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Motion-intent-based finger gesture recognition systems are crucial for many applications
such as prosthesis control, sign language recognition, wearable rehabilitation system,
and human–computer interaction. In this article, a motion-intent-based finger gesture
recognition system is designed to correctly identify the tapping of every finger for the first
time. Two auto-event annotation algorithms are firstly applied and evaluated for detecting
the finger tapping frame. Based on the truncated signals, the Wavelet packet transform
(WPT) coefficients are calculated and compressed as the features, followed by a feature
selection method that is able to improve the performance by optimizing the feature set.
Finally, three popular classifiers including naive Bayes (NBC), K-nearest neighbor (KNN),
and support vector machine (SVM) are applied and evaluated. The recognition accuracy
can be achieved up to 94%. The design and the architecture of the system are presented
with full system characterization results.

Keywords: mechanomyogram, inertial sensor, finger gesture recognition, motion intent, feature selection

1. INTRODUCTION

Modeling and recognizing human hand gesture is an extremely important research topic, and it is the
core of any intelligent human–computer interaction system with applications in automatic control,
virtual reality, augmented reality, human–robotic interaction, and computer animation. In addition,
it attracts more attentions and interests in biomedical engineering recently, e.g., prosthesis control
and wearable rehabilitation system. As it is difficult to model the gesture accurately from images and
the gesture appearance varies a lot, it is still a difficult task to recognize and track hand gestures. On
the other hand, stroke is the leading cause of disability in adults worldwide. Exercise disorders as the
most common sequelae of stroke can seriously affect normal activity and quality of life. Exercise and
training have long been used to restore motor function after stroke. Among that, hand movement as
a kind of fine action is more difficult to recover. Finger gesture recognition technique can be used
to train and lead the patients to do the rehabilitation exercises, which normally requires real-time
interaction and long-term monitoring. Thus, portable system with real-time processing technique
is a valuable topic to pay attention and be explored in the stroke application area.

Currently, most hand-gesture recognition systems are using either hand-motion-based (HMB)
technologies or motion-intent-based (MIB) technologies. HMB methods are capable of directly
detecting the tracking of hand motions. Non-skin attached sensors such as optical sensors, inertial
sensors, and force sensors (1) are usually deployed in HMB technologies. Many commercial
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products, such as Kinect and Data Glove, are built on HMB
technologies. However, the performance of HMB-based hand-
gesture recognition system degrades when the lighting variations
present. The recognition accuracy will also drop significantly if
skin colors are too similar to background colors or the usage is
in dark environment. In addition, the coverage of the system is
limited by the sensors’ measurement range and attaching sensors
to fingers and handsmake user handmovements unsmoothly and
uncomfortable.

MIB methods measure the motion intentions instead of the
actual hand motions, which is critical in certain applications
such as prosthesis control, virtual reality, and motor rehabili-
tation. Hand-gesture recognition systems relying on MIB tech-
nologies are capable of recognizing the hand gestures based on
the forearm muscle activities (2) or the signal decoding from
brain (3). The brain related methods are driven by the neu-
roplasticity for stroke rehabilitation and are explained more
from the nervous system. Brain cortex activities are analyzed by
imaging techniques, e.g., electroencephalography (4, 5), electro-
corticography (6), near-infrared spectroscopy (7, 8), magnetic
resonance imaging (9), and optical tomography (10). A review
of hybrid brain–computer interface techniques can also be found
in Ref. (11). All these methods by using imaging technologies
are with high cost and sensitive to the experimental environment
and setup. For example, electroencephalography is not reliable
under exposure to high-intensity magnetic fields and also cannot
be applied to the participants having metal implants in their
body (12).

The most commonly used forearm muscle analysis solutions
relying on MIB approach are the surface electromyography
(sEMG) method and the mechanomyogram (MMG) method.
This kind of methods explains more about the efforts made by
muscles. sEMG uses the surface electrodes to record the electrical
currents signal produced by the muscular contraction and many
sEMG-based systems have been proposed in the past decades (13).
On the other hand, the MMG approach becomes an active topic
recently because these sensors can be made into small sizes with
reduced cost and good performances. MMG is a low-frequency
mechanical signal which can be detected during the muscular
contracting period. It is transmitted from themuscle to the surface
skin by the soft tissue, and it can be detected by the motion
sensors, i.e., inertial sensors (14, 15), laser sensors (16, 17), and
microphones (18, 19) attached to the skin. Among all the sensors,
inertial sensors are widely used. They are cheaper and more
wearable than laser sensors (20). For themicrophone-basedMMG
acquisition system, an air chamber is normally required to be
placed between the condenser microphone and the surface of the
skin to improve the quality of the acoustic signal. The design of the
air chamber is a key factor which affects the frequency response
of the acquisition system (19). In addition, the microphone-based
MMG acquisition system is less wearable than inertial sensor-
based system. Since different hand gestures are due to different
modes of voluntary isometric contraction (17), it is possible to
recognize the hand gestures based on the MMG signal detected
from the forearm muscle group (14, 21). Compared with the
sEMG approaches, MMG approaches have some advantages. First
of all, MMGprovides flexibility in setting up the sensors. Since the

MMG signal can be detected on the distal of soft tissue during the
muscle contraction (14), the location for placing the sensors are
more flexible in contrast to the sEMG, which normally requires
an experienced technician to find out the good positions for the
sEMG sensors. This flexibility will give MMG users better user
experiences compared with sEMGusers. Second, theMMG signal
is independent of the skin impedance. On the other hand, the
sEMG signal is easier to be affected by the skin impedance, which
is one of the shortcomings of sEMG-based approach (22). This
drawback makes the sEMG sensors unstable due to the reasons
that the skin impedance is sensitive to many factors such as
temperature and humidity. Finally, systems with MMG have low
cost and have less computational loads. MMG is a low-frequency
signal with the range of 10–22Hz (23) while sEMG signal is in the
range of 50–900Hz (15). In that case, there is no need for high-
frequency electronic components in the MMG acquisition system
and lower sampling rate produces less data for processing thus
reduces the computational load.

Due to these advantages, many hand-gesture identification sys-
tems are built using MMG–MIB approach. A recognition system
is built for identifying the flexion and extensor of the wrist in
1986 (14). The MMG signal was collected by a microphone from
the flexion digitorum and extensor digitorum in the system. The
amplitude of theMMG signal is used to classify these two gestures.
Based on a similar idea, a recognition system is built and capable
of identifying additional hand gestures including wrist flex, wrist
extensor, hand open, and hand close (24). In this system, the
MMG capture system is deploying acceleration sensors. Then,
wavelet packet transform (WPT) is used to process the MMG
raw signal, followed by the singular value decomposition (SVD)
to reduce dimensions of features for gesture recognition. Based
on a linear discriminant analysis classifier, the identification
algorithm gives an average accuracy rate of 89.7%. After that,
many researchers (25–27) extend the study for the recognition of
different hand gestures.

There are only few reported MMG–MIB systems on finger
gesture recognition (FGR) in the literature. Three types of fin-
ger gestures including thumb flexion, pinkie flexion, and middle
three finger flexions are classified in an FGR system based on
the microphone-accelerometer (28). This system recognizes these
finger gestures by root mean square (RMS) of the MMG signal
amplitudes, and its average identification accuracy rate is 76.2%.
However, individual flexion of the middle three fingers cannot
be distinguished in this FGR system. Subsequently, a system is
presented in Ref. (29) to identify the middle three finger gestures,
namely, index tapping, middle tapping, and ring finger tapping.
Two tri-axial accelerometers are used to record the MMG signal
from the forearm muscles. Three types of finger gestures can be
recognized, and the average accuracy rate is 75%.At the same time,
some researchers dedicate to recognize more motion patterns of
a single finger. For instance, a system proposed in Ref. (30) is
capable of classifying four thumbmotion patterns, which includes
flexion, extension, abduction, and adduction. The features are
extracted by a hybrid algorithm combing the mean absolute value
ofMMG signal, RMS of amplitude, mean frequency, etc. The aver-
age accuracy rate is 81.5% achieved by the quadratic discriminant
analysis.
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Among all the existing FGR systems, none of them can recog-
nize the individual movement of five fingers, which is the goal
of our efforts. Our previous work (31) proves that the individual
finger tapping can be recognized based on the analysis of fore-
arm muscle contractions, and a support vector machine (SVM)
classifier shows a good performance on classification and recog-
nition. In this article, we further present a FGR system capable of
recognizing thumb tapping, index finger tapping, middle finger
tapping, ring finger tapping and little finger tapping based on
MMG-MIB approach. Two auto-event annotation algorithms are
applied and evaluated for detecting the finger tapping frame.
They are better for real-time processing system than the man-
ual cutting approach although the latter one is more accurate.
Based on the analysis of MMG frame, the wavelet packet trans-
form (WPT) coefficients are calculated and compressed as the
feature, followed by a feature selection method which is able to
improve the performance of only one kind of feature. Finally,
three popular classifiers including NBC, KNN, and SVM are
applied and evaluated by their performances on finger gesture
recognition.

In the current stage, only healthy participants are invited to
attend our experiments to prove the feasibility of recognition for
individual finger movement. For stroke patients, the situation is
extremely complicated. The applicable subjects for the experi-
ments of the proposed system are limited to the group of who
is capable of controlling the contractions of the forearm muscle.
Finding such subjects and to some extent further studying how
the proposed system can be adaptive and scalable for subjects with
different degrees of the capability of controlling forearm muscle is
amuch broader topic demandingmore effort whichwill be further
explored in future work.

2. SYSTEM ARCHITECTURE

The proposed system relies on two MMG signal channels for
identifying movements of five fingers. The architect of the pro-
posed FGR system is shown in Figure 1. The firstmodule contains
the MMG acquisition system obtaining the two-channel MMG
signals from the forearm muscle by the inertial sensor. Then, the
detected MMG signals are going through a band-pass filter to
reduce noise distortion. The third stage of the system consists of
the tapping event detection (TED) algorithm to extract the MMG
signal segments with the muscle activity information. The next
stage is the feature extraction process on the obtainedMMGsignal
segments. Finally, different classifiers including SVM, KNN, and
NBC are built for the recognition purpose based on the features
extracted. A detailed description of each sub-system is given
below.

2.1. MMG Acquisition Module
The MMG signal is detected by the inertial sensor MUP6050
(InvenSense, USA), which is capable of capturing the information
of acceleration and angular velocity. In our system, the
acceleration signal from its Z-axis is recorded for FGR. Since Z-
axis is perpendicular to the skin surface, it is the most important
direction for studying the motions of muscular contraction
(24). As mentioned previously, the MMG signals measuring

FIGURE 1 | The flowchart of the proposed FGR system.

the mechanical activities are characterized by low-frequency
vibrations (<50Hz) (32). The sampling frequency is chosen to
be 1 kHz, and the cutoff frequency is chosen to be 200Hz for
the embedded analog to digital converter and low-pass filter in
MUP6050, respectively. Since the contractions of the extensor
digitorum muscle are the main muscle activities when finger taps,
the MMG signal is detected from the belly of extensor digitorum
muscle. Two sensors are attached on the skin surface within the
above mentioned area to have a multichannel understanding of
the extensor digitorum muscle. This is the reason why we have
two-channel MMG signal measurements.

The relatively high movement artifact is the major deficiency
ofMMG acquisition, which can significantly degrade the recogni-
tion accuracy. Thus, all the subjects were asked to put their arms
on the desk to keep their forearms asmotionless as possible during
the experiments.

2.2. Band-Pass Filtering Module
As reported in Ref. (17, 33), the predominant power in MMG
signals detected is within 10–22Hz, and the acoustic frequency
contents of MMG signal produced by contracting muscles are
within 5–50Hz (32). Thus, a 4th-order band-pass Butterworth
filter in the range of 0.1–50Hz is used in preprocessing to retain
the useful information and reduce noises.

2.3. Auto-Event Annotation Module
The MMG signals after band-pass filters need to go through our
auto-event annotation process. Auto-event annotation is designed
to detect the finger tapping event and extract the activity segment
in this article. Thus it is also called tapping event detection (TED)
in the following. This module is also considered as the first stage
of finger gesture recognition. In the literature, the MMG signal
segments are obtained by manual cut (14) or predefined time
slot when the participants are asked to make each movement
(24, 29). These approaches introduce the inconvenience in either
the data preprocessing stage or in the data acquisition process.
Furthermore, they do not have the capability of real-time process-
ing. To make the proposed FGR system with real-time processing
capability, an automatic TED algorithm is required. In our system,
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two different TED algorithms are tested. The first one is the root
mean square (RMS) algorithm (30), and the other algorithm is
the difference-template filtering (DTF). Their performances are
compared in our experiments.

2.3.1. Root Mean Square (RMS) Algorithm
The RMS algorithm has been used in many MMG signal process-
ing applications such as the assessment of muscle function (32,
34) and automatic detection of muscle activities (35). It can be
described by the following equation:

Zr(t) =

{
1, if (gr[t] > THr)
0, otherwise

, (1)

where t is the time index. Zr[t] is the output of this algorithm.
Its value will be set to 1 when the finger motion event is detected,
otherwise it will be zero. gr[t] andTHr are defined by the following
equations:

gr[t] =

√√√√ 1
W

t+W∑
i=t

x[i]2, (2)

THr = αr ∗
∑Ts2

i=Ts1
gr[i]

Ts2 − Ts1
, (3)

where the gr[t] is the RMS value from x[t] to x[t+W] and the
parameter W is the window size. As reported in Ref. (35), an
appropriate analysis window size for MMG signal is from 100 to
400ms. In our system, the window size is fixed to 400ms, which
has a superior performance in contrast to other smaller sizes. The
parameters,Ts1 andTs2, are the start and end points of time during
which the forearm muscle group of participants are required to
keep relaxed. The parameter, αr, is the threshold scaling factor
which is set to 2.15 in our system.

2.3.2. Difference-Template Filtering (DTF)
A DTF-based TED algorithm is proposed to detect the muscle
activities in our system. The vectorD= [−1, −1, −1, −1, −1, −1,
−1,−1, 0, 1, 1, 1, 1, 1, 1, 1, 1] is designed as the difference template
for convolution with MMG signal. The difference template-based
TED can be described by equations (4)–(6):

Zd(t) =

{
1, if (gd[t] > THd)
0, otherwise

, (4)

where gd[t] is defined by equation (5) and the parameter THd is
defined by equation (6).

gd = D
⊗

x. (5)

The
⊗

is the convolution operator, and x is the input MMG
signal.

THd = αd ∗
∑Ts2

i=Ts1
gd[i]

Ts2 − Ts1
. (6)

The parameter αd in above equation is the threshold scaling
factor, which is set to 2 in our system. Ts1 and Ts2 have same
definitions as mentioned above.

2.4. Feature Extraction Module
Feature extraction is an extremely important process in our system
as the recognition accuracy is heavily dependent on whether
indicative and relevant features to fingermovements can be found.
In our system, the MMG signals are transformed to wavelet
domain for wavelet packet transform (WPT) coefficients. Then
singular value decomposition (SVD) is applied to reduce the
dimension of the coefficients for computational efficiency. Then,
WPT features will be sent to our classification module for the
recognition purpose.

2.4.1. Feature Matrix Extraction
Wavelet transform (WT) is proposed for multi-resolution anal-
ysis developed from the Fourier transform. It is able to repre-
sent the local signal characteristics in time-frequency domain.
However, its resolution is decreasing when the signal frequency
is increasing. In other words, the resolution in high-frequency
region is very poor in the WT analysis. As an extension of the
standard WT, WPT is able to provide an arbitrary time-frequency
resolution (36). Therefore, WPT is used to extract the signal
characteristics from theMMGsignal here for analyzing themuscle
activities.

The Figure 2 shows a 5-level wavelet packet decomposition
which is also known as optimal subband tree structuring. Each
node of the tree is marked as x p

j (t), where j is the level with the
range from 1 to 5, and p= 1, . . . , 2j is the number of the packet
in the jth level. Each node, x p

j (t), can be decomposed to two
nodes, x2p−1

j+1 (t) and x2p
j+1(t), which is described in equation (7).

The reconstructions are given in equations (8) and (9) as below:

X p
j = X2p−1

j+1

⊕
X2p
j+1, (7)

x2p−1
j (t) =

√
2
∑

h(n)x p
j−1(n − 2t), (8)

x2p
j (t) =

√
2
∑

g(n)x p
j−1(n − 2t), (9)

where n and t are both time indexes, h(n) in equation (8) is the
scaling function, g(n) in equation (9) is the wavelet filter, and
the details of h(n) and g(n) can be referred to Ref. (37). In our
system, every MMG signal segment is decomposed into the 5th
level shown in Figure 2. Each node of the 5th level wavelet is
a column vector containing LN/32 coefficients, where LN is the
size of the processed MMG signal. All the nodes of the 5th level
construct a (LN/32) x 32 feature matrix,X, shown in the following
equation:

X =
[
x1
5(k), x2

5(k), ..., x32
5 (k)

]
(k = 1, 2, 3, . . . , LN/32). (10)

2.4.2. Feature Compression
WPT normally generates a large number of features for classifica-
tion. To reduce theworkload of following classifier and prompt the
proposed system to be real-time processing, the SVD technique is
used in our system to extract the new feature from theX for reduc-
ing dimension. As amatrix factorization technique, SVD is proven
to be reliable and efficient (38, 39). The feature matrix, XL×M
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FIGURE 2 | The wavelet packet decomposition tree.

(L= LN/32, M= 32), given by equation (10) is decomposed by
the SVD technique given by the following equation:

XL×M = UL×LΛL×MVT
M×M, (11)

where U and V are the L× L and M×M orthogonal matrixes,
and Λ is a L×M nonnegative diagonal matrix described as
follows:

Λ =
(
S 0
0 0

)
, S = diag(σ1, σ2, ..., σr), (12)

where r is the rank of the matrix, and σ1, σ2, . . . ,σr are the
singular values of matrix X, which are used as the extracted
features. Since (LN/32) is normally larger than 32 in this article,
the extracted features are with the size of 32.

2.4.3. Feature Selection
There are 32 features from each MMG channel after the feature
compression stage. However, these features have different degrees
of relevance for the hand-motion classification. The MMG sig-
nal obtained by the MMG acquisition system contains both the
mechanical signal generated by the handmotions and noises from
different sources such as electrical noise and the vibration noise
from the surroundings. The features containing the noise usually
have an adverse effect for the recognition. It should be noted that a
larger number of SVD features do not always lead tomore effective
classification results (24). Therefore, a feature ranking algorithm
is required to select the most relevant features to further improve
the recognition results.

In the proposed system, the methodology proposed in Ref.
(40) is utilized for features ranking. The parameter F-value is
calculated from the features extracted by WPT–SVD algorithm.
For each feature, the bigger value of the F indicates higher impor-
tance for classification. The details of how to calculate the F are
described following.

First of all, the average distance of each kind of feature from the
same finger gesture is calculated by the following equation:

di,j =
1

N × (N − 1)

N∑
m,n=1

|pi,j(m) − pi,j(n)|;

(m, n = 1, 2, ...,N,m ̸= n), (13)

whereN is the number of the samples of the same finger gestures,
pi,j(m) is the mth sample of the ith feature of the jth gesture. For
each feature, its average distance between 5 finger gestures can be
defined as follows:

dai =
1
M

M∑
j=1

di,j. (14)

The ai is the number of the gestures. The value of M is 5
since there are five gestures needed to be recognized. Then, we
calculate the average value of each feature in the same gesture as
follows:

pai,j =
1
N

N∑
n=1

pi,j(n)(n = 1, 2, . . . ,N). (15)

The average distance of each feature between different finger
gestures can be defined by the following equation:

d′
ai,j =

1
M × (M − 1)

M∑
m,n=1

|pai,m − pai,n|

(m, n = 1, 2, . . . ,N;m ̸= n). (16)

Finally, the F-values can be calculated as follows: F = dai/d′
ai.

Following this algorithm, the 32 features are ranked in descending
order according to its F-value.

2.5. Classification Module
The last module of our FGR system is the classifier to recognize
the finger movement based on the features selected. In many
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reported MMG-based hand-gesture recognition systems, various
pattern recognition algorithms were used such as linear classifier
(24), multilayer perception (26), and neural networks (21). In our
system, the classifiers, NBC, KNN, and SVM are selected, and the
performance of three algorithms is compared.

2.5.1. NBC
NBC, as a subclass of Bayes classification algorithm, is widely
applied in the pattern recognition because of its simplicity and
effectiveness. In some applications, its performance is comparable
with other classifiers with increased computational complexity
(41). Naive Bayes classification model assumes that each feature
is independent for the classification. Although this unrealistic
assumption limits its scope of applications, the time and space
complexities are reduced. Therefore, the NBC is still a popular
choice in various applications (42, 43). The implementation of
NBC is based on the reference (44, 45).

2.5.2. KNN
KNN is a classification model based on statistical analysis. The
KNN algorithm classifies the sample according to the class of its
k-nearest neighbor samples in the feature space. And the sample
is assigned to the class where most of its neighbor samples belong
to. KNN is a simple classifier without priori statistical knowl-
edge. Thus, it is widely used in applications with non-normal or
unknown sample distributions (46). However, its performance
will be degraded when the number of samples is large (47). The
implementation of KNN is based on the reference (48).

2.5.3. SVM
SVM is a machine learning algorithm based on the statistical
learning theory. It is good to deal with the situations when small
samples are available and high dimension pattern recognition
task is given (49). The libSVM3.12 package (50) is adopted for
programming implementation in our system. The polynomial
kernel function, G(x), given by equation (17) is utilized in SVM
classifier,

G(x) = (γ × x × z + coef 0)degree, (17)

where x is the vector of input features, z is the support vector
produced by SVM after training, and the parameters coef 0, γ, and
degree are set to 0, 1, and 3, respectively, in our system.

3. SYSTEM CHARACTERIZATION
RESULTS

In this section, we will describe the detailed experimental pro-
tocol for our FGR system characterizations. The characterization
results are presented in this section as well with discussions. First
of all, the performance of two TED algorithms introduced is
compared with the manual event detection method. After that,
the effectiveness of the features ranking and the performances
of different classifiers are presented and discussed. At the end
of this section, possible factors affecting the recognition results
such as power of grip (PG) and body mass index (BMI) are
discussed.

3.1. Participants
To fully characterize our system, twelve healthy participants
(8 males and 4 females, 1 left-hander and 11 right-handers, age:
23± 3.21, height: 164.2± 7.65 cm, weight 66.2± 16.51 kg) partic-
ipate in our experiments voluntarily. No medical history of neu-
romuscular disorders is reported. All the participants understand
and agree with the experiment protocol before joining in the test
for MMG signal acquisition.

3.2. Experimental Procedure
All participants are instructed to use five fingers of their domi-
nant hand to tap, including thumb tapping, index finger tapping,
middle finger tapping, ring finger tapping, and little finger tap-
ping. Following a metronome with 30 beats per minute, every
participant is asked to tap five fingers one by one from thumb
to little finger, and each finger gesture is repeated five times
before moving to next finger. The above process is repeated five
times with 5min interval to avoid the unreliable samples due
to large number of consecutive tappings on the same finger.
Therefore, there are totally 125 finger-gesturemovements (5 finger
gestures× 5 times× 5 rounds) for every participant. A total of
25 movements on each finger are obtained from tapping with
either short time interval or long time interval which increases the
variety of data set.

3.3. Characterization of Auto-Event
Annotation Module
The auto-event annotation module in our system is tested. In
details, the performance of two automatic TED algorithms is com-
pared with the manual approach which is supposed to be optimal.
The false detection events ratio (FDER) of the RMS-based and
the DTF-based automatic TED algorithms are calculated which
relates to the error rate of the muscle activity event detection.
In addition, the accuracies of the MMG signal segmentation by
different methods including DTF, RMS, and manual cutting are
calculated and discussed.

3.3.1. The Error Rate of Automatic TED
In this experiment, the false detection events in two scenarios are
measured. The first one is the false negative event shown on the
top of Figure 3. The muscular contraction event occurs but the
TED algorithm cannot detect it. In this situation, the proposed
system is not able to recognize finger-gesture movements. The
other one is the false positive event shown in the bottom of
Figure 3. The muscular contraction events can be detected by
the TED algorithm while this signal segment contains irrelevant
information. As a result, the wrong recognition results will be
obtained by the proposed system.

FDER is a suitable indicator to measure and compare the
performance between the RMS- and DTF-based automatic TED
algorithms. The FDER is defined by the equation (18):

FDER =
NFP + NFN

Nall
, (18)

where the Nall is the number of all events detected by the algo-
rithm. TheNFP andNFN are the numbers of the false positive event
and the false negative event, respectively.
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FIGURE 3 | The examples of false negative event (top) and false positive event (bottom) highlighted by the pink windows. The vertical axis title is “Amplitude” and the
horizontal axis title is “Number of Sampling Points.” The sampling rate is 1 kHz, and then the above chart shows segments lasting approximately 4 s (top) and 8 s
(bottom). Within this chart, the blue line is the original MMG signal, the red line is the automatic TED result, and the horizontal gray line is the threshold calculated by
equation (3) or equation (6). Thus, the vertical black line indicates the start point of detected event after which the red line goes beyond the gray line, while the vertical
green line indicates the end point of detected event after which the red line goes under the gray line.

In our experiment, all the data are processed separately by
the RMS- and DTF-based automatic TED algorithms. The FDER
values are 1.5 and 2.2%, respectively, for RMS-based method and
the DTF-based method.

3.3.2. The Accuracy of MMG Segmentation
There are two tasks for the TED algorithms. The first task is
to detect the fingers activity events correctly. The second task
is to extract the MMG signal segment accurately. The FDER is
the index to measure the performance of the first task. Next,
we discuss how to measure the performance of the second
task. There are two scenarios when the MMG signal segment
is extracted inaccurately. As shown in Figure 4, the segment
of the MMG signal shown in the top is very weak where the
starting point of the event is too close to the end point, resulting
in loss of the key information. On the other hand, the sub-
figure in the bottom part of Figure 4 shows that the MMG
signals contain some noises which may introduce some inter-
ferences. These inaccurate segmentations are the two factors

that can degrade the recognition accuracy of the proposed FGR
system.

Currently, there is no quantitative index to directly measure
the quality of the MMG signal segment extraction. As our system
focuses on the final finger-gesture recognition accuracy, we only
compare the performance of RMS- and DTF-based TED algo-
rithms with manual segmentation in achieving the final recog-
nition rate. Among that, manual segmentation is supposed to be
the accurate and optimal method for extracting the finger tapping
event. In this comparison experiment, only the first 4 features
after feature ranking process are used, and the NBC classifier is
used. The results are reported in the Figure 5. This figure clearly
shows that the manual segmentation has the best performance for
the proposed FGR system, followed by the RMS- and DTF-based
automatic TED algorithms.

3.3.3. Discussion of TED Algorithm Evaluation
From the results in Section 3.3.1 and 3.3.2, the manual
segmentation has slightly better performance compared with
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FIGURE 4 | The examples of inaccurate extraction by automatic TED Algorithms highlighted by the pink windows. The vertical axis title is “Amplitude” and the
horizontal axis title is “Number of Sampling Points.” The sampling rate is 1 kHz, and then the above chart shows segments lasting approximately 5 s (top) and 6 s
(bottom). Within this chart, the blue line is the original MMG signal, the red line is the automatic TED result, and the horizontal gray line is the threshold calculated by
equation (3) or equation (6). Thus, the vertical black line indicates the start point of detected event after which the red line goes beyond the gray line, while the vertical
green line indicates the end point of detected event after which the red line goes under the gray line.

FIGURE 5 | The recognition accuracy achieved by the manual segmentation,
RMS- and DTF-based automatic TED algorithms, respectively.

two automatic TED algorithms. If the performance between
two automatic TED algorithms is compared, the RMS-based
approach has a slightly better performance. However, the
DTF-based approach has less computational complexity com-
pared with the RMS-based method. Thus, the DTF-based
approach is preferred in some low cost and real-time processing
applications.

3.4. Classification Evaluation
The recognition accuracies of the classifiers SVM, KNN, and
NBC are computed, and the results are compared and discussed.
There are in total of 64 features from two-channel recorded MMG
signals and 32 features are extracted from each channel. During
the system characterization evaluation, the appropriate number
of features used for recognition is also studied. Different num-
bers of features are selected by the ranking algorithm and the
resulting recognition accuracies are compared. In this section, the
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FIGURE 6 | The accuracy of different classifier with different number of
features. The X-axis is number of the features from each channel for
classification. The Y-axis is the average accuracy of all participants.

manual segmentation for TED is selected to reduce unnecessary
interference.

The experimental results are shown in Figure 6. The accuracy
rate of identification is up to 94.0%, and the average accuracy rate
is 87.9% by the NBC. The highest recognition results (94%) in
NBC classifier are obtained when the first 4 features of each chan-
nel are used. The accuracy is reduced with the increased number
of features as NBC assumes that every feature is dependent. In
other words, each feature has the same importance impact for the
NBC classifier. According to the ranking algorithm introduced
in Section 2.4.3, the feature with lower rank means that it is less
useful because of more noises involved. Thus, when less irrelevant
features are used in the classification process, more noises are
introduced, resulting in less accuracy of the NBC classifier. In
addition, this result also shows that the feature ranking algorithm
is critical for the NBC-based classifier, because it can remove the
irrelevant features and improve the NBC performance.

The recognition accuracies from the KNN and SVM classifiers
are improved slightly when the number of features per channel
is larger than 3. The possible reasons of this observation are
explained as follows. KNN is a classification algorithm based on
the distance of the feature space. In that case, it is insensitive to
the weak features. Therefore, the classification accuracy is not
degraded when the number of weak features is increased (46).
The SVM classifier aims to optimize the performance based on
all features, which definitely includes the weak features. The best
linear combination of all features is chosen by the SVM classifica-
tion. Thus, the SVMperformance is becoming slightly betterwhen
more features are used inFigure 6. In addition, the performance of
SVM is also dependent on the used kernel function. The proposed
system only considers the polynomial kernel and nonlinear kernel
functionsmay improve the performance which will be explored in
the future work.

3.5. Influencing Factors
As the MMG signals are produced by the muscle and transmitted
by the soft tissue (14), intuitively, our FGR system might have bet-
ter performance on participants who have well developed forearm
muscles and thinner hypodermic fat. To verify this hypothesis, the
power of grip (PG) is measured as the index of muscle strength,

FIGURE 7 | The relationship between the recognition accuracy and PG/BMI
value. The two red samples are outliers, while the blue samples have a
pronounced linear relationship.

and the body mass index (BMI) is recorded as the index of hypo-
dermic fat for each participant in this experiment. The recognition
performance on each participant is then compared.

The Figure 7 shows the relationship between (PG/BMI) and the
recognition accuracy rate. The X-axis is the recognition accuracy
based on every participant data where the NBC classifier with
8 features (4 features for each channel) is adopted for the FGR
system. The Y-axis is the value of PG divided by BMI, namely
(PG/BMI). There is a linear relationship between the (PG/BMI)
and the recognition accuracy in our experiments, and the cross-
correlation coefficient is 0.728. The above results show that the
recognition accuracy rate of FGR system is proportional to the
muscle strength, while has a inverse proportion to the hypoder-
mic fat. Although more testing data are needed to reach a firm
conclusion instead of the above results from 12 participants, it is
highly possible that the recognition accuracy of FGR system and
the value of (PG/BMI) have a linear relationship. TheMMG-based
FGR systemmay have higher recognition accuracy on participants
with higher ratio of PG and BMI. This finding also suggests that
the proposed FGR system users should take more exercises to
strengthen the forearm muscles and reduce the hypodermic fat to
well control the system. This system may be adopted in different
applications such as prosthetic control.

4. CONCLUSION

In this article, a novel motion-intend-based finger gesture recog-
nition system based on mechanomyogram (MMG) signal is pre-
sented to recognize each finger tapping. This is the first system
capable of detecting every finger tapping. The architect and the
design of the system are presented. A full system characterization
is also evaluated and the recognition accuracies of the system are
compared under different experimental settings. Our system is
able to achieve up to 94% accuracy. How different factors such as
PG andBMI of the participants affect the systemperformances are
also discussed, and the obtained results suggest that the proposed
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FGR system users should take more exercises to strengthen their
muscles and reduce the hypodermic fat.

The proposed system focuses on identifying motion inten-
tions instead of actual finger movements. It is therefore suit-
able for finger rehabilitation training of stroke patients. In some
cases, when stroke patients try to move their fingers, they can-
not find corresponding action. With the proposed system, we
can provide guidance to the patients by correcting the effort
made toward their intentions of finger movement and can fur-
ther quantitively measure the accuracy by exploring the enhance-
ment of the system design. The quantified result is beneficial to
further understanding of training intensity, contrasting training
effect, and so on. Therefore, applying the proposed system to
the stroke rehabilitation is worthy of continuous exploration and
development.
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