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Several neurodegenerative disorders including Alzheimer’s disease (AD), frontotemporal 
dementia (FTD), Parkinson’s disease (PD), amyotrophic lateral sclerosis, and Huntington’s 
disease report aggregation and transmission of pathogenic proteins between cells. 
The topography of these diseases in the human brain also, therefore, displays a well- 
characterized and stereotyped regional pattern, and a stereotyped progression over 
time. This is most commonly true for AD and other dementias characterized by hallmark 
misfolded tau or alpha-synuclein pathology. Both tau and synuclein appear to propagate 
within brain circuits using a shared mechanism. The most canonical synucleopathy is 
PD; however, much less studied is a rare disorder called progressive supranuclear palsy 
(PSP). The hallmark pathology and atrophy in PSP are, therefore, also highly stereotyped: 
initially appearing in the striatum, followed by its neighbors and connected cortical areas. 
In this study, we explore two mechanistic aspects hitherto unknown about the canon-
ical network diffusion model (NDM) of spread: (a) whether the NDM can apply to other 
common degenerative pathologies, specifically PSP, and (b) whether the directionality of 
spread is important in explaining empirical data. Our results on PSP reveal two important 
findings: first, that PSP is amenable to the connectome-based ND modeling in the same 
way as previously applied to AD and FTD and, second, that the NDM fit with empirical 
data are significantly enhanced by using the directional rather than the non-directional 
form of the human connectome. Specifically, we show that both the anterograde model 
of transmission (some to axonal terminal) and retrograde mode explain PSP topography 
more accurately than non-directional transmission. Collectively, these data show that 
the intrinsic architecture of the structural network mediates disease spread in PSP, most 
likely via a process of trans-neuronal transmission. These intriguing results have several 
ramifications for future studies.
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inTrODUcTiOn

Several neurodegenerative disorders, including Alzheimer’s disease (AD), frontotemporal dementia 
(FTD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), 
report aggregation and transmission of pathogenic proteins between cells (1–6). The topography 
of these diseases in the human brain also, therefore, displays a well-characterized and stereotyped 
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regional pattern and a stereotyped progression over time. This is 
most commonly true of AD, as well as other dementias charac-
terized by hallmark misfolded tau or alpha-synuclein pathology, 
both of which appear to propagate within brain circuits using a 
shared mechanism. The most canonical tauopathy is AD, but a 
diverse group of related taupathies are known: FTD, corticobasal 
degeneration, semantic dementia, and many more (7). Far less 
studied is a rare disorder called progressive supranuclear palsy 
(PSP). The hallmark pathology and atrophy in PSP are similar to 
those in other tauopathies, and its regional patterning is likewise 
highly stereotyped: initially appearing in the striatum, followed 
by its neighbors and connected cortical areas (8, 9).

The mechanisms underlying stereotyped patterning and 
progression in tauopathies are not fully understood, and both 
cell–cell communications governed by anatomical and functional 
connections, and cell autonomous molecular factors character-
ized by gene expression signatures, could conceivably play a 
role in vulnerability to disease spread (10–15). Foremost among 
non-cell autonomous factors is network connectivity, which is 
increasingly considered a plausible and even key driver of vulner-
ability (16–18).

Assuming that trans-neuronal transmission must proceed 
along axonal projections, the spatiotemporal dynamics of pathol-
ogy spread can be given quantitatively and deterministically from 
the inter-regional anatomic connectivity patterns (19). Modern 
diffusion-weighted magnetic resonance imaging (dMRI) (20) 
and post-processing techniques like fiber tractography (21) and 
connectivity mapping (22) have enabled the computation of inter-
regional connectivity, yielding what is frequently called the human 
“connectome.” Recently, our group proposed a mathematical 
model of prion-like trans-neuronal spread of neurodegenerative 
pathology called the network diffusion model (NDM), evolved 
on dMRI-based structural networks or connectomes. This model 
demonstrated that observed spatial patterns of neurodegenera-
tion in common degenerative diseases like AD and FTD can be 
explained simply as a consequence of network spread (16). This 
model also gives an explanation of selective regional vulnerability 
in terms of disease epicenters, called eigenmodes, associated with 
pathology. Since the model is deterministic, it was successfully 
employed to predict future atrophy patterns of AD subjects from 
their baseline patterns and connectomes (17).

In this study, we explore two mechanistic aspects hitherto 
unknown about the canonical NDM of spread: (a) whether the 
NDM can apply to other common degenerative pathologies, 
specifically PSP, and (b) whether the directionality of spread is 
important in explaining empirical data. We, therefore, apply the 
NDM to quantitatively assess whether trans-neuronal transmis-
sion of PSP pathology can recapitulate observed PSP topography. 
Our empirical data come from an unprecedented dataset of 
60 PSP subjects from the 4-Repeat Tauopathy Neuroimaging 
Initiative (4RTNI) study, a multinational prospective observation 
study that examines clinical, radiologic, and biological findings 
of disease progression in tauopathic individuals, including 
PSP.1 Our interest in PSP arises from its distinct spatial pattern 

1 http://4rtni-ftldni.ini.usc.edu.

in comparison to AD; hence the ability of NDM to explain PSP 
pattern would contribute to the emerging notion that all neurode-
generative pathologies follow shared mechanisms of spread.

To assess the second question, we propose a novel construc-
tion of a directional human connectome, for the first time. Clearly, 
directionality of tracts or inter-regional anatomic connectivity, 
as defined by the polarity of individual axonal projects (soma to 
axonal terminal or vice versa) is impossible to determine from 
dMRI data, as water diffusion along fiber bundles does not 
respect cell polarity. Instead, we exploit the well-known fact that 
homologous structures exist between many species, for some of 
whom we do happen to have anatomic connectivity data from 
painstaking tracer studies. Using retrograde tracer studies, a 
detailed mesoscale mouse connectome was reported by the 
Allen Institute (23). We, therefore, developed a novel technique 
whereby human and mouse brain atlas parcellations are used 
to define homologous brain structures, and the Allen mouse 
directional connectivity is transferred to non-directional human 
connectome. The importance of studying directional connec-
tomes is that in vitro and in vivo mouse studies are increasingly 
revealing directional preference in the transmission of various 
misfolded proteins; however, conclusive data on directionality of 
each protein are not currently established (24).

Our results on PSP reveal two important findings. First, that 
PSP is amenable to the connectome-based ND modeling in the 
same way as previously applied to AD and FTD. This establishes 
that PSP might propagate using the anatomic connectome in 
the same way that is known for AD and FTD. Second, we found 
that the NDM fit with empirical data are enhanced by using the 
directional rather than the non-directional form of the human 
connectome. Specifically, we show that the anterograde model of 
transmission (some to axonal terminal) explains certain aspects 
of PSP topography more accurately than the non-directional 
model. Similarly, certain aspects of PSP are better explained by 
the retrograde mode of transmission. Overall, both directional 
models outperform the non-directional model, and retrograde 
mode is overall the most accurate. These intriguing results have 
several ramifications for future studies.

MaTerials anD MeThODs

Building an anatomic connectome  
from Parcellated atlas and dMri of 
healthy cohort
Axial T1-weighted structural fast spoiled gradient-echo 
scans (TE = 1.5 ms, TR = 6.3 ms, TI = 400 ms, 15° flip angle, 
230 × 230 × 156 isotropic 1 mm voxels) and high angular reso-
lution diffusion imaging data (55 directions, b = 1,000 s/mm2, 
72 1.8-mm-thick interleaved slices, 0.8594  mm  ×  0.8594  mm 
planar resolution) were acquired on a 3T GE Signa EXCITE 
scanner from 73 fully consented young healthy volunteers 
under a previous study approved by Weill Cornell’s institutional 
review board; for details of study protocols see Ref. (25). The 
exclusion criteria were pregnancy, a history of neurological 
or psychiatric diagnosis, seizure, or drug or alcohol abuse. 
Demographic characteristics of these young healthy subjects are 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
http://4rtni-ftldni.ini.usc.edu


TaBle 1 | Demographic and clinical details of young healthy controls used to 
construct canonical structural connectome, PSP, and age-matched healthy 
cohort.

Male Female age Moca UPDrs-ii

Young HC (n = 73) 40 33 30.2 ± 6.7 – –

PSP (n = 65) 29 36 70.5 ± 7.4 24.8 ± 5.1 33.2 ± 17.2

Age-matched HC 
(n = 150)

75 75 75.435 ± 6.7 – –

MoCA, Montreal Cognitive Assesement; UPDRS, Uniform Parkinson’s disease Rating 
Score.
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shown in Table  1. Tractograms were extracted from these 73 
young healthy subjects to create the normative connectome for 
the study. The measure of connectivity used in this paper is the 
anatomical connection strength (ACS) as proposed in Ref. (26). 
The overall differences in regional connectivity were normalized 
by a scaling factor equal to the sum of the connections. Thus, 
the connection strength, ci,j, between ROIs i and j, was defined 
as the ACS score of streamlines connecting the two regions  
i and j. We refer to this network as graph G = {V,E} whose nodes 
νI ∈ V represent the ith GM region, and edges ei,j ∈ E represent 
white matter fiber pathways whose connection strength is ci,j. 
Connections are assumed to be bidirectional since directionality 
is not deducible from diffusion tensor imaging (DTI) tractog-
raphy data. Gray matter regions from the T1-weighted images 
were parcellated using FreeSurfer volumetric pipeline (27) and 
a Desikan-Killiany atlas (28) into 68 cortical regions, 34 from 
each hemisphere and 18 subcortical regions. Six subjects were 
eliminated from the 73-subject dataset due to FreeSurfer failure 
or insufficient MR contrast.

Obtaining Directional human 
connectomes by Utilizing Directional 
information from Mesoscale Mouse 
connectomic Data
The Allen Brain Institute (ABI) Mouse Connectivity 
Atlas
Connectivity data were taken from the supplementary dataset 
published along with the mesoscale mouse connectome from the 
ABI (23). The ABI generated their mouse connectivity data using 
an anterograde viral tracer engineered to express GFP natively 
using a promoter with high affinity for the ubiquitous transcrip-
tion factor synapsin (23). The specific vector they used, rAAV1, 
travels exclusively along axons, across synapses, and through den-
drites in the CNS, and almost exclusively travels in an anterograde 
direction (over 99% of the time). Viral vectors were injected and 
then mice were sacked after a period of approximately 3 weeks and 
their brains assessed for the expansion of GFP expressing viruses 
into other regions and for expansion of the GFP expressing virus 
within the targeted region. Brains were then sliced and each slice 
was analyzed by an automated camera system to sum the number 
of pixels across all voxels in each cytoarchitectonically defined 
brain region; these values were then normalized by injection 
volume, to give a per voxel connectivity density measurement 
between any two areas out of the total 213 regions defined in 

the data. The cohort of mice used to generate the dataset was 
of N = 1,231 C57/BL6 males, and regions were taken from the 
previously created ABI Mouse Brain Ontological Reference Atlas, 
created using specific staining for regional cell types with a cohort 
of N = 469 C57/BL6 male mice. C57BL/6 male mice are a com-
mon inbred strain of laboratory mouse and the most widely used 
mice for use as models of human disease and neurodegenerative 
disorders. There are several differences in connectivity between 
mouse lines. No comparable mesoscale whole brain connectome 
has ever been created for another mouse strain, hence at this point, 
any large-scale wiring differences in the connectomes of different 
mouse strains are unknown. Further methodological details and 
descriptions of the assumptions used to create the dataset can be 
found in the supplementary information in Ref. (23).

Total projection density between regions was generated by mul-
tiplying element-wise by the rows the connectivity matrix times 
the number of voxels in each seeding region. Next, the 426-region 
mouse connectome was used to inform the directionality of spe-
cific connections in the 86-region human connectome C. Custom 
MATLAB code then transformed the ABI connectivity matrix 
CABI of size 426 × 426, whose nodes reflected a parcellated atlas 
consisting of 426 GM regions, into a custom connectivity matrix 
of size 86 × 86, based on the human atlas parcelation. To achieve 
this, the afferent and effect connections of all samples that fell 
within the (i,j)-th pair of human homolog regions were summed 
to give the in- and out-degrees of the human regions: degreein 
and degreeout. The overall directionality was estimated by the 
anterograde ratio Dant in

in out

degree
degree + degree

= . This directionality 

ratio was then applied to the non-directional human connectome 

C to obtain the (anterograde) directed connectome Cant = Dant.C. 
Most of the neocortical connections are bidirectional, and only a 
small percentage shows strong directionality (see Results). These 
connections emanate from primary sensorimotor cortices and 
subcortical structures, as expected. In order to ensure that mouse 
directionality was relevant to human data, each strongly direc-
tional connection was qualitatively verified from macaque data 
available in the literature, especially from the CoCoMac database 
(29), which provides an ordinal measure of directionality (one of 
three levels of connectivity in either direction).

We applied directional connectivity to all human regions for 
which there were clear mouse analogs: primary sensory neo-
cortical regions, and subcortical regions. The mouse atlas was 
transferred to a human atlas by taking directional connectivity 
ratios (outgoing/incoming) per region-to-region connection for 
all human region pairings both having mouse analogs. We then 
multiplied the directed connectivity ratios from mouse analog 
region pairings with the region-to-region connectivity strength 
in the Desikan Atlas. Here, we define mouse analogs to human 
regions in two ways: first, we used region pairings where both 
human regions had directly comparable mouse regions. For 
example, the precentral gyrus—postcentral gyrus connection 
is anatomically analogous to primary motor area—primary 
somatosensory area connection in mice. Second, we combined 
mouse regions from the Allen Institute atlas into the larger 
human regions from the Desikan Atlas when the larger combined 
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region in mice was directly analogous to a human region. For 
instance, the Allen Institute atlas has the hippocampus broken 
into the various CA regions and the subiculum; the connectivity 
profiles of these were summed into one hippocampal region, 
as per the Desikan Atlas, before taking directional connectivity 
ratios of connections with the hippocampus. All regions not 
fitting one of the two above mentioned criteria were ignored 
and no directionality was imputed on human region-to-region 
connections where both regions did not have a mouse analog. 
Prior work has noted similarities between mouse and functional 
connectomes and the regions of the default mode network (30), 
suggesting that for a first pass at applying directed connectivity 
to a human connectome, mouse directional connectivity ratios 
can suffice. However, all results should be interpreted through 
the lens of the clear limitations of imputing gross wiring patterns 
from one species to another.

age-Matched normal and PsP cohorts
Data used in preparation of this article were obtained from the 
4RTNI database (see text footnote 1). Neurological and physical 
examinations, cognitive testing, behavioral testing, and other 
clinical data from PSP subjects between the ages of 45 and 90 
were collected over three longitudinal visits (baseline, 6 months, 
and 12 months). The conditions for exclusion were any significant 
neurological disease other than PSP, including PD, multi-infarct 
dementia, HD, brain tumor, multiple sclerosis, or history of 
significant head trauma followed by persistent neurological 
deficits or known structural brain abnormalities. Demographic 
characteristics of these subjects are shown in Table  1. For our 
study, we used 60 PSP subjects after elimination due to unknown 
age, gender, and failed FreeSurfer quality control. Age-matched 
healthy controls (NC) data used in this study were obtained from 
the public Alzheimer’s disease neuroimaging initiative (ADNI) 
database2 consisting of multimodal imaging data on AD and 
healthy subjects. T1-MPRAGE, FLAIR, DTI, ASL-perfusion 
(ASL), and resting state functional MRI (rs-fMRI) MRI sessions 
were acquired at 3T. The parameters for the PSP scans were 
chosen to match those used by the ADNI, including those being 
developed for ADNI-2 for ASL, rs-fMRI, and DTI at the time. 
Two-sample t-test was used to generate a random sample of 150 
age-matched controls from ADNI database. Demographic char-
acteristics of these subjects are shown in Table 1. This randomly 
generated sample of 150 age-matched healthy controls was used 
to generate a group atrophy vector for the study.

68 cortical and 18 subcortical volumes from 3T T1-weighted 
baseline MRI images were extracted using FreeSurfer software for 
both the cohorts. Estimated Total Intracranial Volume generated 
by FreeSurfer was used as an estimate for intracranial Volume 
(ICV) as a normalization measure to correct for head size in 
this study. ICV has previously been used in several studies for 
normalization particularly for neurodegenerative disorders for 
better estimation of regional atrophy that is caused by pathology  
(31, 32). Image processing steps were visually inspected for 
white–gray matter boundary and skull-stripping errors to ensure 

2 http://adni.loni.usc.edu.

they had been carried out correctly. Subjects were eliminated 
from the dataset due to FreeSurfer failure or insufficient MR 
contrast. A vector of regional atrophy was created by using a two 
tailed t-test between PSP and NC mean ICV corrected regional 
volumes such that tPSP = {tPSP(i)|i ∈ [1,N]} (N = 86). The t-statistic 
was converted to the natural range [0,1] using the logistic trans-
form, following (17). These atrophy measures were then used to 
test the propagation modeling analyses.

a nDM for Taupathy spread
We modeled taupathy progression as a diffusion process on 
graph G. From Ref. (16) the transmission of pathology to all 
brain regions via the whole brain disease vector x(t) =  {x(ν,t),  
ν ∈ V} and:

 
dx t

dt
Hx t( )

( )= −β ,
 

(1)

where β is a global diffusivity constant and H is the well-known 
graph Laplacian.

 H I D C= − −1 ,  

where D is a diagonal matrix whose diagonal entries contain 
the degree of each node, degree being defined as the sum of 
weighted connections emanating from the node. Note, in order 
to accommodate regions having widely different out-degrees, we 
have used above the degree-normalized version of the Laplacian 
matrix (17).

Directional Laplacian
Next, we define a directional (anterograde) connectome Cant. 
Since this matrix is non-symmetric, we define for each node an 
in-degree and an out-degree given by row and column sums of 
the matrix: d drow

ant ant
, , , ,,i

j
i j j

i
i jC C= =∑ ∑col . Define Hant as the antero-

grade graph Laplacian matrix

 H I diag Cant
row col

ant= −
−

( ) .d d.
1
2  

Equation 1 is applied to both the non-directional and antero-
grade matrices and in each case admits a closed-form solution 
x(t) = e−βHtx0, where x0 is the initial pattern of the disease process, 
and we call term e−βHt the diffusion kernel since it acts essentially as 
a spatial and temporal blurring operator on x0. The unit of model’s 
diffusion time t is arbitrary. Global diffusivity β is unknown; 
hence, we chose a value that would roughly span tau progression 
(10–20 years), giving β = 0.15. In future, both t and β would be 
estimated by fitting to longitudinal data, and would then acquire 
correct dimensions and units.

Subsequent diffusion of tau pathology out of potential seed at 
the k-th region is given at any time point t by

 x ePSP( ) ,−t e Ht
k= β

 (2)

where ek is a unit vector with 1 at the k-th entry and 0 elsewhere. 
Note that although the above model involves pathology, what we 
have available to us empirically regional MRI-derived atrophy. 
Hence, an underlying assumption in all analyses henceforth is 
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that the empirical atrophy vector is proportional to the pathology 
vector, hence both are given by xPSP(t).

statistical analysis
Two cerebellar regions were removed, leaving regional PSP 
atrophy statistics on 84 cerebral regions. The NDM is described 
by x(t) and Φ(t), two 84 × 100 tables that represent the pathology 
(unobserved) and atrophy (measured empirically) in all 84 ROIs 
over 100 points in time. Pearson correlation strength (R statistic) 
and associated p-values were calculated comparing the empirical 
atrophy vector, tPSP, with the ND atrophy pattern at all 100 points 
in time.

Repeated Seeding
Next, the NDM was run 84 times, each time starting from a differ-
ent ROI, in order to deduce the most likely seed regions. For each 
node i, we start the model with x0 = ei, where ei is a unit vector 
with 1 at the i-th location and 0 elsewhere. In the current case, we 
chose to seed bilaterally, so that two entries in the “unit” vector 
were assigned 1. This was repeated for each region in turn, and the 
NDM-predicted atrophy pattern Φi (t) was calculated from Eq. 3. 
This gave 84/2 = 42 different Φ (t) matrices. For each predictor 
matrix, the corresponding Pearson’s R was calculated at all model 
times t, giving Ri (t). These Ri (t) values were plotted on common 
axis, giving what we denote as “R–t curves.” From each Ri (t), 
we recorded the maximum value Ri

max, which is used here as an 
indicator of model evidence reflecting the likelihood of the region 
i being the true region of pathology onset. This effectively “ran the 
NDM backwards,” allowing us to determine which seeded ROI 
would serve as the most likely origination site to subsequently 
yield the regional patterns closest to empirical data.

Potential Seeding
Given that hypothalamus (HTH) seeding produced the best R 
against empirical data (see Results), we explored seeding from 
these regions, given by the initial vector x0 = eHTH, which yields 
the model predictor ΦPSP(t) = exp(−βHt)eHTH. Snapshots of the 
evolving ΦPSP(t) vector were recorded and plotted in glassbrain 
renderings at selected model times t  =  7, 15, 22  years with  
non-directional connectivity, t = 13, 26, 39 years with anterograde 
directional connectome, and t = 14, 27, 41 years with retrograde 
directional connectome.

Random Scrambling
In order to build a null distribution for assigning significance 
to the NDM, we performed two levels of randomization experi-
ments. (1) We ran the NDM on 2,000 randomly scrambled ver-
sions of the connectivity matrix C. C was scrambled using a 
symmetric transformation of the network’s nodes by randomly 
permuting entire rows and columns, and the NDM was evaluated 
for each shuffled network after bilateral HTH seeding for PSP. 
This scrambling procedure maintains the edge and node statistics 
of the true connectivity C. The NDM evaluated on these 2,000 
randomly scrambled networks, therefore, constitute null or refer-
ence models which supplied significance values to results of the 
true model. (2) We ran the NDM on 2,000 randomly scrambled 
PSP atrophy vector. Atrophy values in tPSP vector were randomly 

assigned among the 84 cerebral regions with 2,000 different 
permutations. This scrambling method maintained the true 
connectivity C, but replaced true regional atrophy pattern with a 
random distribution of atrophy.

resUlTs

cross-sectional spatial Distribution  
of PsP atrophy
Figure 1 illustrates “glass brain” renderings of the spatial distribu-
tion of PSP atrophy. The spheres are located at the centroid of each 
of 84 brain regions, their size is proportional to the t-statistic of 
PSP atrophy after logistic transform and color coded by lobe per: 
frontal, purple; parietal, red; occipital, orange; temporal, cyan; 
and subcortical, green. The relative order of regional atrophy in 
this cohort roughly mirrors the spatial pattern of atrophy. HTH, 
pallidum, entorhinal, inferiortemporal, and superior frontal 
are the most atrophied regions as seen by the largest spheres in 
Figure 1.

characterizing the Directional 
connectome
The properties of the directional connectome built using both 
human and mouse connectome are described in Figure 2. First, 
we show that the connectivity patterns (Figures  2A,B) as well 
as the statistics of both the directional and the original non-
directional connectomes are very similar (Figures 2C,D), as they 
should be. The directionality, defined such that −1 represents a 
purely retrograde connection, and +1 represents a purely antero-
grade connection, is shown as a histogram in Figure 2E. Clearly, 
most connections are bidirectional (value 0) and a small minority 
is directional, with equal numbers in both directions. Mainly 
subcortical structures display strong directionality (bottom and 
right portions of the matrices displayed in Figures 2A,B) while 
most corticocortical connections are bidirectional.

repeated seeding of the nDM with  
non-Directional connectivity
Next each region was computationally “seeded” in turn and NDM 
was played out over time on the canonical healthy connectome. 
Figure 3A shows spread of maximum Pearson correlation strength 
Ri

max corresponding to the best fit between empirical data and the 
NDM seeded at region i. The distribution of Ri

max is being shown 
as a histogram. Since Ri

max serves as a measure of the likelihood 
of each region being a seed, this information is spatially depicted 
in the “glass-brain” insets. Table  2 shows top 20 regions with 
maximum correlation strength for each region seeded in turn. 
Clearly, the HTH and other limbic structures serve as the best 
seed regions for PSP. Figure 3B shows the R–t curves between 
the model evolution (Eq. 2), seeded at each region in turn and 
empirical PSP atrophy. For seed regions that are plausible, this 
would yield an intermediate peak in R where the NDM best 
matches empirical data, then diffusing uniformly and resembling 
actual data less and less. The highest R was achieved by the HTH, 
a region known to suffer early atrophy and could most likely be a 
seed to PSP for the connectome-based network diffusion.
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FigUre 1 | Spatial distribution of PSP atrophy. Measured regional PSP atrophy are depicted by “glass brain” visualization, with spheres placed at the centroid of 
each brain region, and their diameter proportional to the t-statistic of PSP atrophy after logistic transform. Spheres are color coded by lobe—frontal, purple; parietal, 
red; occipital, orange; temporal, cyan; subcortical, green. Hypothalamus, pallidum, entorhinal, inferiortemporal, and superior frontal regions are top five most 
atrophied regions as seen by the largest spheres.

6

Pandya et al. NDM Predicts Spread of PSP

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 692

Next in a model-free analysis, we establish the role played by 
proximate anatomic features in governing the regional patterns of 
PSP atrophy. We considered HTH as anatomic predictors based 
on highest R achieved from repeated seeding analysis above. Each 
covariate is a 84-long vector, covering the entire brain. Since 
the group atrophy t-statistic is generally bilateral, we removed 
lateralization effects by averaging the left- and right-hemispheric 
values of these vectors, giving predictor vectors of size 42 ×  1. 
Linear bivariate correlation analyses of regional PSP atrophy with 
these proximate predictors are shown in Figure 3C. Dots are color 
coded as per lobes (frontal, purple; parietal, red; occipital, orange; 
temporal, cyan; and subcortical, green). We see a non-significant 
negative correlation between PSP atrophy and connectivity from 
bilateral HTH (R = −0.11, p < 0.01).

network Diffusion Out of Potential seed 
recapitulates regional atrophy in PsP 
Tauopathy Using a non-directional 
connectome
Having demonstrated that bilateral HTH gives the best seed-
ing, we next captured the spatiotemporal evolution of xHTH(t) 
(Figures 4A,B). The maximum of RHTH(t) occurs at tmax = 22, hence 
xHTH(tmax) is shown in Figure 4A. The ND progression matches 
quite closely the stereotypical sequencing in PSP, where the disease 
in due course extends into the subcortical and temporal structures 
and finally progresses to increasingly involve the cerebral cortex. 
The maximum correspondence of NDM to empirical data, given 
by the peak of the R–t curve in Figure 3B occurs at t = 22 for 
PSP. Figure 4B shows the evolution of network diffusion process 
seeded at the HTH starting at early stage (t = 7) through mature 
stage (t = 22), the model increasingly resembling empirical atrophy 
of Figure 1. We have selected three equidistant years at t = 7, 15, 
and 22 years between early stage (t = 0) with no diffusion through 

mature stage (t = 22). Here, time is arbitrary, and the use of “years” 
is meant for illustrative purpose. Initial spread is followed by dif-
fusion especially into the pallidum and caudoputamen, followed 
by other striatal and limbic structures, then to middle temporal-
frontal structures, and finally to the cortex.

Testing for significance against alternate 
randomized Models
We evaluated the NDM against alternate network models to show 
its specificity to PSP atrophy and to the connectome on which it 
evolves. We evaluated this in two ways and recorded the best R 
achieved by each model. First, we randomly scrambled the healthy 
average connectivity matrix C 2,000 times, and ran the NDM on 
each scrambled network for PSP. Second, we randomly scrambled 
the group t-statistic of regional PSP atrophy vector and ran the 
NDM on original connectivity matrix C. The distribution of 
Pearson’s R over 2,000 scrambled matrices is shown in Figure 5A 
and clearly indicates that our correlation results are unlikely to be 
due to chance. There is a hard limit on the left of this plot at R ~ 0.42, 
which corresponds to the 0-diffusion time value of RPSP(t) curve in 
Figure 3B. The second random scrambling experiment, where the 
atrophy vector was scrambled instead of the connectome, gave an 
R distribution shown in Figure 5B. This distribution was approxi-
mately Gaussian, with mean between 0.1 and 0.2, and SD around 
0.1 and 0.2. Random model’s R was much lower than the maximum 
R of 0.42 achieved by the true model; statistically outside the 95% 
confidence interval, or p < 0.05. Hence, the reported HTH seeded 
NDM prediction cannot be explained by chance.

repeated seeding of the nDM with 
Directional connectivity
Having demonstrated that bilateral HTH gives the best seeding, 
we next wanted to show if directionality could predict tauopathic 
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FigUre 2 | Categorizing non-directional and directional connectome. The properties of the directional connectome built using both human and mouse connectome 
are described. (a,B) The connectivity patterns as seen both in (a,B) are very similar. (c,D) Connectivity strengths represented by histograms of both the directional 
and the non-directional connectomes are also very similar. As expected the values of connections are not different between the non-directional and the directional 
connectome. (e) Histogram of the directionality defined by (Ci,j − Cj,i)/(Ci,j + Cj,i), such that −1 represents a purely retrograde connection, and +1 represents a purely 
anterograde connection. Most connections are bidirectional (value 0) in E and a small minority is directional, with equal numbers in both directions. Mainly subcortical 
structures display strong directionality [bottom and right portions of the matrices displayed in (a,B) while most corticocortical connections are bidirectional].
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spread either from same or different set of potential seeds. We tested 
both retrograde and anterograde mode in our model at t = 41 and 
t =  40, respectively. With anterograde connectivity there was an 
increase in maximum R (R = 0.48 at t = 40) as seen in R–t curve 
(Figure  6A). Our results showed that retrograde mode showed 
significant improvement in maximum R (R = 0.53 at t = 41) to 
both bidirectional and anterograde mode (Figure 6C). Both with 
retrograde and anterograde mode, the highest R was achieved by 
the HTH and served as the best seed region. Figures 6B,D show 
glass-brains with maximum R achieved by each region seeded in 
turn and Table 2 shows top 20 regions with maximum correlation 
strength for each region seeded in turn with directional connectivity.

Directional network Diffusion 
recapitulates regional atrophy in PsP
We next captured the spatiotemporal evolution of xHTH(t) 
(Figures 7A–D) at t = 40 and t = 41, which corresponds to time 

taken by diffusion to reach the highest peak with anterograde and 
retrograde directional connectivity, respectively. The maximum 
of RHTH(t) occurs at tmax = 40 and 41 for anterograde and retro-
grade mode, hence xHTH(tmax) are shown in Figures 7A,C for each 
mode, respectively. The ND progression shows better prediction 
of tau progression in PSP compared to non-directional seeding 
as seen in Figure 4. Both with anterograde and retrograde mode, 
the spreading pattern extends into the subcortical and temporal 
structures and finally progresses to increasingly involve the 
cerebral cortex.

The maximum correspondence of NDM to empirical data, 
given by the peak of the R–t curve in Figure  6A occurs at 
R =  0.48, t =  40 and in Figure  6C occurs at R =  0.53, t =  41 
for PSP. Figures 7B,D shows the evolution of network diffusion 
process seeded at the HTH starting at early stage (t = 13) through 
mature stage (t = 39) with anterograde mode and through t = 14 
and t = 41 with retrograde mode. With both the modes, the model 
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TaBle 2 | Top 20 regions with maximum correlation strength for bilaterally seeded ROIs without and with directional connectivity.

regions from structural bidirectional connectome regions from structural anterograde directional 
connectome

regions from structural retrograde 
directional connectome

Hypothalamus (HTH) 0.42 HTH 0.48 HTH 0.53

Pallidum 0.40 Amygdala 0.44 Amygdala 0.46

Entorhinal 0.38 Entorhinal 0.41 ThalamusProper 0.43

Inferiortemporal 0.23 Hippocampus 0.41 Hippocampus 0.42

Temporalpole 0.23 Pallidum 0.41 Entorhinal 0.41

Amygdala 0.22 ThalamusProper 0.35 Pallidum 0.40

Superiorfrontal 0.21 Putamen 0.31 Temporalpole 0.35

ThalamusProper 0.16 Parahippocampal 0.27 Parahippocampal 0.31

Hippocampus 0.16 Caudate 0.25 Fusiform 0.27

Putamen 0.15 Accumbensarea 0.24 Inferiortemporal 0.27

Parahippocampal 0.15 Temporalpole 0.24 Putamen 0.27

Caudalmiddlefrontal 0.14 Inferiortemporal 0.22 Superiorfrontal 0.21

Fusiform 0.13 Superiorfrontal 0.21 Superiortemporal 0.19

Precentral 0.12 Fusiform 0.21 Insula 0.18

Insula 0.12 Insula 0.18 Middletemporal 0.15

Middletemporal 0.10 Precentral 0.12 Transversetemporal 0.14

Caudate 0.08 Lateralorbitofrontal 0.12 Precentral 0.12

Accumbensarea 0.06 Caudalmiddlefrontal 0.12 Caudate 0.11

Parsopercularis 0.05 Medialorbitofrontal 0.11 Caudalmiddlefrontal 0.11

Rostralmiddlefrontal 0.05 Parstriangularis 0.10 Bankssts 0.10

FigUre 3 | Results for repeated seeding analysis. Each region was seeded in turn and network diffusion model (NDM) was played out for all time points. Pearson’s 
R was recorded at each time point between the model and PSP atrophy vector. As the diffusion time increases, more and more of the pathogenic agent escapes 
the seed region and enters the rest of the network. (a) The point of maximum correlation with measured atrophy using structural connectome was recorded with 
glass brains of measured R shown inset in PSP. (B) NDM seeded at bilateral regions using structural connectome indicates that the hypothalamus (HTH) (shown by 
red curve) could be a plausible candidate for PSP disease seeding—it has the highest peak R, and the characteristic intermediate peak indicative of true pathology 
spread. The unit of model’s diffusion time t is arbitrary. For the purpose of demonstration, we consider this arbitrary timescale parameter in terms of “years” but 
without a robust fitting approach with longitudinal data these time values should be considered only roughly equivalent to years. (c) Once best seed was determined 
we looked at correlations of mean connectivity from HTH versus empirical PSP atrophy. We see a non-significant correlation between PSP atrophy and connectivity 
from bilateral HTH (R = −0.11, p < 0.01). Dots are color coded by lobe—frontal, purple; parietal, red; occipital, orange; temporal, cyan; and subcortical, green.
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FigUre 4 | (a) ND prediction from bilaterally seeded hypothalamus (HTH) with non-directional connectome. Glass brains of network diffusion model seeded at the 
bilateral HTH at t = 22 years shows spatial pattern from HTH using bidirectional connectome. Subcortical striatal structures especially caudoputamen and globus 
pallidus, and limbic areas like amygdala, hippocampus, and thalamus which are shown in green are the most affected region. (B) Spatiotemporal evolution of 
empirical PSP pathology. Evolution of HTH seeded network diffusion exhibits the, limbic, striatal, and temporal areas as early affected regions, followed by 
somewhat slower diffusion into the frontal and parietal regions. This spatial sequencing predicted by the model is a close match with PSP tau progression. We 
selected three equidistant years at t = 7, 15, and 22 years between early stage (t = 0) with no diffusion through mature stage (t = 22). Here, time is arbitrary, and the 
use of “years” is meant for illustrative purpose. For both A and B, dots are color coded by lobe—frontal, purple; parietal, red; occipital, orange; temporal, cyan; and 
subcortical, green.

FigUre 5 | Scrambled networks and PSP atrophy. (a) Histogram of correlation strength between network diffusion model (NDM) and PSP data over 2,000 shuffled 
networks. (B) Histogram of correlation strength between NDM and 2,000 shuffled PSP data over using unshuffled structural connectome. The true connectome was 
shuffled by symmetrically permuting its rows and columns randomly, and the NDM was evaluated for each shuffled network after bilateral hypothalamus seeding. 
The best R achieved by each model was recorded and entered into the histogram. The null models are distributed well below the true model, indicating that the 
latter is highly unlikely to arise by chance (p < 0.05).
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FigUre 6 | Results for repeated seeding analysis and ND prediction with directional connectivity. (a,c) Each region was seeded in turn and network diffusion model 
(NDM) was played out for all time points with directional connectivity. Pearson’s R was recorded at each time point between the model and PSP atrophy vector. As 
the diffusion time increases, more and more of the pathogenic agent escapes the seed region and enters the rest of the network. NDM seeded at bilateral regions 
using directional connectome indicates that the hypothalamus [shown by red curve in (a)] could be a plausible candidate for PSP disease seeding. The highest peak 
recorded with anterograde directional connectivity is R = 0.48 at t = 40 and with retrograde directional connectivity is R = 0.53 at t = 41. The characteristic 
intermediate peak is indicative of true pathology spread. The unit of model’s diffusion time t is arbitrary. For the purpose of demonstration, we consider this arbitrary 
timescale parameter in terms of “years.” (B,D) The point of maximum correlation R of NDM with measured atrophy using anterograde and retrograde directional 
connectome, respectively, were recorded and are shown with glass brains in (B,D). For all subplots, dots are color coded by lobe—frontal, purple; parietal, red; 
occipital, orange; temporal, cyan; and subcortical, green.
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increasingly resembles empirical atrophy of Figure  1 much so 
than with non-directional connectivity. We have selected three 
equidistant years at t = 13, 26, and 39 years between early stage 
(t  =  0) with no diffusion through mature stage (t  =  40) for 
anterograde mode and t =  14, 27, and 41 years between t =  0 
and t = 41. Here, time is arbitrary, and the use of “years” is meant 
for illustrative purpose. As seen in Figure 7B with anterograde 
mode, initial seeding at HTH is followed by diffusion especially 
into the pallidum and caudoputamen, followed by limbic struc-
tures such as hippocampus and amygdala, then thalamus, then 
to middle temporal–frontal structures, and finally to the cortex. 
With retrograde mode (Figure  7D), initial seeding at HTH is 
followed by entorhinal, followed by other limbic structures such 
as hippocampus and amygdala, and thalamus, then to striatal, 
middle temporal-frontal structures, and finally to the cortex.

DiscUssiOn

The current study applies network modeling to a rare disease 
as the first to systematically test hypotheses of disease spread in 
human subjects living with PSP. Other neurodegenerative dis-
eases like FTD, AD, and ALS syndromes have been well-studied 
from a human brain network perspective, and have received 
more attention than equally important and related disorders 
(15), due to a lack of available human data on this rare disor-
der. The present analysis takes advantage of an unprecedented 
dataset of 60 subjects with PSP from a multinational prospective 
observation study called 4RTNI (see text footnote 1). Warren 
et  al. proposed the term “molecular nexopathy” to refer to a 
coherent conjunction of pathogenic protein and intrinsic neural 
network characteristics (33). They enumerated a diverse set of 
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FigUre 7 | (a) ND prediction from bilaterally seeded hypothalamus (HTH) with anterograde directional connectome. Glass brains of network diffusion model (NDM) 
seeded at the bilateral HTH at t = 40 years (corresponding to highest peak R) shows spatial patterns of ND progression from HTH using anterograde connectivity. 
Similar to Figure 4a, even with anterograde directional connectivity the most affected regions are subcortical striatal structures especially caudoputamen and globus 
pallidus, and limbic areas like amygdala and hippocampus, which are shown in green. (B) Spatiotemporal evolution of empirical PSP pathology with anterograde 
directional connectivity. Evolution of HTH seeded network diffusion exhibits the, limbic, striatal, and temporal areas as early affected regions, followed by somewhat 
slower diffusion into the frontal and parietal regions. This spatial sequencing predicted by the model is a close match with PSP tau progression. We selected three 
equidistant years at t = 13, 26, and 39 years between early stage (t = 0) with no diffusion through mature stage (t = 39). Here, time is arbitrary, and the use of 
“years” is only meant for illustrative purpose. (c) ND prediction from bilaterally seeded HTH with retrograde directional connectome. Glass brains of NDM seeded at 
the bilateral HTH at t = 41 years (corresponding to highest peak R) shows spatial pattern from HTH using retrograde connectivity. With retrograde directional 
connectivity the next most affected region is entorhinal (big sphere in cyan) and then limbic areas like amygdala and hippocampus which are shown in green.  
(D) Spatiotemporal evolution of empirical PSP pathology with retrograde directional connectivity. Evolution of HTH seeded network diffusion exhibits the limbic and 
temporal areas as early affected regions, followed by somewhat slower diffusion into the striatal, frontal, and parietal regions. We selected three equidistant years at 
t = 14, 27, and 41 years between early stage (t = 0) with no diffusion through mature stage (t = 41). Here, time is arbitrary, and the use of “years” is only meant for 
illustrative purpose. For all subplots, dots are color coded by lobe—frontal, purple; parietal, red; occipital, orange; temporal, cyan; and subcortical, green.
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potential mechanisms by which molecular dysfunction might 
interact with the neural architecture to produce observed disease 
topography in neurodegenerative diseases, including dysfunction 
of synaptic function or maintenance, axonal transport or repair, 
or a result of downstream trophic or cell–cell signaling. Although 
a full encapsulation of these various protein-specific mechanisms 
into a network model like ours will require much more detailed 
data and studies, here we have made a beginning by explicitly 
considering one of the key ways in which misfolded protein spe-
cies might interact with the extant network—i.e., via directional 
(as compared to non-directional) transmission. We explored two 
mechanistic aspects hitherto unknown about the canonical NDM 
of spread: (a) whether the NDM can apply to other common 
degenerative pathologies, specifically PSP, and (b) whether the 
directionality of spread is important in explaining empirical data.

Our first key contribution is to show that the mathematical 
graph theoretic NDM of trans-neuronal transmission can apply 
to other degenerative pathologies, specifically it can recapitulate 
observed PSP topography. The interest in PSP arises from its 
distinct spatial pattern in comparison to AD; hence the ability of 
NDM to explain PSP pattern contributes to the emerging notion 
that all neurodegenerative pathologies follow shared mechanisms 
of spread. Our second key contribution is the novel construction 
of a directional human connectome, exploiting the homologies in 
brain anatomy that exist between species as diverse as human and 
mouse. The importance of studying directional connectomes is 
that in vitro and in vivo mouse studies are increasingly revealing 
directional preference in the transmission of various misfolded 
proteins; however, conclusive data on directionality of each pro-
tein are not currently established (24). Our third key contribution 
is to show that the NDM fit with empirical data are enhanced 
by using the directional rather than the non-directional form of 
the human connectome. Certain aspects of PSP topography are 
better explained by the anterograde model of transmission (some 
to axonal terminal) than the non-directional model, and certain 
aspects of PSP are better explained by the retrograde mode of 
transmission. Overall, both directional models outperform the 
non-directional model, and retrograde mode gives overall the 
best fit. These intriguing results are further discussed below.

Focal seeding Followed by network 
spread recapitulates PsP atrophy
We tested whether network spread from focal seed sites would 
recapitulate PSP regional atrophy patterns. Although trans-neu-
ronal transmission appears the most likely candidate, the exact 
mode of transmission is unknown. We first simulated spread 
between regions in a bidirectional manner, such that pathology 
has an equal chance of spreading in the anterograde or retrograde 
direction. To minimize model bias, we performed repeated seed-
ing such that each brain region in turn has a chance to serve as the 
single onset region from which subsequent pathology transmis-
sion was modeled using the NDM. The HTH was found to be 
the best seed region, with the highest model correspondence of 
R = 0.42. The model performance seeded at HTH is significant in 
comparison with random network scrambling of the structural 
connectome (Figure  5) (p  <  0.05), confirming that network 

organization is integral to disease spread in PSP, rather than an 
effect that has arisen by chance. Surprisingly, it was a better seed 
than any region in the striatum, even though striatal atrophy is 
usually the most prominent feature of the topography of PSP. The 
next best seed region was Pallidum, which is certainly plausible as 
converging post mortem and neuroimaging studies showing the 
striatum is the most affected region of pathology in PSP (8, 34).

Directional structural connectivity Model
Having identified structural connectivity as the most likely 
mechanism of transynaptic pathology spread in PSP, we sought 
to further improve our model by adding directionality. Clearly, a 
direct measurement of directionality of fiber tracts is impossible 
from current dMRI techniques, as water diffusion along fiber 
bundles does not respect cell polarity (soma to axonal terminal 
or vice  versa). Instead, we exploit the well-known fact that 
homologous structures exist between many species, for some of 
whom we do happen to have anatomic connectivity data from 
painstaking tracer studies. A detailed mesoscale mouse connec-
tome has recently become available from the Allen Institute (23). 
These data are fully directional, since it is based on retrograde 
AAV tracer experiments on a large number of mice. We, there-
fore, developed a novel technique whereby human and mouse 
brain atlas parcellations are used to define homologous brain 
structures, and mouse directional connectivity is transferred to 
non-directional human connectome.

Trans-neuronal transmission can have a distinct directional 
bias, such that misfolded protein species might follow anterograde 
or retrograde transport or signaling pathways. This is especially 
true in subcortical and striatal connections, which are known to 
be highly directional in comparison to corticocortical connec-
tions. Although little work has been done in PSP, tau pathology 
in AD differentiates between efferent and afferent connections 
(24). Hence, we tested the hypothesis that directional (whether 
anterograde or retrograde) process of spread along structural 
connectivity network will further improve model performance 
in PSP. The directional NDM results are shown in Figures 6 and 7, 
and confirm that either mode is a better fit than non-directional 
(Table 2). Interestingly, some aspects of PSP topography are better 
recapitulated with anterograde mode of transmission, especially 
striatal areas; whereas other aspects are better recapitulated by 
retrograde transmission, especially temporal and limbic areas. 
Quite unexpectedly, the HTH is the most likely source of pathol-
ogy origin in all three modes of transmission, a result that raises 
many questions that should be addressed in future investigations.

cOnclUsiOn

Collectively, these data show that the intrinsic architecture of the 
structural network mediates disease spread in PSP, most likely 
via a process of trans-neuronal transmission. The additional suc-
cess of the directional network models suggests a simple process 
whereby local production of pathology starts off a process of 
axon-to-soma or soma-to-axon transmission, which due to the 
nature of the directional network topology, prominently accu-
mulates in striatal and temporal areas. In this study, our focus 
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was to build and apply directional NDMs in a purely data driven 
fashion, rather than a detailed exploration of the mechanistic 
aspects that govern directional transmission. We have shown 
that directionality of transmission may be an important aspect 
that network models should incorporate in future and related 
studies involving a wide range of neurodegenerative disorders. 
If confirmed by future, larger, studies, the apparent selective 
vulnerability and early seeding of PSP and other tauopathies in 
specific areas might plausibly entertain an explanation purely in 
terms of directional transmission, without requiring cell-type 
or region-specific vulnerability of brain region to pathology. To 
our mind, this would be the most parsimonious and economical 
reading of available data.

limitations
Several methodological considerations should be considered 
when interpreting our results. The first are limitations of the 
NDM. The NDM is a first-order, linear, parsimonious model 
of diffusive spread that assumes that the structural connectivity 
network remains unchanged over the duration of the longitudi-
nal analysis. Moreover, individual subject genetic repeat length, 
medication history and age of symptom onset were not available. 
These variables could have implications in the individual group 
wise analysis, when identifying each subject’s seed region or 
determining individual rate of disease diffusion. Because this 
is the first study to empirically test multiple network models of 
pathology spread in PSP, it will benefit from independent replica-
tion. Future work elucidating striatal vulnerability as well as the 
effect of repeat length on disease spread is necessary.
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