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In this article, we review the basics of diffusion tensor imaging and functional MRI, their 
current utility in preoperative neurosurgical mapping, and their limitations. We also dis-
cuss potential future applications, including implementation of resting state functional 
MRI. We then discuss perfusion and diffusion-weighted imaging and their application 
in advanced neuro-oncologic practice. We explain how these modalities can be helpful 
in guiding surgical biopsies and differentiating recurrent tumor from treatment related 
changes.
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iNTRODUCTiON

Advanced imaging is playing an increasingly more important role in the management of patients 
with neuro-oncologic disease. Its use can help with presurgical risk stratification and delineation 
of eloquent cortex. While the gold standard remains intraoperative mapping for identification of 
eloquent brain, preoperative imaging can be of immense value in understanding individual patient 
anatomy to help make surgery more efficient. In this way, advances in diffusion tensor imaging 
(DTI) and functional magnetic resonance imaging (fMRI) provide noninvasive means of brain 
mapping. Other modalities, like transmagnetic stimulation (TMS) are also useful adjuncts and can 
make intraoperative mapping more efficient. After surgery, advanced imaging can help distinguish 
between the historically vexing diagnoses of either tumor recurrence or treatment-related change. 
In this review, we focus on the presurgical utility of DTI and fMRI and then move toward discussing 
how perfusion and diffusion imaging can more effectively guide patient management in diagnosti-
cally challenging situations.

DiFFUSiON TeNSOR iMAGiNG

Diffusion tensor imaging (DTI) has provided the first in vivo visualization of white matter tracts in the 
brain (1). This fiber tracking technique has become an essential component of a multimodality 
approach to presurgical intraoperative planning and decision making. It demonstrates morphologic 
and anatomic information, previously inaccessible to the neurosurgeon without direct electrical 
stimulation, including demonstration of the corticospinal tract (CST) and arcuate fasciculus, which 
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FiGURe 2 | Eight-year-old right-handed boy with left temporal lobe 
glioblastoma. (A) Tractography in the axial plane demonstrating the left 
corticospinal tract (CST). (B) Tractography of the left CST in the coronal 
plane. (C) Three-dimensional fiber tracking of the left CST. (D) Sagittal 
T1-weighted image with fused language activation colored red demarcating 
Broca’s area, which is elevated by the left temporal lobe tumor. (e) Three- 
dimensional reconstruction with the tumor in pink and task-based functional 
areas of eloquent language in red, yellow, and orange. No copyright 
permissions were required to use these images.

FiGURe 1 | 36-year-old woman with a left thalamic glioblastoma. Fractional 
anisotropy (FA) color-coded map with tracts coded in blue for the superior–
inferior plane, red for the horizontal plane, and green for the anterior–posterior 
plane. No copyright permissions were required to use these images.
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can influence the extent of surgical resection. As asserted by 
Potgieser et al., “the ultimate goal and major challenge in glioma 
surgery is to obtain maximal resection while minimizing loss 
of neurological function,” and DTI provides a means to protect 
eloquent white matter tracts (1).

By measuring the diffusivity of water molecules, a map of 
the axonal network in the brain is created. Specifically, DTI 
uses anisotropy, the restriction of random three-dimensional 
(3D) Brownian motion of water molecules in white matter, to 
estimate the in  vivo axonal direction within a particular voxel  
(2, 3). Tractography pieces together this information from voxel 
to voxel to model long-range pathways of white matter tracts (4). 
DTI, developed from diffusion-weighted imaging (DWI), uses 
magnetic gradients in at least six directions to create a model of 
diffusion in three dimensions (5). The direction of maximum dif-
fusivity of water molecules coincides with the main white matter 
fiber orientation. Fractional anisotropy (FA), a unit-less numeri-
cal value between 0 and 1, correlates with the degree of direction-
ality of diffusion, with higher FA values corresponding to greater 
directionality. These FA values can be used to create color-coded 
tractography maps, with blue corresponding to tracts traveling in 
the superior-inferior plane, red for tracts in the horizontal plane, 
and green for tracts in the anterior–posterior plane (Figure 1)  
(6, 7). Another way of visualizing the data is through fiber track-
ing, which demonstrates neural tracts in 3D. For example, DTI 
has been used to interrogate pathways, such as the CST (Figures 2 
and 4), optic tract, superior longitudinal fasciculus, and arcuate 
fasciculus (Figure 3) (1, 5, 8–11).

In the presence of tumor, white matter can be displaced, dis-
rupted, edematous, or infiltrated by tumor. DTI can demonstrate 
the local effects of tumor on white matter integrity. Four patterns 
have been typically described: (1) normal signal with altered 
position/direction suggesting tract displacement; (2) decreased 
but present signal with normal direction and location suggesting 
vasogenic edema; (3) decreased signal with disruption of fiber 
tracts suggesting tumor infiltration; and (4) loss of anisotropic 
signal suggesting tract destruction (5).

Diffusion tensor imaging provides a presurgical and intraop-
erative tool, that in conjunction with other modalities, enables a 
safer, more patient-specific procedure (12). Integration of DTI/
fMRI into neurosurgical navigation systems to provide patient-
specific guidance will contribute to the efficacy and safety of 
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FiGURe 3 | 48-year-old right-handed patient with a right-sided temporal lobe 
glioma with left hemisphere dominance. Three-dimensional color 
tractography of the arcuate fasciculus from a task-based functional area 
consistent with Broca’s area (red blob marked with white arrow) viewed from 
the left. No copyright permissions were required to use these images.

FiGURe 4 | Six-year-old right-handed boy with WHO grade III anaplastic astrocytoma in the subcortical white matter of the left postcentral gyrus. Central sulcus is 
marked with a white arrow. (A) Axial T1-weighted anatomic image overlaid with directionally color-coded fiber tracking demonstrating the motor (red arrow) and 
sensory (yellow arrow) corticospinal tracts spread apart by the lesion. (B) Sagittal T1-weighted anatomic image overlaid with directionally color-coded fiber tracking 
demonstrating the motor (red arrow) and sensory (yellow arrow) corticospinal tracts spread apart by the lesion. (C) Three-dimensional reconstruction with the tumor, 
colored red, separating the motor (red arrow) and sensory fiber tracts (white arrow). No copyright permissions were required to use these images.
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neurosurgical resections, especially in the presence of anatomic 
distortion (Figure 5) (13, 14).

Tractography requires a diffusion model, a fiber-tracking algo-
rithm, and a set of anatomical regions of interest (ROIs). The fiber-
tracking algorithm reconstructs the trajectory of the white matter 
based on the directional information given by the diffusion model 
and the anatomical ROIs. The fiber-tracking algorithm may use 
deterministic, probabilistic, filtered, or global approaches which 
are all different mathematical analyses of the same DTI pulse 
sequence. An exact knowledge of white matter tracts is required 
to identify errors generated by these algorithms (15).

Concordance between DTI tractography and direct electrical 
stimulation is reportedly high with a sensitivity of 92.6% and 
specificity of 93.2% (1, 16). Furthermore, improved outcomes 
have resulted when preoperative DTI fiber tracking has been 
performed with a decrease in postoperative deficits from 32.8 
to 15.3% and a longer median survival in high-grade glioma 
patients of 21.2 months compared to 14.0 months in the control 
group (17).

Although a promising modality for improved surgical plan-
ning and patient safety, DTI is subject to several pitfalls and 

limitations. First, the lack of a standard analysis protocol limits 
reproducibility and accuracy (15). Second, DTI has limited 
accuracy in the presence of crossing fibers and false tracts 
may be created. Third, the DTI sequence is very susceptible to 
inhomogeneity within the magnetic field. This limiting factor 
is magnified in the intraoperative setting because of increased 
susceptibility from air-tissue boundaries (1). Fourth, tumor 
involvement can change the architecture of white matter, so 
DTI may underestimate the presence of functional white mat-
ter tracts in the presence of tumor (18). Fifth, there is a high 
degree of user discretion required in determining appropri-
ate FA thresholds made more complicated by tumor-related 
distortion and edema; however, ongoing improvements in 
software allowing for automatic segmentation can help practi -
tioners separate noise and artifact from real white matter 
tracts. Finally, brain shift during the course of surgery from 
positioning, anesthesia, retraction, edema, and CSF leakage 
can result in loss of spatial congruency between cerebral 
structures and images, limiting tractography accuracy (19, 
20). Since intraoperative parenchymal shift may be up to 
15  mm, a recommended safety margin of at least 5–10  mm 
should be taken into account when approaching eloquent 
tracts (19, 21–23). However, such suggestions of “margin” are 
at best guides; the safest approach is to integrate intraoperative 
subcortical mapping with navigational data including DTI. 
Advents in technology including ultrasound guided reorienta-
tion of navigational data have emerged, but none are exacting 
enough to provide the spatial resolution necessary to operate 
near eloquent white matter tracts.

Many authors feel that DTI is no longer the gold standard for 
3D fiber tracking produced by DWI (24–26). Currently, most DTI 
sequences utilized for intraoperative mapping use 64 or fewer 
diffusion directions with only a single shell of diffusion values 
(b  =  1,000  s/mm2) and an approximate 5–6-min acquisition. 
These technical factors cannot overcome the serious crossing 
fiber problem. DTI fails to resolve the multiple fiber directionali-
ties per voxel limitation required to visualize smaller white matter 
tracts or the corticospinal tract in its true entirety (24). Despite 
the advent of higher order models such as high angular resolu-
tion diffusion imaging (HARDI) and diffusion spectrum imaging 
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FiGURe 5 | 52 years old with gliomatosis involving the left posterior frontal 
lobe and left thalamus. Integrated surgical plan with task-based functional 
motor activation with the associated corticospinal tract fiber tracking.  
(A) Axial image with the eloquent motor cortex in red with the associated  
left corticospinal tract (CST) fiber tracking (blue) displaced posteriorly by  
the left frontal lobe mass. (B) Coronal image with the eloquent motor cortex 
in red with the associated left CST fiber tracking (blue) displaced laterally  
by the left thalamic mass. (C) Sagittal image with the left CST fiber tracking 
(blue) displaced posteriorly by the left frontal lobe mass. Note the associated 
cerebellar activation (white arrow). (D) Three-dimensional reconstruction with 
eloquent motor cortex in red and directionally color-coded CST fiber tracking. 
No copyright permissions were required to use these images.
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(DSI) which produce more robust and accurate fiber orientation, 
newer methods have not yet translated well into the clinical arena 
due to complex post-processing algorithms and long acquisition 
times (27, 28). The first clinical use of advanced fiber tracking 
methods was a prospective study, which successfully identified 
language tracts of glioma patients preoperatively and predicted 
postoperative functional recovery with HARDI q-ball fiber 
tractography (27).

Recent advances in MR technology including simultaneous 
multislice echoplanar imaging, multiband excitation, and the use 
of multiple receivers has accelerated acquisition times permitting 
DSI to be used clinically. Many of these developments came about 
due to the work being done on the human connectome project 
(28). The latest entry to map white matter fibers is diffusional 
kurtosis imaging (DKI), which is qualitatively comparable to DSI. 
DKI has a shorter scan time and is therefore a potential clinical 
favorite (29).

Diffusion tensor imaging is not sufficiently accurate for ideal 
surgical planning, but it remains to be seen which diffusion-
weighted method, HARDI, DSI, or DKI, will achieve clinical 
predominance in the future. All of these methods may overcome 
current DTI limitations and provide more reproducible and 
accurate fiber tracking.

FUNCTiONAL MRi

Functional MRI is a technique to detect eloquent cortex by 
identifying increased blood oxygen levels in areas of the brain 
that are activated by task-based paradigms. Optimal presurgi-
cal planning requires maximal resection and minimal deficits 
in areas of eloquent cortex, particularly those contributing to 
motor and language function. Task-based fMRI correlates with 
electrophysiology, Wada testing and prediction of functional 
loss postoperatively (30–33). fMRI indirectly measures neuronal 
activity by looking at areas of increased blood flow with a specific 
pulse sequence that uses the ratio of oxyhemoglobin to deoxy-
hemoglobin as a contrast agent, also known as blood oxygen 
level-dependent (BOLD) imaging (34).

For surgical mapping, subjects alternate between a passive 
resting state and an active task-performing state, using the so 
called “block” paradigm design (Figure  6) (35). An arbitrary 
statistical threshold determines which voxel is considered 
“active” and setting the correct threshold is key to limiting noise 
and optimizing sensitivity (35). Sometimes a scoring system, 
the Laterality Index is used to choose the dominant hemisphere 
comparing the total number of active voxels on each side (36). 
Based on tumor proximity to an eloquent area, approximately 
20% of total neurosurgical cases require fMRI mapping.

Functional MRI motor mapping correlates extremely well 
with functional areas identified by direct cortical stimulation 
(DCS) with fMRI having a sensitivity and specificity of 95–100% 
(37–39). In contrast, fMRI language mapping is less robust with 
sensitivity and specificity ranging between 37–91 and 64–83%, 
respectively (38). Nevertheless, fMRI is rapidly becoming the 
study of first resort for determining language dominance in the 
preoperative setting, as a non-invasive alternative to the Wada 
test. The Wada test, an intracarotid amobarbital procedure, is 
currently considered the gold standard. However, it is invasive, 
may lead to more permanent deficits in vascular compromised 
patients, has reversible side effects that can temporarily distress 
patients, must be performed rapidly (3–5  min), and can give 
unreliable results with variations in vascular anatomy. fMRI is 
cheaper, repeatable, and often less distressing to the patient than 
Wada testing (35).

Studies comparing the extent of tumor resection with fMRI 
verses without are limited as most are retrospective. In the few 
prospective studies that exist the extent of resection in high-grade 
gliomas, the functional status at 6 months, and progression-free 
survival (PFS) were improved with DTI functional neuronaviga-
tion (17, 39–41).

Limitations to fMRI include the presence of MRI contraindi-
cations, such as pacemakers, severe obesity, and claustrophobia, 
as well as lack of attention and inability to follow task-related 
commands. The output of task-based fMRI is highly dependent 
on adequate task performance (42). Additionally, task-based 
fMRI requires trained personnel and postprocessing, which are 
difficult to standardize (42, 43). Susceptibility artifact from blood 
products or metallic artifact from surgical plates and dental work 
may also affect the BOLD sequence used in fMRI. The abnor-
mal vascularity found in and around high-grade gliomas may 
interfere with the BOLD signal resulting in false-negative results. 
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FiGURe 6 | Block paradigm for bilateral finger tapping demonstrating eloquent cortex marked in green. Note the time course strip at the top of the image. Blood 
oxygen level-dependent activation (white line) is overlaid onto the block paradigms’ design (green line) of 18 s of rest followed by 36 s of activation, repeated three 
times for a total paradigm length of 4 min. No copyright permissions were required to use these images.
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Likewise, perilesional edema and brain plasticity may contribute 
to false-positive activations (44).

In patients who are unable to follow commands, an alternative 
to task-based fMRI is resting-state fMRI (rs-fMRI) (45). Rs-fMRI 
uses endogenous brain activity, detectable with the BOLD 
sequence, to identify areas that are interacting at rest to delineate 
distinct functional networks (46). Rs-fMRI generates correlation 
maps that are similar to functional maps obtained from task 
activation (47). Patient participation is not required and fluctua-
tions in BOLD persist under conditions of sleep and anesthesia 
as well as in the presence of tumors (Figure 7) (48–50). In theory, 
rs-fMRI can be used in patients of any age and of any cognitive 
ability. Rs-fMRI is dependent on the selection of a “seed” region 
in a characteristic location (i.e., the hand-motor area to identify 
the sensorimotor network) and is thus biased by the technical 
limitations of the operator (51). Nevertheless, resting-state stud-
ies can salvage exams in uncooperative (pediatric or adult) and 
obtunded patients. While still experimental, increasing numbers 
of clinical studies proving concordance with task-based fMRI or 
intraoperative mapping have been published validating the clini-
cal use of rs-fMRI (52–55).

Ultimately, fMRI cannot delineate what exact cortical area is 
required for a specific function. That said, it can help focus the 
mapping procedure intraoperatively to improve surgical efficiency. 
Moreover, it can be helpful in lateralizing language in right-
dominant patients. As with DTI though, fMRI requires extensive 
postprocessing and institutional resources to operationalize on a 
regular basis. Hospitals without these resources can still perform 
excellent, safe surgery with DCS. Future directions for fMRI 

may include its use as an adjunct in planning radiation doses to 
minimize the effects of radiation toxicity or its use in planning safe 
trajectories and heat maps for patients who undergo laser inter-
stitial thermal therapy. Finally, more widespread incorporation of 
ultra-high field magnets (7 T) will help improve the mesoscopic 
resolution of fMRI, particularly as it relates to BOLD imaging (56).

MR-PeRFUSiON AND Dwi

Magnetic resonance perfusion-weighted imaging (PWI) and 
DWI provide information on tumor physiology that is not 
accessible with conventional sequences. PWI methods include 
dynamic susceptibility contrast (DSC) and dynamic contrast-
enhanced (DCE) perfusion. DSC generates hemodynamic 
parameters such as relative cerebral blood volume (rCBV) that 
theoretically reflects microvascular density or area (57). DCE 
generates a similar parameter, plasma volume (Vp), and K-trans, 
which is a marker of microvascular permeability or capillary 
“leakiness.” DCE has gained more interest recently due to better 
spatial resolution and less susceptibility artifacts than DSC, an 
important attribute in the postoperative setting or in hemor-
rhagic masses. An alternate sequence first used in the study of 
ischemia, DWI provides a visual representation of molecular 
water motion with areas of reduced diffusion [low apparent 
diffusion coefficient (ADC)] correlating with increased tumor 
cellularity and other factors (57). In the pretreatment setting, 
PWI and DWI have been studied as tools to help narrow the 
differential diagnosis, grade gliomas, guide biopsies, and assess 
prognosis and potential treatment success.
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FiGURe 8 | Glioblastoma on initial presentation. T1W postgadolinium (A) and T2W FLAIR (B) magnetic resonance sequences demonstrate a large intra-axial 
heterogeneously enhancing left parietal mass with extensive surrounding edema and/or infiltrative neoplasm. Elevated relative cerebral blood volume (arrows) is 
noted on the dynamic susceptibility contrast perfusion map (C) compatible with increased vascular density. The diffusion-weighted imaging  
(D) and the corresponding apparent diffusion coefficient map (e) demonstrate heterogeneous restricted water motion (arrow) within this mass most compatible with 
hypercellularity. No copyright permissions were required to use these images.

FiGURe 7 | Motor network identified on a resting state functional magnetic resonance imaging in an anesthetized 6-year-old demonstrating eloquent cortex on both 
sides of a left postcentral gyrus glioma. Central sulcus is marked with white arrow. (A) Axial T2 image with overlaid motor network, in red, separated by T2 
hyperintense glioma. (B) Axial T2 image with overlaid motor network on an image slice immediately superior to image (A). No copyright permissions were required to 
use these images.
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As neoplastic and inflammatory conditions with significant 
differences in management can share conventional imaging 
findings, PWI and DWI may be of use in narrowing the differ-
ential diagnosis. For example, high-grade gliomas demonstrate 
relatively increased rCBV in the peritumoral T2 hyperintense 
region compared to metastases, which may be related to sur-
rounding infiltrative non-enhancing tumor. In addition, assess-
ment of the DSC signal intensity curve has shown significant 
differences between high-grade glioma and metastasis in the 
contrast-enhancing region as well as the peritumoral region (58). 
Primary CNS lymphoma can also mimic a high-grade glioma but 
demonstrates lower rCBV and ADC values (59–61). Analysis of 
the DSC signal intensity curve has demonstrated significant dif-
ferences between lymphoma, high-grade glioma, and metastasis 
(62). Certain non-neoplastic pathologies such as tumefactive 
demyelination similarly demonstrate lower rCBV values (63).

There is a strong correlation between elevated rCBV and high-
grade gliomas (Figure  8), with an important exception being 

low-grade oligodendrogliomas, which can demonstrate relatively 
elevated values (64–66). Similar correlation has been found with 
higher K-trans (67, 68) and Vp (69). Lower ADC values have also 
been reported in higher grade gliomas, related to their increased 
cellularity (64, 70). Low-grade gliomas undergoing transforma-
tion can demonstrate increased rCBV up to 12  months before 
contrast enhancement is apparent on conventional imaging 
(71). If this finding were confirmed, PWI would be important to 
include in surveillance imaging of low-grade gliomas. Starting or 
changing treatment based on this information and whether early 
treatment leads to better oncologic outcomes would also need to 
be debated. However, as PWI and DWI measurements cannot 
completely obviate the need for tissue sampling at this time, their 
utility may be greater in the selection of biopsy targets to reduce 
undersampling (72–74).

The prognostic and predictive capabilities of PWI and DWI 
in the pretreatment setting have been assessed in several stud-
ies related to glioblastoma. Elevated baseline rCBV and K-trans 
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FiGURe 9 | T1W postgadolinium (A) and T2W FLAIR (B) magnetic resonance (MR) sequences demonstrate a region of heterogeneous mass-like enhancement at 
the anterior border a glioblastoma resection cavity in the left occipital lobe that had progressed since the prior study. Diffusion-weighted imaging (C) and the 
corresponding ADC map (D) demonstrate predominately increased water motion suggesting necrosis [(D), white arrow]. The dynamic susceptibility contrast maps 
demonstrate predominately decreased microvascularity on the Vp map (e) with markedly increased permeability on the K-trans map (F). However, there is a smaller 
internal region of restricted diffusion [(D), black arrow] and increased Vp [(e), white arrow]. The combination of these imaging findings, diffusion and perfusion 
metrics are most compatible with pseudoprogression/treatment changes with a smaller internal region of recurrent tumor. These findings were confirmed on 
pathology. No copyright permissions were required to use these images.
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values correlated with worse overall survival (OS) after cytotoxic 
therapy (75–77). Reduced ADC values prior to cytotoxic therapy 
were associated with reduced OS (78, 79). Reduced ADC values 
were also associated with worse outcomes in a multicenter study 
of recurrent glioblastoma treated with bevacizumab (80). On the 
contrary, in treatment-naive glioblastoma, reduced ADC values 
before antiangiogenic therapy correlated with better outcomes, 
possibly due to an association with MGMT methylation, high-
lighting the genetic differences of untreated and recurrent glio-
blastomas (81). However, the relevance of these findings remains 
unclear with a recent study suggesting that clinical parameters 
outperformed advanced imaging metrics in predicting survival 
at time of diagnosis (82).

In the posttreatment setting, MRI has an essential role with 
PWI and DWI providing potentially additive information about 
early therapeutic response with both standard and antiangiogenic 
therapies and differentiating response from pseudoresponse and 
true progression from treatment changes. For example, Mangla 
et al. showed that an increase in rCBV at 1 month after therapy 
was predictive of poor 1-year survival (median survival 238 vs. 
529 days), whereas change in tumor size was not predictive (83). 
In a recent meta-analysis, Choi et  al. qualitatively reviewed 13 
studies and pooled-hazard ratios with rCBV as the marker for 
responders and non-responders, concluding that PWI could be 
considered as a predictive or prognostic biomarker in patients 

treated with a bevacizumab-based regimen (84). PWI may there-
fore potentially overcome the limitation of pseudoresponse on 
conventional postcontrast imaging after antiangiogenic therapy. 
PWI (and DWI) may additionally help to increase sensitivity and 
specificity for non-enhancing tumor, given the non-specificity of 
T2 changes after bevacizumab treatment (85, 86).

Diffusion-weighted imaging-derived metrics have similarly 
shown prognostic potential in the posttreatment setting. For 
example, Rahman et al. evaluated changes in ADC between base-
line and posttreatment exams in recurrent glioblastoma patients 
on bevacizumab alone or in combination with other chemothera-
pies. Using histogram analysis, which better characterizes the dis-
tribution of values within the area of concern, ADC parameters 
from baseline and 3- to 6-week posttreatment exams stratified 
overall and PFS (87). The timing of evaluation appears to have 
an impact as noted in a study of 37 glioblastoma patients treated 
with standard therapy followed by adjuvant temozolomide and 
an antiangiogenic drug. Changes in diffusion parameters were 
assessed pre-, mid-, and postradiation therapy and correlated 
with 6-month PFS. Changes in ADC from mid- to postradiation 
were more significant than other time points, a notable finding as 
a mid-therapy exam is not typically performed (88).

Perfusion-weighted imaging has also shown promise in help-
ing to differentiate tumor from radiation necrosis or pseudopro-
gression (Figure  9). A recent meta-analysis calculated pooled 
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sensitivities and specificities of 90% and 88% and 89% and 85% 
for identifying recurrent tumor with DSC and DCE, respectively 
(89). The most commonly evaluated DSC perfusion parameter 
has been rCBV with consistent differences shown between tumor 
and treatment change (90–93). Exceptions include Song et  al. 
who found a difference using ADC but not rCBV (94) and 
Kong et al. who found a difference only in the MGMT methyl-
ated group (95). Both quantitative and semiquantitative DCE 
approaches have been increasingly evaluated in the literature and 
have demonstrated success in separating tumor and treatment 
change. For example, Thomas et  al. evaluated the 90th histo-
gram percentile of normalized Vp (96) and Suh et al. evaluated 
parameters derived from the area under the time-signal intensity 
curve with similar accuracy (97). However, currently there is 
significant variability in the optimal reported perfusion metric 
thresholds across institutions and PWI acquisition parameters 
and analytic methods have not been standardized. DWI has also 
been evaluated in the posttreatment setting with several studies 
demonstrating significantly lower ADC values in tumor when 
compared to treatment changes, most likely attributable to the 
higher cellularity of tumor (98–100).

However, regardless of the technique employed, an admixture 
of tumor and treatment change is routinely observed on pathol-
ogy, which can speciously skew quantitative analyses. Thus, there 
has been investigation of multiparameteric approaches to improve 
sensitivity and specificity. For example, a combination approach 
of DWI with either DSC or DCE demonstrated improved predic-
tive accuracy compared to any single parameter in several studies 
(91, 92, 101). On the contrary, Prager et  al. found a combined 
DSC and DWI model was not significantly better than rCBV 
alone (93). While beyond the scope of this review, it should be 
noted that the advanced imaging toolbox also includes PET and 
MR spectroscopy, which can further aid in a multiparametric 
approach.

CONCLUSiON

Advanced imaging has an ever increasing role to play in the 
management of patients with gliomas. Preoperatively, imag-
ing adjuncts like DTI and fMRI can facilitate more efficient 
surgical mapping procedures and even help determine whether 

intraoperative mapping is necessary in some instances. Future 
work related to DTI showed focus on making it more accurate and 
user-independent; this is of particular import in gliomas where 
tissue edema and destruction can alter white matter pathways in 
unpredictable ways. Future directions for fMRI may include its 
use as an adjunct in planning radiation doses to minimize the 
effects of radiation toxicity or its use in planning safe trajectories 
and heat maps for patients who undergo laser interstitial thermal 
therapy.

Despite the strengths of anatomic imaging, there is a need for 
supplementation with other imaging modalities to better guide 
treatment. Both PWI and DWI are particularly helpful in biopsy 
target guidance and in distinguishing recurrent tumor from 
posttreatment changes. PWI produces more robust parameters 
than DWI, accounting for greater clinical and research interest. 
Among PWI techniques, DCE has gained more interest recently 
given its potential advantages over DSC, particularly in the 
postoperative setting, and is the preferred technique for tumor 
surveillance at our institution. Though outside the scope of this 
article, spectroscopy and positron emission tomography can also 
be of immense value in resolving diagnostic questions and should 
be used collaboratively as circumstances require. Either alone or 
in combination, these advanced imaging tools may eventually 
provide additional prognostic and molecular information espe-
cially given the recent data on molecular heterogeneity between 
contrast enhancing and non-contrast enhancing disease (102). 
The potential utility of PWI and DWI will also likely continue 
to expand as use of novel treatments such as immunotherapy, 
which can also result in pseudoprogression, become more widely 
adopted. However, there remains significant variability in the 
optimal reported quantitative metric thresholds across institu-
tions and neither the RANO criteria for conventional therapies 
nor the iRANO criteria for immunotherapies have incorporated 
these techniques to date. Continued research efforts and stand-
ardization of acquisition parameters and analytic methods pos-
sibly with automation are required to arrive at the most effective 
approach that can be applied across institutions.
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