compensatory response 
occurs in a brain region that is intact both in health and following 
TBI (see Figure 5).

Distinguishing a latent compensatory mechanism from a 
reassigned cognitive mechanism is challenging in certain cases. 
Specifically, if a compensatory mechanism does not exhibit a 
BOLD–behavior relationship before brain injury but does after 
injury, it may be indistinguishable from cognitive reassignment. 
In the preceding example, if BOLD activity involving BA 40 id 
not relate to performance before injury but does afterward, we 
might conclude that cognitive reassignment from BA 46 to BA 
40 has occurred. However, it is also possible that BA 40 contains 
distinct mechanisms that are not normally associated with per-
formance in health, but activated in the context of brain injury 
(e.g., the recruitment of spatial representations or attention 
control processes). In this case, it is important to test multiple 
dimensions of cognitive function: if BA 40 exhibits a BOLD 
profile that looks similar to pre-injury BA 46 BOLD activity 
on all accounts, it may represent reassigned cognitive function. 
However, if BA 40 exhibits a BOLD profile consistent with 
cognitive functions across multiple experimental conditions 
that are not consistent with the healthy BA 46 BOLD profile, 
it increases confidence that its post-TBI activity represents a 
compensatory response. This reinforces that regardless of the 
power of a statistical technique, sound experimental design is 
a prerequisite to interpreting BOLD signals in the context of 
TBI and neuropathological syndromes at large. fMRI is a tool 
that can support this effort by facilitating numerous types of 
functional analysis in the human brain.

4. fMRi: TeCHNiQUeS TO STUDY THe 
DAMAGeD BRAiN

Once we have acquired BOLD data, we must select tools for analy-
sis to facilitate inferences. There is no limit to the tools we can apply 
to analyze BOLD signals in health and disease. In principle, any 
spatio-temporal data analysis technique can be used if the tech-
nique’s assumptions are met. This emphasizes the opportunities as 
well as challenges in TBI research: on the one hand, we can discover 
important facets of complex spatiotemporal BOLD changes in TBI 
in the context of behavior. On the other hand, we risk difficulty 
in interpreting findings given that the options are endless. The 
relatively simple framework of definitions and hypothesis testing 
described above can apply to a wide range of measured BOLD 
phenomena in TBI. To proceed productively, we can select analytic 
tools that address specific questions, and update our theoretical 
models of cognitive and neuroplasticity in TBI in light of new 
findings. First, I briefly introduce “preprocessing steps” used on 
data prior to primary statistical analysis. Then, I describe the basis 
of statistical techniques and their utility in fMRI research in TBI, 
and refer the reader to useful primary resources for each analysis.
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4.1. Preprocessing
Prior to statistical analysis, we use “preprocessing” techniques 
to ensure that data meet several assumptions prior to analysis. 
We aim to minimize the influence of physiological and data 
acquisition artifacts (such as time lags introduced across brain 
slices), standardize brain region locations across subjects, and 
reduce motion effects. The most standard steps to preprocessing 
fMRI data include slice timing correction (69), motion correc-
tion ((70), see also (71) for special considerations in functional 
connectivity analyses), realignment (72), coregistration of ana-
tomical and functional images (73), spatial normalization (74), 
and smoothing (75). This final step increases signal to noise, 
normalizing error distributions, and accommodates anatomical 
and functional variation between subjects. Most parametric 
tests assume normal error distribution; and according to the 
central limit theorem, the distribution of an average tends to 
be normal with a sufficiently large number of independent 
observations (76).

4.2. Statistical Techniques for fMRi in TBi
Several popular methods more generally applied to fMRI data 
can elucidate the effects of TBI on the human functional connec-
tome. Many techniques in each analysis class can be productively 
applied to fMRI data to characterize BOLD signal properties and 
relate them meaningfully to behavior. These include the general 
linear model and pattern analysis, other multivariate time series 
analysis techniques that examine associations among nodes in 
time series, matrix factorization and decomposition techniques, 
and network analyses based in graph theory.

4.2.1. The General Linear Model and Pattern Analysis
The general linear model (GLM) refers to a statistical linear 
model that encompasses statistical techniques, including analysis 
of variance (ANOVA), analysis of covariance (ANCOVA), mul-
tivariate analysis of variance (MANOVA), multivariate analysis 
of covariance (MANCOVA), linear regression, t-tests, and the 
F-test. In the context of fMRI, the independent variables often 
represent behavioral measurements or experimental conditions, 
and the dependent variables may represent any type of BOLD 
measurement (or vice versa). BOLD measurements often include 
signal amplitude or measures of functional connectivity at the 
voxel or region level.

GLM applied to BOLD fMRI data allows us to apply a relatively 
simple and statistically well-defined class of tools to examine asso-
ciations between BOLD characteristics and behavior. In BOLD 
fMRI research, the GLM combined with a theory of Gaussian 
fields is known as “statistical parametric mapping” (SPM) (77, 
78). This framework facilitates comparisons of BOLD signals 
across groups, over time, and as a function of demographics or 
performance on tasks performed in or out of the scanner. As such, 
it forms the backbone of tools we can use to test for differences 
and associations, and if a temporal dimension is available in a 
longitudinal design, prediction. Thus, the GLM is a robust and 
useful approach in fMRI research in TBI. Using the GLM, we 
can pose questions to discriminate among competing accounts of 
brain function and change following TBI (60, 67, 68). We should 

select a GLM analysis when examining a hypothesis following 
TBI when we are especially interested in voxel-level differences 
between groups or relationships with behavior cross sectionally 
or over time. This allows us to examine region-level hypotheses 
commensurate with approaches used since the inception of fMRI 
BOLD contrast imaging.

Extensions of the GLM and other parameter estimation 
techniques can be coupled with sophisticated machine learning 
approaches to conduct multivariate pattern analysis for fMRI 
data. If this approach is used on the voxel level, it is known as 
“multivoxel pattern analysis” (MVPA) in cognitive neuroscience 
(79). In addition, pattern analysis can be applied to patterns 
of functional connections to classify groups (80) and predict 
behavioral performance at the trial level (81, 82). If we anticipate 
that unique predictive value is represented across voxels, regions, 
or functional connectivity profiles, multivariate pattern analyses 
can provide an important tool to quantify predictors in TBI. We 
should select a multivariate pattern analysis approach if we antici-
pate that the specific pattern of activity in one or more regions 
in the brain is associated with an important group or cognitive 
information. The unique value of the multivariate approach can 
be tested against more traditional GLM measures such as mean 
univariate voxel activity or connectivity. For example, if we 
anticipate that TBI distorts the information representation in a 
particular region, we can examine whether the multivoxel pattern 
in the region accurately identifies TBI subjects relative to con-
trols, and importantly whether behavioral deficits or resilience 
can be associated with a specific pattern. In principle, the GLM 
and multivariate pattern analysis can be applied to examine the 
parameter distributions and network profiles reviewed in the next 
sections.

4.2.2. Other Multivariate Time Series Analysis 
Techniques
While GLM approaches in fMRI typically examine the relation-
ships between BOLD measurements, demographics, behavior, or 
group assignments, we may also be interested in functional rela-
tionships among nodes (the so-called “functional connectivity” 
analyses) as the focus of study. These approaches form one type of 
brain network analyses. These techniques can be applied to time 
series extracted from individual voxels or regions comprising 
several voxels. Each technique expresses the relationships among 
the time series with a distinct emphasis on the objective for the 
analysis.

In one influential study investigating the performance of 
connectivity analyses in silico based on realistic simulated fMRI 
data, connectivity models that involve a time lag (i.e., Granger 
Causality implemented with multivariate vector autoregression), 
higher ordered statistics, and directionality performed poorly, 
whereas correlation-based techniques were successful in recover-
ing known simulated model parameters (83). For brevity, I briefly 
introduce the best-performing techniques tested in this simula-
tion study as well as additional recently validated technique that 
successfully recover time lags among fMRI series and the dynamic 
causal model.

Full correlation analyses in fMRI require computing the 
covariance among BOLD time series normalized to unit variance 
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between pairs of regions over time. Full correlation analyses on 
bandpass filtered data typically performs less well than filtered 
data, with connection sensitivity becoming poorer in higher fre-
quencies. Partial correlation analyses refer to normalized correla-
tion between pairs of time series after each has been adjusted by 
regressing out all other time series in the data (i.e., the time series 
of other network nodes). This attempts to distinguish direct from 
indirect connections. Partial correlation can be considered a sur-
rogate for structural equation modeling (SEM) in the sense that 
SEM parameter estimation is driven by the orthogonal portions 
of any given regressor in the model (83). The elements of partial 
correlation matrices can be compared by standardizing correla-
tion coefficients with Fisher’s R-to-Z transformation (84). We can 
select a correlation analysis when we have no specific interest in 
the time-lagged associations between time series in the brain. The 
correlation matrix between regions can be compared between 
groups and the correlations between regions can be associated 
with behavior to test hypotheses about connectivity–behavior 
relationships.

Inverse covariance (ICOV) analysis is an efficient way to 
estimate a full set of partial correlations in short fMRI scanning 
sessions, where we can use regularization parameters to intro-
duce sparsity in inverse covariance matrices. ICOV is a slightly 
more “model-based” approach than partial correlation because 
it involves a regularization parameter in its estimation. Using L1 
precision to implement ICOV, the regularization parameter λ has 
been found to provide the best results at values of 5 and 100 (83). 
ICOV without the use of a regularization parameter gives the 
same results as partial correlation. We can apply ICOV analyses 
when we have similar hypothetical interests that we would exam-
ine in standard correlation analyses but when we are additionally 
interested in controlling the sparsity of connectivity.

SEM is widely applied in statistical analysis at large and the 
GLM can be thought of as a special case of SEM. SEM carries the 
same assumptions as the GLM. In fMRI, traditional SEM is lim-
ited because it does not include lagged (autoregressive) effects, 
which are known to exist in fMRI time series (83). On the other 
hand, analyzing lagged effects without estimating contempora-
neous effects can lead to biased lag estimates. To address this, 
Kim and colleagues developed the unified SEM (uSEM) for use 
in fMRI data to simultaneously estimate the contemporaneous 
and time-lagged effects (85). This represents an “effective” con-
nectivity technique in which directed connections are estimated 
in both the contemporaneous and time-lagged portions. The 
extended uSEM (euSEM) includes an important extension: the 
effects of input, which can represent task conditions or behavior 
explicitly in the model. The uSEM and euSEM perform well 
within an estimation technique known as “group iterative mul-
tiple model estimation” (GIMME), which identifies reliable and 
valid group and individual connectivity structures even when 
data are highly heterogeneous across individuals comprising 
the group (86). We can select uSEM and its variants when we 
are interested in explicitly modeling and testing differences in 
lagged and contemporaneous associations between a limited 
number of regions in the context of one another. Because time 
lags are expected as cognitive processes propagate through the 
brain, testing lagged associations between regions on the time 

order of seconds might provide information about processing 
speed delays in TBI.

Finally, the dynamic causal model (DCM) (87) is a technique 
that incorporates a biophysical model. It uses the “Balloon 
model” (88) that describes the transformation of neural activity 
into a BOLD response. With this model, the DCM estimates 
the latent neural state space presumed to generate the observed 
BOLD fMRI time series. Thus, its use of the Balloon model 
facilitates a neural interpretation under the constraints of the 
model’s assumptions. Dynamic causal models involve stochastic 
or ordinary differential equations (i.e., continuous time non-
linear state-space models). These equations model the dynamics 
of hidden states in the nodes of a network, where inter-node 
dependencies are represented as directed effective connectivity. 
DCM was originally developed to estimate coupling among 
brain regions and how it is influenced by experimental changes, 
and has additionally been extended to apply to resting state fMRI 
data with stochastic (89) and time-lagged effects (90). We can 
select a DCM analysis in similar circumstances to the uSEM 
where a biologically based model is of interest.

4.2.3. Matrix Factorization and Decomposition 
Techniques
Additional time series analysis techniques that assess functional 
connectivity include those that seek basis vectors that the observed 
data are projected against. The most widely used techniques are 
factor analysis (FA), principal components analysis (PCA), and 
independent components analysis (ICA). Each of these techniques 
represents the observed data X, where X is a node-by-observation 
matrix, as a weighted linear combination of the original values in 
X to represent new extracted signals Y. The differences among 
FA, PCA, and ICA are found in the criteria for defining the basis 
vectors. In both FA and PCA, we use a second-order criterion 
(covariance reduction) whereas ICA uses a fourth-order criterion 
(maximizing the absolute value of normalized kurtosis).

While FA and PCA are both based on second-order statistics, 
FA establishes a formal model predicting observed variables from 
theoretical latent factors. The factors are linear combinations that 
maximize the shared portion of variance among the initial vari-
ables, representing “latent constructs.” FA uses a variety of opti-
mization techniques to identify the common factor structure, and 
the result depends on the optimization routine used and starting 
points for the routines. There is not a single unique solution in FA. 
FA can be applied in either an exploratory or confirmatory fash-
ion to either blindly identify latent factors or test a hypothesized 
factor structure. FA assumes that the sample is homogeneous, 
sample sizes are relatively large (greater than 200 or 5 observa-
tions per variable is often used as a rule of thumb), multivariate 
normally distributed data, linear relationships between variables, 
and moderate collinearity between variables. See Ref. (91) for a 
thorough resource.

In PCA, we find basis vectors that explain the highest propor-
tion of variance in the data. The highest ranked basis vector is 
that which best fits all of the variance in the data. The second 
basis vector is that which also has this criterion, but must be 
orthogonal to the first, and so on until as many basis vectors 
are extracted as the original number of nodes. In PCA, the basis 
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vectors are the eigenvectors of the data’s covariance matrix. After 
PCA, the principal components have 0 covariance between them, 
and second-order dependencies are removed. The assumptions 
that apply to FA also apply to PCA. See Ref. (92) for a thorough 
resource on PCA.

In ICA, basis vectors give a result such that the resulting vector 
is an “independent component” of the original data. To perform 
ICA, we project the data on a basis vector and measure the kurtosis 
as a result. Then, we change the basis vector slightly and measure 
kurtosis again, typically through gradient ascent, until kurtosis 
is maximized. In fMRI time series, ICA is attractive relative to 
PCA and FA because it assumes that the data components are 
non-Gaussian signals and that raw data are noisy, non-stationary, 
and produced by several source signals, which are reasonable 
assumptions for fMRI (see Ref. (93) for theoretical background; 
see also Ref. (94) for an empirical test and suggestion that ICA 
in fMRI is related to the sparsity rather than independence of 
components per se).

We might select FA, PCA, or ICA when we are interested in a 
latent component representing the contributions of many voxels 
distributed across the brain. This represents an abstraction that 
extends beyond the multivariate techniques described above: in 
a component-based analysis, we assume that each component 
represents an important shared property of multi-voxel time 
series. Then, we can consider components as larger units of 
potential cognitive relevance by relating component spatial 
distributions or intensity against behavioral performance. 
This is especially relevant when we are interested in testing 
psychological constructs presumed to require contributions 
from multiple regions relatively near in time. For example, 
many working memory or executive functioning tasks require 
coordination between many regions, and a component-based 
analysis can allow the TBI researcher to identify and test larger 
systems’ relevance to TBI.

4.2.4. Graph Theoretic Analyses
The multivariate time series analysis and decomposition tech-
niques described above are all thought to represent or analyze 
temporal relationships between nodes in brain networks. Graph 
theoretic analysis is a specific approach to analyzing brain 
networks in which the brain network is represented in the math-
ematical object (“graph”). There are now many good reviews on 
graph theory in fMRI analysis, including the use and interpreta-
tion of network statistics in neuroimaging data (95), challenges 
(55), and progress (96) for graph theory in cognition, network 
analysis in nervous system disorders (97), and specifically TBI 
(98). The reader is encouraged to consult these primary references 
for specific content areas. Here, I briefly refer to major themes in 
graph theoretical analysis as relevant to contextualize its applica-
tion to fMRI research in TBI.

In fMRI network analysis, the elements of the adjacency matrix 
A often include covariance, full correlation, partial correlation, 
coherence, and mutualized information. As with the multivariate 
time series techniques described above, the reliability and validity 
of these definitions of network edges remains an area of active 
research. After the adjacency matrix is specified, we can choose 
to either retain the edge weights, or binarize them according to 

a threshold. Once the fMRI adjacency matrix is defined, we can 
use concepts from graph theory to quantify network organiza-
tion from the level of individual nodes and edges through the 
network as a whole. In fMRI networks, we can examine the 
intrinsic organization of the brain (that observed during rest 
and otherwise robust across many cognitive states) as well as its 
changes during cognitive tasks, in diseases, and over time scales 
from seconds to years.

In human functional brain networks, at a macro-scale level 
of organization, the brain exhibits a “small-world” topology that 
maintains an efficient balance between local and distributed 
information processing, via high clustering within network 
modules and short path lengths between them (99, 100). Brain 
network organization can be characterized to sit between three 
extremes of scale-free, regular, and random wiring characteristics 
(101). The scale-free component represents a high degree (num-
ber of connections to a node) diversity and strong hierarchical 
organization that includes highly connected “hub” nodes. Hubs 
can be identified by an unexpectedly high number of connections 
given all connections in the network at the level of the entire net-
work, within specific modules, and between modules (102), and 
are thought to play key roles in regulating information processing 
across the network (102).

At the system level, fMRI studies demonstrate that the brain is 
organized into several major hierarchical intrinsic networks that 
can be observed during rest (103), activate with one another dur-
ing tasks (53), and can be used to accurately identify individuals 
(104). These are often thought to represent systems with distinct 
cognitive roles, including fronto-parietal and cingulo-opercular 
control networks, dorsal and ventral attention networks, a sali-
ence network, a default mode network, primary somato-motor 
systems, and subcortical systems. The regions comprising these 
modules are often activated with one another in cognitive tasks, 
and functional connections across the brain robustly predict 
cognitive activations among these systems during various tasks, 
suggesting that these systems form basic building blocks in high-
level cognitive organization (52).

At the node level, numerous measures have been defined that 
quantify the role of nodes in networks. In human neuroimag-
ing data, each measure emphasizes complementary informa-
tion about brain region roles. In addition to “hub” coefficients  
(102, 105), numerous measures have been developed to quantify 
the connectedness of nodes in the network (degree or strength in 
weighted networks), involvement in short paths across the net-
work (betweenness centrality), connectedness with local neigh-
bors (clustering coefficient or local efficiency), connectedness 
to important nodes in the network (eigenvector centrality), and 
interactions with multiple communities in the functional network 
(participation coefficient). At the edge-level, edge betweenness 
centrality quantifies the involvement of individual edges in short 
paths across the network. See Ref. (95) for a thorough discussion 
of commonly applied statistics and their interpretations. See Ref. 
(2) for a discussion of null network selection and community 
detection and summarization in brain networks.

We should select a graph theoretic analysis for our data when 
we are interested in making inferences about the organization 
of graphical features in TBI networks. Because mathematical 
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concepts from graph theory are typically selected to reflect 
dissociable aspects of communication and information process-
ing across networks, we can select specific measures for their 
potential theoretical link to behavior. Because other alternative 
analyses do not express these mathematical roles explicitly, such 
associations cannot be determined without a graph theoreti-
cal analysis. The unique value of these techniques to others in 
determining the basis of behavior in health in disease remains 
an open an increasingly active area of inquiry (55).

5. FiNDiNGS iN fMRi ReSeARCH iN TBi

There is now a substantial literature representing the use of 
fMRI to study TBI in varying degrees of severity, cognitive 
domains, and mechanisms of injury. Several excellent reviews 
of specific findings can be found elsewhere (98, 106–109). Here, 
I focus on several illustrative findings and themes concern-
ing brain reorganization hypotheses following TBI. Despite 
heterogeneous injury presentations, cross-sectional designs in 
neuroimaging and TBI have proven informative, especially in 
contexts such as nearly ubiquitous working memory dysfunc-
tion following TBI (60, 67, 68). However, intensive approaches 
that focus on understanding reconfigurations at the level of 
individuals are necessary to confront the broader landscape of 
neuroplastic changes following TBI. For simplicity and general 
appeal, I review major themes addressing neuroplasticity 
hypotheses examined in cross-sectional studies and those that 
scale to entire brain networks. Later, in “Neuroplasticity in a 
naturally heterogeneous syndrome,” I discuss some approaches 
to understand neuroplasticity in the naturally heterogeneous 
context of TBI.

5.1. GLM Findings in TBi
GLM-based analyses have demonstrated that increased 
fronto-parietal BOLD signal amplitudes during working 
memory performance—a hallmark of post-TBI BOLD responses  
(60, 67)—decreases with sustained task performance and modu-
lates with load similarly to healthy individuals. This suggests that 
bilateral fronto-parietal recruitment in TBI functions as a latent 
cognitive control mechanism that is differentially recruited in 
TBI (an increased mean BOLD signal) rather than a cognitive 
reassignment (68). Studies using continuous performance tests 
(110, 111), which require sustained cognitive control and task-set 
maintenance, and a study using a visuospatial attention task (112) 
reveal similar findings in cognitive control systems.

GLM studies in language processing demonstrate that func-
tional recruitment of homotopic regions in the right hemisphere 
is observed post-TBI (113). In a study of young epileptics with 
left-lateralized lesions early in life, perilesional cognitive reas-
signment was observed when damage occurred in or near Broca’s 
area, and damage in regions remove from classical language areas 
was associated with non-left language lateralization in four out 
of five cases (114). In these language studies, BOLD response 
profiles are more consistent with cognitive reassignment and 
highlight the importance of examining the effects of the time-
course of change following injury as well as indirect effects of 
lesions on processes.

5.2. Bridging from Regional fMRi Analyses 
to Functional Connectivity
Bridging BOLD signal amplitude analysis to functional con-
nectivity, one study used a mixed-effects model to examine 
associations between elicited functional connectivity changes 
and BOLD variability in fronto-parietal regions during an 
n-back task (115). Right prefrontal cortex activation was posi-
tively associated with elicited connectivity within and between 
persons in health and TBI. In addition, right prefrontal cortex 
BOLD amplitude was positively associated with response times 
within and between subjects in each group, whereas right 
parietal activity was negatively related to response times in 
both groups. This indicates that right prefrontal cortex is an 
important upregulator of network connectivity in response 
to cognitive demand, whereas right parietal cortex activation 
is associated with better (faster) performance (115). These 
findings suggest that right prefrontal cortex and network con-
nectivity as well as parietal cortex can serve as dissociable latent 
compensatory resources in TBI. Tasks that equilibrate working 
memory demands and vary cognitive domain may further test 
this hypothesis in TBI samples.

Extending from signal connections to multiple sets of con-
nections using robust multivariate methods, some initial studies 
identify altered cognitively relevant connectivity in TBI. uSEM-
based analyses have revealed reductions in right-hemispheric 
signaling and anterior–posterior shifting during working 
memory habituation (116) and better learning with increased 
fronto-parietal connectivity following severe TBI (117). In the 
former study, the effect of task on activity was robustly observed 
in the left parietal cortex in healthy group and in the right pari-
etal cortex in the TBI group. In conjunction with GLM-based 
studies (68), uSEM-based studies suggest that the reliance on 
frontal control mechanisms subsides with task familiarity, and 
that brain networks settle into consolidated fronto-parietal 
interactions in both health and TBI. In the case of working 
memory following brain injury, it appears that fronto-parietal 
latent resources are transiently recruited and detectable in both 
BOLD amplitude and functional connectivity.

5.3. Scaling to Graph Theoretic Analyses
Graph theoretic studies typically focus on the topological 
organization of connectivity involving many regions at once. In 
TBI, fMRI networks reveal increased connectivity degree and 
strength as well as reduced efficiency. Disturbances involving 
increased or decreased functional connectivity can be found 
across all macro-scale functional networks (118). Over the first 
several months of recovery, “hyperconnectivity” decreases in 
resting fMRI networks in individuals with TBI during a critical 
period of cognitive recovery (119); however, the relationship 
between connectivity changes and cognition was not examined 
across subjects. Importantly, if the so-called “salience” network’s 
suppression of the default mode network is disrupted via dam-
age to a tract connecting the right anterior insula to the midline 
presupplementary motor area, failures in behavioral inhibition 
are observed (120). Failure to suppress the default mode net-
work may more generally lead to interference in normal network 
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interactions across the brain (112). More recently, it was discov-
ered that the effects of focal brain lesions on behavior depends 
on their topological network location. Damage to regions with 
a high functional participation coefficient and “system density” 
result in widespread cognitive deficits in many domains, whereas 
local network hubs produce more circumscribed deficits (121) 
(see Figure 6).

Considered together, these findings establish important foun-
dations for TBI research involving classical cognitive regional 
roles, network-defined roles, and the nature of reorganization 
and vulnerability in the human brain. Cognitive control systems 
and homotopic regions may serve as latent resources and sites 
of cognitive reallocation that are heavily relied upon during 
cognition following TBI in the context of network compromise. 
Specific damage to pathways that affect communication between 
systems that respond to relevant external stimuli (the salience 
network) and the brain’s default mode network can selectively 
disrupt inhibition and the suppression of internally focused 
attention. In extreme cases, damage to key nodes in the system 
lead to catastrophic consequences for cognitive function. This 
suggests that latent resources may be conditionally recruited as 
a function of the degree of global decline, which is predictable 
based on the participation coefficient of damaged nodes in the 
network. Specifically, latent resources and reallocation may 
only be likely to activate if the network has a certain degree 
of intact global system organization supported by key nodes. 
Future analyses could examine control system and homotopics 

recruitment in the context of varied control system damage to 
test this hypothesis.

5.3.1. Conceptual Caveats
Some caveats to the use of the aforementioned approaches in 
TBI apply. Conceptually, functional BOLD amplitudes, patterns, 
connectivity, and networks should not be confused to be synony-
mous with their cognitive and neural analogs. Indeed, some have 
criticized BOLD-based connectivity measures as fundamentally 
low-dimensional and limited in their ability to represent brain 
interactions (123). Even if the mapping between neural and 
hemodynamic states was entirely understood, the BOLD signal 
would offer a useful but limited lens through which to examine 
cognitive function. While the framework advocated in this article 
may aid us in clarifying hypotheses and inferences about changes 
in BOLD signal patterns following TBI, we should be cautious 
to use language clearly and not oversell findings based on the 
technique. We should supplement the use of BOLD fMRI with the 
numerous and increasing techniques available to the cognitive 
neuroscience researcher. We should also seek to reconcile ques-
tions about brain reorganization with core theories of cognitive 
function, localization, and distribution in the brain.

6. THe FUTURe OF fMRi ANALYSiS iN TBi

There remain several open frontiers in fMRI analysis in TBI. I 
discuss possibilities for multimodal imaging analyses and the 
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importance of model-based predictive frameworks that may 
move use beyond associative studies to a formal predictive sci-
ence for fMRI analysis in TBI.

6.1. Multimodal Analysis
Given the hemodynamic dilemma and spatiotemporal limita-
tions to fMRI, using additional techniques may be helpful to 
understand TBI responses to brain injury. This is especially 
important when attempting to explain a significant percentage 
of cognitive-behavioral variability and outcomes in TBI. Due to 
the limits inherent in fMRI in terms of intersubject variability 
in the fundamental hemodynamic response function, potential 
hemodynamic alterations in TBI, and lack of a “ground truth” 
recording of neural states, we can expect that many observed 
associations could be small and unreliable. This should encourage 
us to apply multiple functional techniques in to assess different 
domains of spatiotemporal inquiry and consider opportunities 
for multi-approach integration.

One promising area for multimodal analysis may involve inte-
grating anatomical and functional data to predict BOLD changes. 
At a high level of organization, diffusion imaging-derived ana-
tomical networks predict resting and task-based functional con-
nectivity (124, 125). Simulated damage to the brain’s anatomical 
connectivity profile results in changes in simulated resting con-
nectivity, with the greatest consequences emerging from lesions 
to the cortical midline and temporo-parietal junction (126). 
How anatomical network damage leads to the expression of both 
behavioral symptomatology and compensation or reallocation-
relevant functional topology changes following TBI is an open 
area.

One line of evidence has begun to emerge that suggests how to 
link anatomical and functional imaging data. In healthy develop-
ment, diffusion imaging-based connectivity “fingerprints” can 
predict BOLD pattern development in the visual word form area, 
suggesting that underlying anatomy can determine the location 
of specific cognitive processes as neuroplastic processes unfold 
(127). If a similar anatomical guiding principle underlies func-
tional neuroplasticity following TBI, it may be possible to predict 
reorganized activity using diffusion imaging data in cognitive and 
motor domains. Beyond fMRI, similar investigations could be 
conducted using EEG (128), MEG (129), or electrocorticography 
(130) to define functional response profiles and attempt to clarify 
the nature of the BOLD signal (38) and how anatomy guides 
neuroplastic changes across spatiotemporal scales.

6.2. From Association to Predictive Models
An important goal in clinical neuroimaging is to predict disease 
incidence, recovery trajectories, and the effects of intervention. As 
a term, “prediction” is loosely applied in fMRI research applied to 
TBI. For example, some work uses control subject-based network 
measures to predict cognitive performance in TBI samples (121) 
or correlation-based analyses to associate connectivity patterns 
with cognitive measures (131). However, this is not the same as 
developing a model that is sensitive and specific to a prototypical 
pattern of behavioral changes and that can predict them ahead of 
time for a single person. This agenda will likely require a careful 
combination of biologically validated information paired with 

robust behavioral measurements. For example, some emerging 
work in comparative models indicates that BOLD response 
recovery in the first 56 days following injury is associated with 
functional motor recovery independently from cortical lesion 
volume or thalamic neurodegeneration but associated with 
preserved myelinated fibers in layer VI of region S1 (132). This 
suggests that basic BOLD responses may have some basis in white 
matter preservation and be sensitive to some aspect of biology 
that is responsible for functional outcomes.

Given the aforementioned limitations to fMRI, it is improb-
able that the most effective predictions for variable behavioral 
outcomes in TBI will be based solely on this technique. It is likely 
that robust predictive models will involve a combination of 
anatomical, functional, demographic, and cognitive-behavioral 
information. Indeed, different types and combinations of data 
may predict different cognitive-behavioral profiles after brain 
injury (133). As data increase in precision, number of modali-
ties, and number of subjects across academic research centers, 
the “big data” era (134) offers several opportunities to develop 
such models (135). Machine learning is influencing neurosci-
ence research broadly and offers the ability to generate powerful 
predictive capabilities. The challenges for prediction in TBI 
will involve practical algorithms that are easy to implement in 
clinical contexts and robustly cross-validated in independent 
samples. Ideally, as our current focus on high-dimensional 
multimodal data matures, we will be able to identify simpler 
principles and new techniques that minimize costs with opti-
mal predictive gains.

In addition, there now exist several robust cognitive 
theoretical models (“architectures”) that predict many clinically 
measured behaviors with high fidelity. Some of these models are 
specific to cognitive control (136), a process that is emerging as 
a quintessential yet limited (137) latent compensatory resource 
following TBI (60, 68). Cognitive control can be thought to 
be based in a distributed system of brain nodes with distinct 
computational roles. One account suggests that the anterior 
cingulate cortex modulates cognitive control by computing 
its expected value during cognitive processes (138). If we can 
identify evidence that the value of control differs in TBI versus 
healthy controls, it is possible that this effect is mediated by 
the anterior cingulate and its association with cognitive control 
networks. Efforts in computational neurology associating theo-
retical predictions from cognitive models with brain measures 
are proving fruitful across computational neuroscience, and its 
extension to clinical neuroscience may accelerate progress in 
TBI research.

6.3. Neuroplasticity in a Naturally 
Heterogeneous Syndrome
Earlier, I reviewed a basis for clarifying the nature of “brain 
reorganization” in TBI to avoid circular reasoning or semantic 
ambiguity. Then, I briefly reviewed literature that applied similar 
reasoning to test hypotheses about functional neuroplasticity 
measured with fMRI in cross-sectional designs. In that context, 
cross-sectional studies investigated commonly observed work-
ing memory dysfunction due to TBI, supporting productive 
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inferences discriminating between competing accounts of 
neuroplasticity. However, while cross-sectional designs are 
appealing for some hypotheses for simplicity and to maximize 
power, they may be inadequate when both heterogenous ana-
tomical damage and symptom categories are observed. I make 
two observations about this challenging frontier. First, we can 
apply the same dismantling logic described above at the level 
of the individual with some methodological extensions given 
appropriate reference comparisons. Second, with increasingly 
large-scale datasets and data sharing capabilities, we could 
leverage resources to perform larger scale hypothesis testing 
and personalized phenotyping for neuroplastic responses fol-
lowing TBI.

In principle, the general approach to understanding BOLD 
signatures of neuroplasticity described above could be applied to 
intensive within-subjects designs. However, validating relation-
ships at the level of single individuals is necessary to identify 
whether BOLD–behavior relationships represent uniform 
neuroplastic responses across individuals, or merely measures 
sensitive to central tendency in the context of heterogeneous 
responses. Indeed, demonstrating that psychophysiological 
processes are uniformly observed within individuals over time is 
an important requirement to validate observations at the group 
level (139, 140). For example, demonstrating that trial-level per-
formance within every individual in a post-injury sample exhib-
its similar BOLD responses to cross-sectional results would be 
compelling evidence that uniform neuroplastic responses have 
occurred after heterogeneous TBIs. To test for such consistency, 
we could map individual-level BOLD–behavior relationships 
and compare their locations, effect sizes, and reliability across 
individuals. This would allow us to determine whether central 
tendencies observed in cross-sectional designs are representative 
of common sites of neuroplasticity in the context of pathological 
heterogeneity. In addition, though not commonly used in fMRI 
studies, matched case–control study designs (141, 142) with 
adequate bias control (143) could potentially help to elucidate 
subject-specific behavior–BOLD response relationships within 
a particular subject compared to individually matched healthy 
subjects.

Finally, several large-scale efforts could facilitate research 
focused on common versus individual neuroplastic effects. These 
studies can help us address a fundamental limitation in TBI 
research: it is unethical to purposefully cause a TBI in healthy 
individuals. Thus, while some post  hoc information can be 
obtained after TBI, study designs that allow us to make pre- and 
post-injury comparisons fill a critical knowledge gap. Projects 
that collect data in normative groups and follow them for years 

in development from youth to adulthood (144) and late aging 
(145) will incidentally include some individuals that suffer TBI, 
facilitating true within-person cognitive dismantling designs. 
Importantly, sufficiently large longitudinal and cross-sectional 
studies can facilitate Bayesian approaches to identify cognitively 
relevant brain activation as has recently been explored in large 
healthy datasets (146, 147). With some modifications, this could 
allow us to detect that a certain cognitive process has been 
reallocated by detecting whether novel BOLD activity in an 
individual with TBI conforms to a prototype observed in a much 
larger repository. Conversely, this would also allow us to identify 
whether activity observed following TBI can be identified as a 
reconfiguration of a healthy pattern versus a truly novel pattern 
that requires further person-specific study. These larger scale 
efforts could be supported by large multi-PI funded protocols and 
increased open data sharing across collaborators.

7. CONCLUSiON

The framework discussed here is one way to organize the numer-
ous cognitive questions and techniques used in TBI research. 
If cognitive reallocation and latent compensatory mechanisms 
encompass all of the basic neurocognitive responses to TBI, 
careful experimental design and an open mind to their likely 
complex expression in BOLD responses will result in fruitful 
fMRI research. More likely, nature will surprise us, and we will 
need to adjust our frameworks accordingly. Many well-designed 
cross-sectional, longitudinal, and case–control studies will be 
needed to confront this challenge. However, these studies will 
only be as valuable as their ability to discriminate among compet-
ing accounts of neuroplastic changes following TBI. Given the 
tremendous computational, analytic, and theoretical resources 
available to us, fMRI may have much yet to reveal about the 
nature of cognitive neuroplasticity following TBI.
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