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Status epilepticus (SE) is defined by the occurrence of prolonged “non-stop” seizures 
that last for at least 5 min. SE provokes inflammatory responses including the activation 
of microglial cells, the brain’s resident immune cells, which are thought to contribute to 
the neuropathology and pathophysiology of epilepsy. Microglia are professional phago-
cytes that resemble peripheral macrophages. Upon sensing immune disturbances, 
including SE, microglia become reactive, produce inflammatory cytokines, and alter 
their actin cytoskeleton to transform from ramified to amoeboid shapes. It is widely 
known that SE triggers time-dependent microglial expression of pro-inflammatory 
cytokines that include TNFα and IL-1β. However, less is known in regards to the 
spatiotemporal progression of the morphological changes, which may help define the 
extent of microglia reactivity after SE and potential function (surveillance, inflammatory, 
phagocytic). Therefore, in this study, we used the microglia/macrophage IBA1 marker 
to identify and count these cells in hippocampi from control rats and at 4 h, 3 days, and 
2 weeks after a single episode of pilocarpine-induced SE. We identified, categorized, 
and counted the IBA1-positive cells with the different morphologies observed after 
SE in the hippocampal areas CA1, CA3, and dentate gyrus. These included ramified, 
hypertrophic, bushy, amoeboid, and rod. We found that the ramified phenotype was 
the most abundant in control hippocampi. In contrast, SE provoked time-dependent 
changes in the microglial morphology that was characterized by significant increases 
in the abundance of bushy-shaped cells at 4 h and amoeboid-shaped cells at 3 days 
and 2 weeks. Interestingly, a significant increase in the number of rod-shaped cells was 
only evident in the CA1 region at 2 weeks after SE. Taken together, these data suggest 
that SE triggers time-dependent alterations in the morphology of microglial cells. This 
detailed description of the spatiotemporal profile of SE-induced microglial morphologi-
cal changes may help provide insight into their contribution to epileptogenesis.
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inTrODUcTiOn

Status epilepticus (SE) is defined by the occurrence of prolonged “non-stop” seizures that last for 
at least 5 min (1). In the United States, it is estimated that up to 41 out of 100K individuals are 
affected by SE, and that one or two SE events can increase the risk of future unprovoked seizures 
by 40–52 and 73%, respectively (1). SE is a clinical emergency for which rapid intervention can 
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help to prevent or reduce the risk for subsequent neuronal 
injury and neurological sequelae that includes epilepsy and 
cognitive disturbances (1, 2). Extensive evidence supports that 
SE provokes an array of inflammatory responses including 
activation of microglial cells, the resident immune cells of the 
CNS, which are thought to contribute to the neuropathology and 
pathophysiology of epilepsy (3, 4).

Microglial cells are highly dynamic professional phagocytes 
that resemble peripheral macrophages. Under physiological 
conditions, these cells occupy non-overlapping territories 
where they constantly survey their surrounding environment 
for signals that indicate injury and immune disturbances, as well 
as altered neuronal activity (5–10). Upon sensing pathological 
signals, including seizures and SE, microglia become reactive and 
promptly undergo biochemical changes, producing pro-inflam-
matory cytokines, such as tumor necrosis factor-alpha (TNFα) 
and interleukin 1- beta (IL-1β) (4). In parallel, reactive microglia 
go through morphological changes that range from a phenotype 
of small cell bodies with vastly ramified processes (surveilling 
microglia) to small amoeboid shapes with little to no processes 
(activated/phagocytic) that can alternate between transitional 
states/phenotypes that include slightly enlarged cell bodies with 
thickened processes that may be long or short (10–16). Both 
inflammatory and morphological microglial alterations have 
been widely described in human epileptic brain tissues (4, 17–21)  
as well as in animal models of SE and experimental epilepsy  
(4, 22–28). While these and numerous additional studies 
support that areas such as the hippocampus are particularly 
vulnerable to SE-induced injury and show highly activated 
inflammatory responses, less is known in regards to the spa-
tiotemporal progression of microglial morphological changes. 
Understanding these phenotypes may help define the extent of 
microglia reactivity and potential function after SE.

Previously, we reported that SE promoted an increase in the 
microglial levels in the CA1 hippocampal area that peaked at 
2  weeks following the prolonged seizures (22). However, this 
finding was based on densitometry analysis from the immu-
noreactivity of the ionized calcium-binding adaptor molecule 
1 (IBA1), a protein found specifically in microglia and mac-
rophages (29). Thus, in order to determine the extent to which 
SE modulates the hippocampal microglial population and 
morphological phenotypes in the current study, we determined 
(i) the abundance of microglia by immunohistochemistry 
(IHC) and flow cytometry and (ii) the percentage of microglial 
morphological phenotypes (ramified, hypertrophied, bushy, 
amoeboid, and rod) present in different hippocampal areas at 
4 h, 3 days, and 2 weeks following a single episode of SE using 
the pilocarpine rat model of SE and acquired temporal lobe 
epilepsy.

MaTerials anD MeThODs

animals
Male Sprague Dawley rats (150–175  g) (Envigo Laboratories) 
were housed at the Psychological Sciences Building at an ambi-
ent temperature of 22°C, with 12-h light and 12-h dark (0800 to 

2000 hours) cycles, and unlimited access to food and water. All 
animal procedures were approved by the Purdue Animal Care 
and Use Committee and followed the approved Institutional and 
NIH guidelines.

Pilocarpine-induced se
Status epilepticus inductions were done following previously 
described protocols (22, 23). Scopolamine methylbromide 
(1 mg/kg) was given 30 min (min) prior to injections (i.p.) of 
saline (Sham-Control) or pilocarpine (280–300  mg/kg; Sigma 
Chemical Co., St. Louis, MO, USA) (SE group). SE was stopped 
after 1 h with diazepam (10 mg/kg; i.p.; Sigma Chemical Co.). 
When rats reached class 5 limbic motor seizures (rearing and 
falling) (30), they were considered to be in SE. Two hours after 
SE, all rats were given injections (i.p.) of sterile 0.9% saline 
(AddiPak) for hydration and as needed thereafter. Rat chow was 
supplemented with sliced peeled apples and Kellogg’s Fruit Loop 
cereal for up to 1 week after SE inductions. From our studies in 
the pilocarpine model of SE and acquired TLE, we calculated 
that pilocarpine promotes SE at 4.5–6 seizure stages according 
to the Racine scale (30) in approximately 67.1% of the rats. Rats 
that did not reach a seizure score of 4.5–6 were not used in 
this study. Animals for histology were sacrificed at 4 h (N = 4), 
3 days (N = 8), or 2 weeks following SE (N = 5); controls (N = 5). 
Animals for flow cytometry were sacrificed at 2 weeks following 
SE (N =  5); Controls (N =  5). The sample size per group was 
determined using a power level of 0.80 and α = 0.05 (post hoc 
power analysis, GPower).

Flow cytometry
Animals were anesthetized with beuthanasia (200 mg/kg) and 
perfused with ice cold 1× phosphate buffered saline (PBS). 
Hippocampi were rapidly dissected on ice and processed using 
the NeuroCult™ Enzymatic Dissociation Kit for Adult CNS 
Tissue (Mouse and Rat) according to manufacturer’s instruc-
tions (Stemcell Technologies) with minor modifications. 
At this point, all samples were coded for experimenter to be 
blinded of treatment groups for the rest of the tissue process-
ing and flowcytometric analysis. Hippocampal tissue samples 
were then placed into a 70-µm nylon cell strainer rinsed with 
100 µL of cold NeuroCult Tissue Collection Solution and gently 
pressed, using fingertips, through the filter into the 15-mL tube 
on ice. The collected tissue homogenate was then similarly 
gently pressed through a 40-µm nylon cell strainer, collected, 
and transferred into a 1.5–2  mL tube using a glass Pasteur 
Pipette. The samples were centrifuged at 100  g for 7  min at 
4°C. Pellets were suspended with 500 µL NeuroCult Enzymatic 
Dissociation Solution and incubated for 14 min at 37°C. Then, 
500 µL of NeuroCult Inhibition Solution was gently mixed and 
samples were centrifuged at 100  g for 7  min at 4°C. The fol-
lowing steps were done using previously described protocols 
with minor modifications (31–34). Pellets were suspended with 
3.5 mL of resuspension solution and 1.5 mL of Percoll gel for 
a 30% total Percoll (v/v) and centrifuged at 700 g for 11 min 
at RT. The resulting pellets were suspended in eBioscience 
Flow Cytometry Staining Buffer according to manufacturer’s 
instructions. Cells in staining buffer were divided equally into 
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four, 1 mL volumes and the number of viable cells per milliliter 
was estimated with a hemocytometer and Trypan Blue dye 
(~1  ×  106  cells/mL). Immunophenotyping categories identi-
fied microglia/macrophages expressing high or low levels of 
cluster of differentiation molecule 11b (CD11b), cluster of dif-
ferentiation 45 (CD45), and major histocompatibility complex 
class II (MHCII) (10) using the following antibodies: APC/Cy7 
anti-rat CD45 (BioLegend Cat# 202216 RRID:AB_1236411), 
APC anti-rat CD11b/c Antibody (BioLegend Cat# 201809 
RRID:AB_313995), and PE anti-rat RT1B Antibody (BioLegend 
Cat# 205308 RRID:AB_1595483). Antibodies were incubated 
for 30 min at 2–8°C in the dark followed by centrifugation at 
400 g for 5 min at RT. Cells were washed and centrifuged at 100 g 
for 7  min, following pellet suspension with the Viability Dye 
(eBioscience, Grand Island, NY, USA, cat. 65-0863). The dye 
was titrated and added, immediately mixed, and incubated in 
the dark at 2–8°C for 30 min. Cells were washed and centrifuged 
at 400 g (2×), and pellets were suspended 1:1 of flow cytometry 
staining buffer and IC Fixation Buffer (eBioscience, Grand 
Island, NY, USA, cat. 00-8222). Samples were stored at 2–8°C 
in the dark and analyzed within 3 days. Stained samples were 
acquired on a BD Facs Aria flow cytometer (BD Biosciences) 
fitted with a 355 nm-UV laser, 405-nm violet laser, 488 nm-blue 
laser, a 561-yellow-green laser, and a 627-nm red laser. Data 
were acquired using DIVA v. 7 (BD Biosciences, San Jose, CA, 
USA) software. Analysis of the populations was performed in 
Flowjo v.8.7.3 (Treestar) using bi-exponential display and was 
based on “fluorescent minus one” gating controls to ensure 
the proper identification of true positive and negative events. 
Live cells were gated for CD45/CD11b positive cells and from 
these the percent of the population of MHCII-positive cells was 
determined.

immunohistochemistry
Animals and tissues were processed for IHC as described in 
our previous study (22). The tissues used for IHC and densi-
tometry analysis in Schartz et  al. (22) were further analyzed 
for microglia/macrophage cell and morphology counts in the 
current study. Briefly, animals were anesthetized with beutha-
nasia (200 mg/kg) and perfused with ice cold 1× PBS followed 
by 4% paraformaldehyde (PFA). After overnight post-fixation 
(4%-PFA) and cryoprotection (30% sucrose), brains were fro-
zen in pre-chilled isopentane and stored at −80°C until used. 
Coronal brain sections (50 µm) were stored in 1×PBS + 0.1% 
sodium azide at 4°C. Serial sections from rostral to caudal 
(4–6 sections per brain) were collected at approximately 
every 500 µm along the dorsoventral axis between the Bregma 
coordinates −3.00  mm and −5.28  mm. These sections were 
immunostained with anti-rabbit IBA1 (1:500; Wako Chemicals 
Cat# 019-19741, RRID: AB_839504) followed by biotinylated 
goat anti-rabbit secondary antibodies (1:2,000; Vector 
Laboratories Cat# BA-1000 RRID:AB_2313606), incubated in 
ABC avidin/biotin complex solution and developed using the 
DAB Peroxidase (HRP) Substrate Kit, 3,3′-diaminobenzidine 
(Vector Laboratories). Brain sections were mounted on gelatin-
coated slides, Nissl stained, dehydrated in alcohol, de-fatted 
in Xylene, and coverslipped using Permount mounting media. 

All chemicals were obtained from Fisher Scientific unless 
otherwise indicated.

Morphological assessment and  
cell counts
The ionized calcium-binding adapter molecule 1 (IBA1) was 
used to identify microglia. Note that in addition to its specific-
ity for microglial cells, IBA1 also stains infiltrated macrophages 
and/or monocytes (29). Therefore, to include the possibility of 
non-microglia cells stained with IBA1, we refer to the IBA1-
positive cells as microglia/macrophages. The morphologies of 
IBA1-positive microglia/macrophages were sorted into cat-
egories from 1 to 5: 1—ramified; 2—hypertrophic; 3—bushy;  
4—amoeboid; and 5—rod. Cells were categorized based on over-
all diameter including processes and evident changes in process 
thickness. These classification guidelines and categories were 
adopted based on published literature with detailed descriptions 
of microglia morphology (10–14, 35–37). The descriptions and 
cellular diameters for each category are as follows: (1) ramified 
cells had a diameter of 50+ μm with fine and highly branched 
processes; (2) hypertrophic cells had a diameter of 40–50 µm 
with thick and highly branched processes; (3) bushy cells had a 
diameter of 20–25 µm with thick, dense, and shorter processes; 
(4) amoeboid cells had a diameter smaller than 10–15 µm with 
retracted processes and irregular shapes; (5) rod cells did not 
display circular diameters but had long, slender cell bodies and 
short fine processes. Although not described in this study, we 
also observed rod microglia/macrophages on train formation, 
which included two or more connecting rod-shaped cells  
(13, 14). Cells were categorized in the hippocampal CA1, CA3, 
and dentate gyrus (DG). IBA1-positive cells were only counted 
if more than 75% of their staining was inside the boundaries of 
the counting frame and met the criteria of one of the different 
diameters (35). Cell overlapping, broken tissue areas, or cells 
with very light staining were not counted. Cellular nuclei were 
identified through Nissl staining. To remain unbiased, often 
multiple cells were counted as one: (1) if microglia appeared 
to be in cell division or (2) if clumps of amoeboid-shaped 
microglia were observed, in this case the distinct cells at the 
edge of the clump were counted but the center of the mass 
was counted as one cell. A Leica DM500 microscope with 
high resolution digital camera (Leica MC120 HD) and LAS4.4 
software was used for image acquisition using a 40× objective. 
All image groups were blinded to the researcher for cell counts 
and morphological quantification and IBA1-positive cells 
within the entire 40× image frame were counted. We analyzed 
4–6 sections per brain bilaterally distributed from rostral to 
caudal. Four pictures were taken in non-overlapping locations 
in each of the different hippocampal areas and the average of 
cell counts was calculated for section area and then for each 
brain. Cells were counted using ImageJ with scaled circle 
frames for diameter reference. Total number of cells per frame 
was counted first, followed by the count of the different mor-
phologies. The percentage of each morphological phenotype 
was calculated based on the total number of IBA1-positive cells 
per hippocampal area.
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statistical analyses
Graphpad Prism was used for data analysis. T-test or analysis of 
variance were used to determine statistical associations between 
the experimental groups from flow cytometry and histological 
data. Statistical significance was set at α < 0.05. Data values are 
reported as means (M)  ±  SEM. Figures were generated using 
Adobe Photoshop (CS6).

resUlTs

We previously reported that a single episode of SE provoked an 
increase in the immunoreactivity for the microglial/macrophage 
marker IBA1 in the hippocampus that peaked at 2 weeks after 
the induction of SE (22). To further determine potential altera-
tions in the population of IBA1-positive microglia/macrophages 
in the hippocampus, we counted the number of these cells in 
control samples as well as at 4 h, 3 days, and 2 weeks after SE 
(Figures  1A–G). Statistical analyses showed that the number 
of IBA1-positive cells in the hippocampal areas CA1, CA3, and 
DG was not different between the control group and the 4 h- or 
3 day-SE groups (p > 0.05). Statistically significant differences 
were found between the control and 2-week-SE group. The 
highest SE-induced increases in the number of IBA1-positive 
cells at this time point occurred in the CA1 region (~1.9-fold, 
p =  0.0036) followed by DG (~1.3-fold, p =  0.0010) and CA3 
(~1.2-fold, p  =  0.0056) relative to control hippocampi. The 
increase in the abundance of microglia/macrophages at 2 weeks 
after SE was also evident through flow cytometry analyses 
(Figures  1H–K). Microglia/macrophages were identified with 
antibodies against CD45 and CD11b, and surface expression of 
the MHCII that was used to also label reactive/inflammatory 
cells (10). Figure  1H shows that whole hippocampal live-cell 
suspensions gated for CD45 and CD11b displayed significantly 
more labeled cells in the 2-week-SE samples than the controls 
(p = 0.0423) (Figures 1H,J). Similarly, a significant increase in 
the number of CD45/CD11b positive expressing MHCII was 
evident at the 2-week time point relative to controls (p = 0.0070) 
(Figures 1I,K). Together these data suggest that SE triggers an 
increase in the population of activated microglia/macrophages 
in the hippocampus.

During the cell quantification analyses, we observed that 
IBA1-positive cells displayed a variety of heterogeneous mor-
phologies, suggesting different activation and/or transitional 
states. We identified at least five different types of morphologies 
in the control and experimental SE tissues, and categori zed 
them as follows: 1—ramified; 2—hypertrophic; 3—bushy;  
4—amoeboid; and 5—rod (Figure 2). Some of these phenotypes 
such as 2- and 3- have been referred to as primed and reactive/
activated, respectively (12). However, given that the function  
of these morphological phenotypes is not definitively known 
we based the nomenclature strictly on the physical appearance 
of the IBA1-positive cells.

We calculated the percentage of IBA1-positive cells that dis-
played each of these morphologies from the total cell numbers in 
the different hippocampal regions CA1, CA3, and DG in control 
brains, as well as at 4 h, 3 days, and 2 weeks (Figure 3; Figure S1 
in Supplementary Material) after SE. Figure 3A shows that in the 

CA1 area of control hippocampi 74% of microglia were ramified 
with highly branched, thin, and elongated processes with an 
overall diameter of 40–50  µm, while 19% were hypertrophied 
and the remaining (~8%) were bushy. In CA3 area, 64% of the 
microglia displayed the ramified phenotype while 30% were 
hypertrophic, and in DG a mixed population of microglial/mac-
rophage morphologies ranging from 1 to 4 was observed with 
50% ramified, 24% hypertrophic, 19% bushy, and 6% amoeboid 
(Figure 3A).

Although the total microglia/macrophage numbers were sim-
ilar in CA1 (p = 0.2777), CA3 (p = 0.2830), and DG (p = 0.8612) 
between the control and 4-h-SE groups (Figure  1), we found 
drastic changes in the microglia/macrophage morphology at this 
time point (Figure 3B). In the 4-h-SE group, the population of 
microglia/macrophage cells displayed mainly the bushy pheno-
type and represented 54% in CA1, 57% in CA3, and 36% in DG. 
Similarly, at 3 days after SE, the total number of IBA1-positive 
cells in the hippocampus was not significantly different to that 
of the control group (CA1, p = 0.0845; CA3, p = 0.0629; DG, 
p = 0.0654). However, the morphology of these cells was altered 
in all hippocampal regions of the 3-day-SE group (Figure 3C). 
In CA1, the bushy, amoeboid, and rod phenotypes contributed 
to 33, 40, and 12% of the population of IBA1-positive cells, 
respectively, in the 3-day-SE group. The bushy and amoeboid 
phenotypes also were the most abundant morphologies in the 
CA3 (27 and 50%, respectively) and DG areas (31 and 64%, 
respectively).

At 2 weeks after SE, the increase in the numbers of microglia 
in the hippocampus was significantly different when compared 
to control (Figure  1), and was coupled with a change in the 
morphology from 1—ramified to 2- through 5- phenotypes 
(Figure  3D). The distribution of the microglia/macrophage 
population in the 2-week-SE CA1 hippocampi was 6% rami-
fied, 8% hypertrophic, 19% bushy, 42% amoeboid, and 25% rod. 
In the CA3 area of the 2-week-SE group, only 10% of the 
IBA1-positive cells were ramified while the larger population 
consisted of hypertrophic (17%), bushy (34%), and amoeboid 
(38%) with few rods (1%). In the DG, we observed a population 
that consisted of 2% ramified, 9% hypertrophic, 40% bushy, and 
48% amoeboid cells.

Overall, we found that the SE-induced changes in the micro-
glia/macrophage morphological phenotype occurred as early 
as 4  hrs and persisted for at least 2  weeks after the prolonged 
seizures in all hippocampal areas (Figure 4). Statistical analyses 
between the control group and the 4-h-, 3-day-, and 2-week-
SE groups showed a significant decrease in the population of 
ramified cells in CA1 (4 h/3 day: p = 0.0001; 2 week, p < 0.0001) 
(Figure 4A), CA3 (4 h, p = 0.0029; 3 day, p = 0.0001; 2 week: 
p  =  0.0008) (Figure  4B), and DG (4  h, p  =  0.0332; 3  day, 
p = 0.0028; 2 week: p = 0.0067) (Figure 4C). Across this time 
line, the bushy phenotype peaked at 4 h (Ctl vs. 4-h-SE, bushy: 
CA1, p = 0.0171; CA3, p = 0.0084; DG, p = 0.2202) and slightly 
decreased thereafter. The amoeboid phenotype was significantly 
more abundant in the 3day-SE (Ctl vs. 3-day-SE, amoeboid: CA1, 
p = 0.0185; CA3, p = 0.0268; DG, p = 0.0054) and 2-week-SE 
groups compared to controls (Ctl vs. 2-week-SE, amoeboid: CA1, 
p = 0.0043; CA3, p = 0.0047; DG, p = 0.0013), where few cells 
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FigUre 1 | Status epilepticus (SE) provokes an increase in the number of microglia/macrophages in the hippocampus. (a–D) Representative images showing 
IBA1-postivibe immunoreactive cells in hippocampi from control (a) and SE groups at 4 h (B), 3 days (c), and 2 weeks (D) after the prolonged seizures. Nissl-
stained nuclei are shown in blue. (e–g) Quantitative analysis of IBA1-positive cells in the hippocampal regions CA1 (e), CA3 (F), and dentate gyrus (DG) (g) from 
controls and SE groups. (h–K) Flow cytometry gating analysis of cluster of differentiation 45 (CD45) and cluster of differentiation molecule 11b (CD11b) (h,J), and 
major histocompatibility complex class II (MHCII) (i,K) positive microglia/macrophages in hippocampal cell suspensions from control and 2-week-SE groups are 
shown (J–K), show the analysis of the percentage of CD45/Cd11b+ positive cells (J) and from those the number of MHC11+ cell (K). Data are shown as M ± SEM. 
*p < 0.05, **p < 0.002 by analysis of variance with Dunnett’s multiple comparison test.
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displayed that morphology. Interestingly, a significant increase in 
the percentage of rod microglia was only found in the CA1 area 
of the 2-week-SE group (Ctl vs. 2-week-SE, rod: CA1, p = 0.0063; 
CA3, p = 0.1436; DG, p = 0.3653). Taken together, these data 
support that SE induces time-dependent changes in microglia/
macrophage morphology throughout the hippocampus.

DiscUssiOn

The main findings of this study are that a single episode of SE 
triggers: (1) an increase in the number of microglia/macrophages 
in the hippocampus that is significantly different from controls 
at 2 weeks after SE (Figure 1); (2) time-dependent changes that 
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FigUre 2 | IBA1-positive cells display different morphologies in the hippocampus. Representative images of microglia/macrophage cells (brown) with different 
morphological phenotypes observed in control and status epilepticus (SE) groups included (1) ramified, (2) hypertrophic, (3) bushy (cell indicated by arrow), (4) 
amoeboid, and (5) rod. Images were taken from hippocampi of control or SE animals. Nissl-stained nuclei are shown in blue.

6

Wyatt-Johnson et al. Microglia Morphological Changes During Epileptogenesis

Frontiers in Neurology | www.frontiersin.org December 2017 | Volume 8 | Article 700

are characterized by an increase in the population of microglia/ 
macrophage with bushy shapes which peak at 4 h and are followed 
by an increase in the abundance of amoeboid cells at 3 days and 
2 weeks after the prolonged seizures (Figures 3 and 4); and (3) 
a significant increase in the number of rod-shaped cells was 
only evident in the CA1 region at 2 weeks post-SE (Figures 3  
and 4). Substantial evidence supports activation of microglial 
cells in humans and experimental epilepsy (4, 5). However, to 
our knowledge, this is the first study to perform a spatiotemporal 
analysis of the population of hippocampal IBA1-positive cells 
with different morphologies in the adult rat pilocarpine model 
of SE and acquired temporal lobe epilepsy.

Altered morphologies from the typical ramified phenotype, 
as well as expression and levels of cytokines and chemokines, 
have been widely used to identify microglial activation in human 
and experimental epilepsy, including in response to SE (17, 22, 
24, 25, 27, 38, 39). For instance, using 3D reconstructions and 
morphometric analysis, Shapiro et al. (25) reported that follow-
ing pilocarpine-induced SE, the IBA1-positive microglial cells in 
the adult hilus displayed different morphologies that included 
cells with larger and elongated cell bodies with thick and dense 
processes (hypertrophic), cells with thickened but complexed 
processes (bushy), and cells with rod cell body morphology at 
1-, 3-, and 5-days, respectively, after the prolonged seizures 
(25). Consistent with their findings, we identified multiple 
microglia/macrophages with these morphologies in the DG area 
at all time points. We also found an increase in the amount of 
MHCII-positive cells at 2 weeks after SE suggesting a heterolo-
gous population of microglia with different M1/M2 polarization 
phenotypes at this time point (40). Furthermore, a comparable 
spatial and temporal profile of microglial morphological changes 
along with an increased population of microglia in the CA1 area 
were reported in the adult hippocampus following kainic acid and 
ischemic insults (41, 42) as well as microgliosis after corneal kin-
dling and Theiler murine encephalomyelitis virus (26). Together, 
these studies, in different models that promote SE and epilepsy, 
suggest the possibility that neuronal hyperexcitability and injury 
may contribute to the microglial changes.

Similar to the adult brain, microglia/macrophages in the 
developing hippocampus also respond with evident morpho-
logical changes when exposed to SE (27, 43–45). For example, 
Patterson et  al. (27) demonstrated that early-life SE induced 
by fever is associated with an acute increase in the abundance 

of amoeboid IBA1-positive cells, but not total microglia/mac-
rophages, throughout the hippocampus. This was coupled to 
increased levels of TNFα (27). In the adult hippocampus, it is 
noticeable that the appearance of hypertrophic/bushy pheno-
types parallels the time points when the cytokines TNFα and 
IL-1β were highest in the hippocampus after pilocarpine-induced 
SE (22, 24). Although the specific functional role of each of the 
morphologies is not definitively known, this observation suggests 
the possibility that hypertrophic/bushy microglia/macrophages 
may be associated with the production and release of inflamma-
tory molecules.

One of the most interesting observations was the accumu-
lation of rod-shaped microglial cells in the CA1 area of the 
2-week-SE group (Figure 3). This type of microglia is also found 
in human brain samples associated with drug-resistant epilepsy 
(39). Interestingly, rod microglia have been found wrapped along 
apical dendrites of cortical neurons that were also surrounded by 
activated microglia in the human epileptic tissue samples (39). 
This type of interaction has also been reported in other human 
neurological and psychiatric disorders that include viral infec-
tions and dementia (11, 46). Evidence suggests that the interac-
tions between rod microglia and dendrites also occur following 
brain injury (14, 47). While the physiological significance of 
rod-shaped microglia and their tight interactions with dendritic 
processes remains to be defined, it has been argued that rod 
microglia may be required to prevent further damage to injured 
areas (47). In addition, it is also possible that the microglia– 
dendritic contacts, independent of microglial morphology, may 
result in synaptic stripping (48–50). Recent studies support that 
microglia–dendritic interactions increase after SE (5–7, 23, 51). 
Interestingly, we reported a spatiotemporal correlation between 
increased IBA1 immunoreactivity, loss of Map2 immunostaining, 
and a reduction in dendritic spines in the CA1 hippocampus 
(22). These paralleled colocalization of multiple IBA1-labeled 
microglial processes with Map2-labeled CA1 apical dendrites 
2 weeks following SE (23), when the population of microglia is 
mostly amoeboid and rod. Thus, we speculate that these microglia 
morphologies may contribute to the dendritic structural plastic-
ity in CA1. However, whether these neuro–immune interactions 
are beneficial or detrimental for synaptodendritic stability after 
SE requires investigation.

Overall, the time course of the SE-induced microglia/mac-
rophage morphological alterations and activation follows the 
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FigUre 4 | Status epilepticus (SE) triggers time-dependent changes in the 
morphology of IBA1-positive cells in the hippocampus. Panels (a–c) show 
the percentage of total hippocampal microglia/macrophage population of the 
different morphologies (1) ramified (black), (2) hypertrophic (gray), (3) bushy 
(green), (4) amoeboid (blue), and (5) rod (red) in the CA1 (a), CA3 (B), and 
dentate gyrus (c) hippocampal areas of control, 4-hr-SE, 3-day-SE, and 
2-wk-SE groups. Note that the exact p values calculated from the statistical 
analyses of all data shown in this figure are described in the Section 
“Results.”

FigUre 3 | The morphology of IBA1-positive cells is mainly ramified in 
control hippocampi, and mainly bushy at 4 h, amoeboid at 3 days, and 
bushy/amoeboid at 2 weeks following status epilepticus (SE). Panels  
(a–D) show the analysis of the percentage of IBA1-positive cells of different 
morphologies: (1) ramified, (2) hypertrophic, (3) bushy, (4) amoeboid, and  
(5) rod, in the hippocampal CA1, CA3, and dentate gyrus areas in the 
control samples (a), and in 4 h (B), 3 days (c), and 2 weeks (D) following 
SE samples. Data are shown as M ± SEM. *p < 0.05, **p < 0.001, 
***p < 0.0001 by analysis of variance with Dunnett’s multiple  
comparison test.
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classical descriptions of microglial plasticity from the ramified to 
the amoeboid morphology which may be associated with different 
functional roles (10, 15, 52). Ramified microglia are very dynamic 
and contribute to the physiology of developing and adult brains 
(8, 15, 52, 53). For instance, in vivo imaging studies demonstrated 
that ramified microglial cells are highly active, regularly survey 
their microenvironment, and make direct contacts with synap-
todendritic structures in an activity-dependent manner (7, 8,  
54, 55). Ramified microglia help maintain homeostasis in neuronal 

circuities by promoting, for example, dendritic spine growth (56), 
elimination of extranumerary synapses in developing networks 
(49, 50) as well as phagocytosis of the excessive apoptotic newborn 
cells in the hippocampal sub-ventricular zone (9, 28). Moreover, 
in response to immune disturbances, these cells alter their actin 
cytoskeleton to the different morphological phenotypes that 
include but are not limited to hypertrophic, bushy, and amoeboid. 
Based on our observations, the increased microgliosis seen at 
3 days after SE (Figure 1) with bushy and amoeboid morpholo-
gies (Figure 3) paralleled an increase in the number of cleaved 
caspase 3-positive cells in CA1 hippocampus (22). This suggests 
the possibility that the microgliosis seen at 3 days after SE may 
be linked to the need for clearing the apoptotic cells. Although 
the amoeboid and bushy morphologies are often associated with 
inflammatory responses, as well as a high phagocytic capacity, 
the extent to which each of the morphologies relates to specific 
functions in the brain is still unclear. This is because most avail-
able evidence for morphology–function associations comes from 
in vitro cell culture studies (10, 15).
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cOnclUsiOn

This study shows that the abundance of microglia/macrophage of 
different morphologies (ramified, hypertrophic, bushy, amoeboid, 
and rod) in the hippocampus evolves between 4 h and 2 weeks fol-
lowing a single episode of SE. These data suggest that at different 
time points, distinct populations of microglia may serve specific 
functions, such as surveillance for ramified cells, perhaps inflam-
matory for hypertrophic and bushy at 4 h and 3 days after SE, 
and potentially highly phagocytic at the amoeboid stage (3 days 
and 2 weeks after SE). However, to determine these possibilities, 
comprehensive histological studies that directly identify their 
biochemical profile with specific inflammatory (M1/M2 polari-
zation) (53) and phagocytic makers/indexes (57) are required. 
Substantial evidence supports that microglia activation plays a 
critical role in some of the neuropathology and pathophysiology 
associated with SE, and has been linked to the modulation of 
memory (58, 59), psychiatric disorders (60), and even suicide 
(61), all of which have been reported in epilepsy (62, 63). Studies 
using immunosuppressant drugs such as rapamycin, FK506, and 
minocycline, which modulate microglial activation (64), support 
that reactive microglia contribute to seizure-induced cell death 
and spine loss in the hippocampus as well as the development of 
spontaneous seizures and cognitive decline in some models of 
SE and epilepsy (23, 65–71). However, here, we show that there 
is a heterologous population of microglia of different morpholo-
gies throughout the hippocampus that can potentially promote 
neuroprotection and/or neurodegeneration to their surrounding 
neurons. Thus, understanding the morphologies of microglia, 
and their associated inflammatory/phagocytic phenotypes 
throughout the development of epilepsy after SE could allow 
for more targeted treatments focused on specifically altering 
the detrimental signals. This may provide different insights and 
potentially new directions in how we target and manage SE.
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