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Miniaturized and wearable sensor-based measurements enable the assessment of 
Parkinson’s disease (PD) motor-related features like never before and hold great prom-
ise as non-invasive biomarkers for early and accurate diagnosis, and monitoring the 
progression of PD. High-fidelity human movement reconstruction and simulation can 
already be conducted in a clinical setting with increasingly precise and affordable motion 
technology enabling access to high-quality labeled data on patients’ subcomponents of 
movement (kinematics and kinetics). At the same time, body-worn sensors now allow 
us to extend some quantitative movement-related measurements to patients’ daily living 
activities. This era of patient movement “cognification” is bringing us previously inac-
cessible variables that encode patients’ movement, and that, together with measures 
from clinical examinations, poses new challenges in data analysis. We present herein 
examples of the application of an unsupervised methodology to classify movement 
behavior in healthy individuals and patients with PD where no specific knowledge on the 
type of behaviors recorded is needed. We are most certainly leaving the early stage of 
the exponential curve that describes the current technological evolution and soon will 
be entering its steep ascent. But there is already a benefit to be derived from current 
motion technology and sophisticated data science methods to objectively measure 
parkinsonian impairments.

Keywords: Parkinson’s disease, wearable sensors, data science, biomarkers, biomechanics, clinical  
decision-making, decision support, motor symptoms fluctuations

MOtOr sYMPtOMs AssessMeNt iN PArKiNsON’s  
DiseAse (PD)

Parkinson’s disease is the second most common neurological disorder, caused by the progressive loss 
of dopaminergic and other subcortical neurons. It is traditionally featured by its motor symptoms, 
hence its diagnosis is clinical, dependent on the presence of bradykinesia, which is associated with 
rest tremor, rigidity, and postural instability (1–3).

The classic motor features of PD typically start insidiously and are unilateral and mild, the 
response to treatment being excellent (3–5). 2–5 years after disease onset, the majority of patients 
experience wearing-off symptoms, involuntary movements, and other motor complications. Gait and 
balance disturbances, as well as speech and swallowing difficulties commonly appear, and response 
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to treatment is only partial (5–8). After 10 years or more, most 
patients have developed a clearly bilateral disease, OFF states are 
associated with high disability and dependency, and ON states 
are also not good. Falls are common, and an increasing number 
of patients become at least temporarily wheelchair-bound. 
Dysarthria has a great impact on patients’ condition, and hinders 
communication with caregivers, whereas dysphagia is a frequent 
cause of choking and aspiration pneumonia, sometimes requiring 
tube feeding (6, 9).

Parkinson’s disease clinical assessment involves subjective 
patient reports of any changes in status since the last consulta-
tion and office-based assessments through clinical scales and 
traditional patient-reported outcomes (10–12). The use of 
standardized assessment tools in clinical practice and research is 
of utmost importance to assess disease progression, evaluate the 
effect of therapeutic interventions, and to communicate among 
colleagues (13). The most used instruments for PD assessment 
are the International Parkinson and Movement Disorder Society 
Unified Parkinson’s disease rating scale (MDS-UPDRS), to 
evaluate the presence, severity, and progression of PD symp-
toms, and the Hoehn and Yahr scale, which uses severity levels 
to evaluate disease progression (10, 11). However, numerous 
other tests and rating scales have been used, but there is not a 
consensus on the most suitable screening tools or monitoring 
outcomes (10, 11, 14).

Parkinson’s disease is notorious for its plethora of motor and 
non-motor features and for considerable inter and intra-subject 
clinical variability in clinical symptoms, disease progression, and 
response to medication. This usually reduces clinical visits to brief 
snapshots of patients’ health condition that not always reflects 
their real health-care status (11, 12, 15, 16). From a scientific and 
methodological perspective, the current standards of PD clinical 
evaluations have some limitations: (1) assessments requiring 
concentration and recall (e.g., fall diaries) are compromised by 
cognitive impairment, present in 80% of patients in the advanced 
stage of the disease; (2) the assessment is dependent on clinicians’ 
expertise and individual training; and (3) standard assessments 
are time consuming and location dependent (7, 11, 15). To obtain 
an accurate picture of symptoms, a continuous evaluation for 
prolonged periods of time is, therefore, required (11, 15).

There is a growing awareness that wearable technology, with its 
ability to capture movement continuously over longer periods of 
time in controlled and free-living environments, may overcome 
many of these limitations. It allows a higher sensitivity, accuracy, 
and reproducibility, and makes it more feasible to objectively 
capture the full complexity and diversity of changes in motor and 
non-motor behaviors (12, 15). Therefore, it not only answers to 
the difficulty to evaluate reliably fluctuating or rare events that, 
by definition, take place outside clinical visits (i.e., in daily life) 
but is also able to remotely capture behavioral data and use it 
to optimize treatment strategies through closed-loop systems 
(11, 12). Moreover, the use of wearable technology may have an 
impact on future clinical trials. It may have a significant impact 
on disease-modifying agents research, since it may offer a way to 
detect more readily subtle changes that were missed until now. 
Additionally, with wearable devices’ ability to measure outcomes 
at multiple time points, the statistical power of clinical trials can 

be enhanced and thus the sample size required to evaluate the 
effect of therapeutic interventions is reduced (12, 17).

With recent technological advances, a single worn device has 
the potential to provide a comprehensive picture of the patient 
within one assessment. A single sensor can quantify macro 
features, such as walking, sleeping, or sedentary time. It can also 
be broken down to detect very discrete features (micro features), 
such as a fall, gait characteristics, turning, and freezing (15). 
However, despite the variety of commercially available low-cost 
devices, the use of wearable technology in health care has not yet 
been established, since algorithm development and data analysis 
have not kept pace with sensor technology and design advances 
(15). Also, it is not enough to show that sensor-based technology 
can measure PD-related features. It is necessary to prove that 
those features are clinically relevant to patients and clinicians and 
useful to PD monitoring assessment. A measure is justified if it 
enhances our understanding of a complex disease or carries the 
potential to improve disease management as to the need and dose 
of therapy (11, 12). In order to distinguish relevant from futile 
technological-based outcome tools, researchers would need to 
determine: (1) which constructs are clinically relevant; (2) which 
contribute to an ecologically effective therapeutic decision and 
provide adequate information about a treatment response or 
disease course, and finally; (3) which allow an easy and repetitive 
use (12).

PD PAtieNt BiOMecHANicAL ANALYsis

Biomechanists and mobility researchers have seen human move-
ment analysis evolve from a stick figure representation (18) to 
accurate real-time 3D movement reconstruction and simulation 
(19, 20). While such tools support many of today’s biomechanical 
laboratories’ services and research, some barriers (e.g., equipment 
costs and expertise) inhibit their use in clinical practice, and as 
a result, observation persists as the basis for patient movement 
analysis.

An increasing body of literature from a range of movement 
dysfunctions indicates that gait analysis with 3D movement 
measurements allows a more accurate assessment of gait devia-
tions than visual-based gait analysis (21, 22) and supports its 
clinical efficacy (23). Musculoskeletal models (19, 24) can be 
used in clinical settings together with motion capture technol-
ogy to accurately quantify 3D kinematic variables and comple-
ment (or even substitute) observational analysis. Being able to 
systematically quantify subcomponents of movement (including 
spatiotemporal variables, joint angles, angular velocity and 
acceleration, among others) is necessary to ascertain the motor 
state and monitor patients’ specific response to therapeutic 
interventions (25) and help diminish clinicians’ different rating 
strategies (26). Additionally, clinicians may want to know what 
were the forces and moment of force for each joint involved in 
the observed movement (27). This can be indirectly determined 
from the kinematics, external forces (if applicable), and model 
inertial properties by a process known as inverse dynamics. In 
gait analysis, external forces such as the ground reaction forces 
are collected using force platforms. Recent published literature 
is paving the way for predicting ground reaction forces based 
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on measured kinematic data (28) only and by means of artificial 
neural networks (29). Such solutions will give clinicians access to 
new subcomponents of movement that are difficult or impossible 
to measure experimentally and may help overcome the costs and 
limitations of stationary devices like force platforms. Finally, 
simulations of human movement (forward dynamics) can be 
used to help understand what the kinematic results are through 
a set of given muscle activations. Data from these simulations 
provide clinicians with a cause-effect framework for analyzing 
the deviation of a patient’s movement pattern from the healthy 
pattern or from his movement pattern in the past. This type 
of framework can be used to answer “what if?” questions via 
in  silico experiments and help plan therapeutic interventions 
targeting motor learning and control. Clinicians may access 
freely available full-body musculoskeletal models for simula-
tions of human gait (30) and use them to synthesize movement 
patterns with minimum or even absence of experimental data in 
order to optimally perform a given movement task (often called 
predictive simulations) (31).

Optical motion capture systems are among the most com-
monly used solutions for human movement analysis in research 
laboratories. These systems are used to collect three-dimensional 
coordinates of special markers (and sometimes clusters) that are 
placed over the skin of one or more anatomical segments. These 
segments are tracked throughout the movements and sampled 
many times per second. To transform the markers’ coordinates 
into body segments’ kinematics (e.g., position and orientation), a 
multi-body chain where each anatomical segment is assumed as 
a rigid body is generally used. Because skin movements induce 
displacements in the position of the markers relative to the 
underlying bones, optimization methods need to be considered 
to improve segments’ pose estimation accuracy in each time 
frame (32). A new generation of more affordable optical motion 
capture systems is emerging, proving to be sufficiently accurate 
and reliable for use in clinical practice (33, 34) and providing a 
unique opportunity for patients’ movement analysis (35, 36) in 
clinical settings.

One of the major disadvantages of the optical motion capture 
systems is the limited workspace from where patients’ movement 
can be collected and the time needed for subject instrumentation. 
Recent advances in microelectromechanical systems provide a 
new generation of inertial measurement units (IMUs), giving a 
new surge to human movement analysis clinical and research 
communities. This new solution has a theoretically unlimited 
workspace, is cost-effective, and can be successfully used for 
accurate, non-invasive, and ambulatory motion tracking (37). 
An independent evaluation of market-available solutions cor-
roborates that low cost and portable IMUs are an attractive solu-
tion for patients’ evaluation in a clinical setting, when compared 
to reported accuracy and reliability of optical motion capture 
systems (38).

Inertial measurement units are probably the most promising 
candidate for patients’ real-life mobility evaluation, extending and 
complementing the quantitative movement analysis performed 
in the clinical setting. In line with this, the development of new 
algorithms for classification of PD patients’ motor symptoms 
fluctuations based on a single IMU has received the attention of 

many researchers, and promising preliminary results have been 
published [e.g., Ref. (39)].

As stressed by the Movement Disorders Society Task Force on 
Technology (12), there is a strong need for a centralized, easy-
to-access, and user-friendly platform, capable of merging clinical 
scores and outcomes, and the biomechanical-related informa-
tion generated both in the clinical setting and during patients’ 
activities of daily living. With such a myriad of data centralized, 
sophisticated data science methods can be used to distil the data 
into knowledge and help support clinical decision-making, as 
elegantly summarized by Kubota and colleagues (40).

QUANtiFYiNG MOveMeNt BeHAviOr iN 
PAtieNts WitH PD

In 1959, Arthur Samuel stated that “programming computers 
to learn from experience should eventually eliminate the need 
for much of this detailed programming effort” (41). Despite this 
promising claim, researchers that develop and use machine learn-
ing pipelines in their research know that it is still a tedious process 
whose performance depends on manually engineered features or 
hyperparameter settings and that requires a considerable degree 
of expertise and programming effort. While researchers are still 
tackling this and other bottlenecks to reduce the requirement of 
expert input to a minimum (42), the usage of machine learning 
has enabled the possibility of detecting new behaviors that were 
missed by traditional scoring methodologies and may soon allow 
us to describe and measure the complete behavioral repertoire 
of a patient (43). This, in turn, will empower clinicians and 
researchers to correlate the various features of behavior with col-
lected patient data, instead of predicting which particular traits of 
behavior should be studied. To see how this could be achieved, it 
is important to understand how behavioral “classifiers” are devel-
oped using modern quantitative tools for measuring, describing, 
and analyzing behavior.

Methods designed to identify predefined blocks of motor 
behavior are in general incapable of discovering novel ones or 
new ways in which actions may be executed. One important 
characteristic of a behavior quantification algorithm should be 
the capacity of describing the behavior repertoire in its totality, 
including behaviors not anticipated by the researcher (44). As 
mentioned, these algorithms must determine explicit intervals 
of time when a relevant pattern of movement is executed (i.e., 
an action). These patterns (e.g., walking, running, or sitting) are 
detected by classifiers: computer algorithms that map input data 
to a category. A classifier can also distinguish occurrences of a 
specific action from periods where the action does not occur.

There are two distinct ways to train a classifier: supervised 
and unsupervised. In a supervised classifier, the behavior blocks 
are trained by “positive” (where the desired action happens) and 
“negative” templates (when it does not take place). The distinct 
actions are recognized by a machine learning algorithm that uses 
annotated training examples (“ground-truth” labels) to generate 
a set of rules to discriminate the different actions (44–47). In an 
unsupervised classifier, on the other hand, no previous assump-
tions are made about what type of behaviors are occurring. 
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FiGUre 1 | (A) (Left) two-dimensional embedding (t-Distributed Stochastic Neighbor Embedding) (50) of acceleration data points from nine healthy subjects 
performing several daily activities. Data were collected with one inertial measurement unit (IMU) placed over the pelvis with a sample rate of 120 Hz. Each point 
corresponds to a discretized behavior block obtained with a change-point detection algorithm. Colors correspond to clusters obtained by affinity propagation (51). A 
subset of clusters was labeled according to the dominant feature (standing, walking, sitting, etc.). (B) (Right) shows an example of the same methodology now 
applied to six patients diagnosed with idiopathic Parkinson’s disease (PD) and a Hoehn and Yahr stage less than or equal to 2. Movement data were collected with 
one IMU placed over the pelvis (sample rate 120 Hz) while patients walked a 10-m corridor, first in their OFF state (“x”) and later in their best ON state defined by the 
Movement Disorder Society Unified Parkinson’s disease rating scale (“o”). The gray dots represent all the recorded blocks of behavior from the six PD patients and 
the color dots the groups related to one patient. Clusters represented in both left and right images are from two independent experiments, thus, the resultant 
embeddings are not comparable.
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Only the representative templates with movement information 
without annotations are presented to the learning algorithm. The 
algorithm then groups data by its intrinsic structure into discrete 
units or blocks. The unsupervised classification is driven by the 
unlabeled data and the result of the procedure used as classifier 
labels for different sessions and subjects. Using this method, it 
is possible to generate a continuous unbiased classification of 
behavioral states.

In the case of PD patients, where disturbance of motor 
activities rhythmicity is commonly present, mean measures will 
simply result in averaging out any modifications and may, there-
fore, be entirely insensitive. Clinicians and researchers should 
explore all subcomponents of movement and identify those that 
highlight non-constancy over multiple repetitions and prove to 
accurately measure variability (48, 49). In the following figures, 
we present examples of the application of movement behavior 
classification in healthy individuals (Figure  1A) and patients 
with PD (Figures  1B and 2) with the use of an unsupervised 
methodology.

The unsupervised clustering approach allowed us to gener-
ate a continuous unbiased classification of behavioral states in 
these examples with healthy individuals and PD patients, even 

without specific knowledge on the type of behaviors recorded 
(unlabeled data). In some cases, the found behavior blocks can-
not be labeled, either because motor activities are impossible 
to observe or unknown altogether. Nevertheless, being able to 
categorize and discriminate these putative actions is important 
to describe the subject’s interaction with the environment, more 
importantly, so in ambulatory conditions and for long periods 
of time when direct access to the patient may not be possible 
(difficult).

Temporal variables that encode patients’ movement acquired 
both in a clinical setting and during patients daily living activities 
are often accompanied by structured covariates, such as patient 
demographics and measures from clinical examinations. In 
most cases, there are interactions and correlations between these 
movement-related variables and covariates that clinicians would 
like to understand and leverage. Fiterau and colleagues (52) 
recently presented a method that incorporates structured covari-
ates into time series deep learning and demonstrated how the 
method outperforms competing models. Such methods obviate 
the usually required extensive feature engineering and domain 
expertise to unveil data interactions and correlations and are 
becoming increasingly available.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FiGUre 2 | Representative example of data processed from the accelerometer (black signal—raw vertical acceleration; red signal—low-pass filtered posterior–
anterior acceleration) used by one of the six Parkinson’s disease (PD) patients during two 10-m walk trials, first in his OFF state and later in his best ON state. Time 
series are two collated non-consecutive segments of data recorded OFF (left) and best ON (right) states of one PD patient, as indicated by the black dashed line. 
Bottom: the distinction between the OFF and ON states is very clear with this methodology, where the clusters’ organization (showed by the color bar) perfectly 
aligns with the transition of the signals above. Different colors represent found behavioral blocks (same color code as Figure 1B).
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cONcLUsiON

We believe that the technological evolution witnessed in the last 
decades will allow us to “look” at patients in an unprecedented 
way, not only because the measurement equipment needed is 
becoming more accessible (e.g., motion sensors and software) 
but also because the dedicated expertise once required (e.g., in 
the form of a staff biomedical engineer) to collect, process, and 
present the data is nowadays facilitated by highly user-friendly 
web-based applications leveraged by sophisticated data science 
methods. The ill-equipped clinician can now be assisted in 
translating sensors’ data into actionable information upon which 
clinical decisions may be supported. Some of this technology was 
and continues to be miniaturized and made wearable, leading to a 
real-time quantified self. This will enable patients with movement 
disorders to benefit from an analysis that has been limited to aca-
demic laboratories and state-of-the-art medical centers. While 
this patient movement “cognification” is gaining a considerable 
body of evidence, showing that specific features related to the 
movement dysfunction can be measured by body-worn sensors, 
it still needs to prove its clinical impact and usefulness through 
well-designed studies. Although statistically significant changes 
may often be seen in movement-related variables in studies aim-
ing to measure change after a given intervention, it is particularly 
important to determine clinimetric properties, such as the 
minimum clinically meaningful change, to fully understand its 
clinical significance.

Machine learning automatic pipelines like the one presented 
in the previous chapter can be applied to process 3D movement 
data in a clinical setting and help quantify patterns in the patients’ 

posture, balance, and gait, complementing the information of 
rating scales such as the MDS-UPDRS. Additionally, from the 
outcome of the classification, as shown in the previous chapter, we 
can study the behavior repertoire in real-life scenarios, assessing 
the micro structure of the continuous movement and behavioral 
sequences, and quantify transitions and behavior variability, 
both in the long-term monitoring experiments and also in more 
conventional tasks. This is of particular interest to track PD motor 
symptoms fluctuations during patients’ daily living activities and 
help clinicians objectively support decision-making with respect 
to adjustments to medication type, dose, and timing that we 
believe will lead to more effective treatments, patient quality of 
life, and an overall reduction in care-related costs.

It is our belief that the successful integration of miniaturized 
and wearable sensor-based measurements and data science 
methods in daily clinical practice will be deeply dependent on 
a concerted effort of both the research and clinical communities 
on: (i) guidelines to develop clinically accepted technology-
based tools; (ii) promoting research networks and data sharing 
politics so that others can confirm and extend published results; 
(iii) learning how data science can and should be applied; (iv) 
promoting a collective intelligence to exponentially advance the 
quality of the assessment and management of PD patients.
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