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Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis 
(MS). Biomechanical assessments using advanced gait and balance analysis technolo-
gies can identify these subtle changes and could be used to predict mobility loss early 
in the disease. This update critically evaluates advanced gait and balance analysis tech-
nologies and their applicability to identifying early lower limb dysfunction in people with 
MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded  
walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems 
have been developed to provide quantitative gait and balance assessments. Non-
wearable systems are highly accurate, reliable and provide detailed outcomes, but 
require cumbersome and expensive equipment. Wearable systems provide less detail 
but can be used in community settings and can provide real-time feedback to patients 
and clinicians. Biomechanical analysis using advanced gait and balance analysis tech-
nologies can identify changes in gait and balance in early MS and consequently have the 
potential to significantly improve monitoring of mobility changes in MS.

Keywords: multiple sclerosis, mobility loss, gait, balance, biomechanics

iNTRODUCTiON

Mobility loss in people with multiple sclerosis (pwMS) is a major contributor to decreased quality 
of life, disruption to employment, and increased financial burden (1, 2). Motor weakness, loss of 
coordination, and spasticity can all manifest canonically as alterations in walking (gait) and balance 
that ultimately lead to mobility loss. Subtle gait and balance changes are apparent in pwMS even at 
the earliest disease stages and can be measured using advanced movement analysis techniques (3–5). 
Given their sensitivity, advanced movement analysis techniques could be used to identify patients at 
risk of mobility loss (6) or as outcomes in trials of therapies to preserve mobility.

Clinical assessment of gait in pwMS often involves visual evaluation and walking performance, 
tests of maximum distance walked, or timed walks (7). Both visual and performance tests are rela-
tively reliable over time (8, 9); however, reliability varies with the degree of disability (8–10), and the 
tests are insensitive to subtle changes early in the disease (3–5, 7, 11).

http://www.frontiersin.org/Neurology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2017.00708&domain=pdf&date_stamp=2018-02-02
http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
https://doi.org/10.3389/fneur.2017.00708
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:kolbes@unimelb.edu.au
https://doi.org/10.3389/fneur.2017.00708
https://www.frontiersin.org/Journal/10.3389/fneur.2017.00708/full
https://www.frontiersin.org/Journal/10.3389/fneur.2017.00708/full
https://www.frontiersin.org/Journal/10.3389/fneur.2017.00708/full
http://loop.frontiersin.org/people/392742
https://loop.frontiersin.org/people/509890
https://loop.frontiersin.org/people/505994
http://loop.frontiersin.org/people/485205
http://loop.frontiersin.org/people/182565
http://loop.frontiersin.org/people/72335
http://loop.frontiersin.org/people/88724
http://loop.frontiersin.org/people/63944


2

Shanahan et al. Advanced Gait and Balance Assessments in MS

Frontiers in Neurology | www.frontiersin.org February 2018 | Volume 8 | Article 708

Over the past two decades, advanced movement analysis 
technologies have been developed to improve objectivity, 
accuracy, quantification, and sensitivity to disease-related 
changes of clinical assessments of gait and balance (12–14). 
Advanced movement analysis technologies measure aspects 
of lower limb functions such as positions, angles, velocities, 
accelerations (kinematics), and forces and moments (kinetics) 
of limb segments and joints during walking. As such, these 
technologies can provide more sensitive markers of changes 
in walking and balance in pwMS than standard clinical 
assessments.

This review aims to present a synopsis of techniques that we 
consider to have potential utility for gait and balance assessment 
in pwMS and a discussion of the techniques when applied to 
gait/balance assessment in pwMS. We review both non-wearable 
and wearable gait analysis systems and discuss the variables 
measured by these systems as well as advantages, disadvantages, 
sensitivity, and accuracy. This information is also summarized in 
Table 1 for reference.

NON-weARABLe GAiT ANALYSiS 
TeCHNOLOGieS

Non-wearable technologies generally provide the most sensitive 
and accurate gait data, yet require dedicated laboratory environ-
ments and are expensive compared to wearable systems (47). 
Three main non-wearable technologies are as follows: optical 
motion capture systems, force platforms/balance boards, and 
instrumented walkway mats.

Optical Motion Capture
Optical motion capture systems are based on optoelectronic 
stereophotogrammetry and measure kinematics of gait in three 
dimensions (47–50). These systems include marker-based and 
marker-less systems.

Marker-Based Systems
Marker-based systems utilize reflective markers placed on ana-
tomical landmarks (e.g., joints) allowing them to capture motion 
of body parts. These systems are highly accurate (mean noise 
estimate = 0.03–0.05%) and reproducible [intraclass correlation 
coefficient (ICC) >  0.95] (15, 51). These systems can track the 
whole body, allowing them to record the most extensive range 
of kinematic variables of any gait assessment technique. These 
systems can be combined with force plates and/or electromyo-
graphy (EMG) to collect ground reaction force (GRF) and muscle 
activation, enabling simultaneous assessments of kinematics and 
forces. The key limitation of marker-based systems is the need for 
dedicated spaces and technical operators, making them expensive 
and of limited clinical utility.

Several studies have used marker-based systems to quantify 
kinematic changes in gait and balance in pwMS (3, 4, 16, 18, 52). 
These studies show that, compared to healthy controls, pwMS 
displays: (1) reduced gait speed and stride length and prolonged 
double support time, even with fixed walking speed (3, 4,  
16, 18), (2) differences in hip, knee, and ankle motion (3, 4, 16), 

and (3) abnormal timing of tibialis anterior and gastrocnemius 
activation (3, 4) with the degree of gait impairment associated 
with disease severity (4, 16). Reduced stride length appeared to 
be a consequence of reduced hip extension in mid and terminal 
stance, together with knee extension in late swing and at heel 
strike (16). Although increased double support time is usually 
interpreted as a strategy for increasing stability during gait, the 
opposite is true if destabilizing swing dynamics exist, particularly 
at non-preferred walking speeds (18). This could in part explain 
concomitant alterations to head and body centers of mass posi-
tions throughout gait that could provide additional stability (18). 
Indeed, two studies by Peebles and colleagues noted that dynamic 
stability (measured as the margin of stability which relates to the 
motion of the center of mass relative to the foot strike) worsened 
at faster walking speeds in pwMS and clinical gait disturbance 
(53) and was more severe in patients with a history of falls (54).

Two longitudinal studies have studied changes in gait 
using marker-based systems (17, 52). Fritz et al. (17) found no 
significant change in gait velocity over 2–3 years in 57 pwMS, 
despite an increase in T25FW. However, the authors did not 
provide a comprehensive assessment of gait function (e.g., tim-
ing of gait cycle events or joint motion), potentially limiting 
their ability to detect subtle changes. Galea et al. (52) noted a 
range of progressive changes over a brief 12-month period in 
38 pwMS and mild diseases (EDSS < 3) including changes in 
ankle kinematics.

Marker-Less Systems
Although not as accurate and reliable as marker-based optical 
motion capture, marker-less motion tracking has the advantages 
of reduced preparation time and no hindrance to movement by 
body-mounted markers. Two categories of marker-less motion 
capture systems are available: active and passive vision systems. 
Active systems emit visible or infrared light using either laser, 
patterned or modulated light pulses. Passive systems utilize real-
time image analysis.

Time of flight (ToF) systems are active marker-less systems 
that measure the motion of joints and segments across the 
whole body. ToF systems emit light (often infrared) that is 
reflected by all objects in the scene. A sensor is used to capture 
the reflected light and to calculate the distance based on the 
phase shift between the emitted and reflected light (55). These 
systems use self-contained light sources and a single camera 
making them relatively cheap and robust to differences in 
illumination. Recent advances in ToF systems have increased 
the accuracy of identification of gait patterns to 84–94% (19); 
however, the reliability of ToF has not been established. A single 
pilot study in pwMS employed ToF-based video applications 
during patient rehabilitation to improve usability and increase 
motivation (21). The real-time feedback from ToF allowed 
patients to self-correct abnormal movements, which was seen 
as a positive feature (21).

Similar to ToF, structured light systems operate by analyzing 
the deformation of a reflected light beam. The Kinect® sensor 
developed for video gaming is one of the most commonly used 
structured light systems due to its low cost (20, 35). Kinect 
can measure spatiotemporal features of gait such as heel strike 
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TABLe 1 | Comparison of advanced techniques used for gait assessment in people with multiple sclerosis (MS).

Assessment 
technique

Outcome 
measures

Advantages Disadvantages Accuracy/reliability Application in MS

Marker-based 
motion capture

Spatial and 
temporal variables
Kinematics

Comprehensive analysis of widest 
range of gait variables
Power consumption is not an 
issue
Little interferences from external 
environmental factors

Expensive
Must be used in a laboratory 
environment
Markers and restricted space 
can hinder movement

Reliability between trials  
(ICC) = 0.95–1.00 (15)

GRFs, temporal-spatial measures and ankle, knee, and  
hip angles throughout gait differ between mild MS 
patients and controls (3)
Spatiotemporal variables and ankle, knee, and hip angles 
differ in people with MS compared to controls and 
differences are more pronounced with increasing disease 
severity (4, 16)
Change in balance measures contributes to deficits  
in walking performance over time in patients with 
established MS (17)
Slower preferred walking speeds with longer dual 
support; dual support times were longer and swing times 
were shorter even at fixed walking speeds (18)

Markerless motion 
capture

Spatial and 
temporal variables
Kinematics

Objectivity
Quantification
High sensitivity
Comprehensivene
Better suited to clinical 
environments than  
marker-based systems

Can be expensive
Generally cannot be used 
outside the clinic or laboratory 
environment
Measure a restricted number 
of steps

ToF: accuracy = 84–94% (19)
Kinect: <1% mean error compared to  
marker-based (20)
Reliability (ICC) = 0.91–0.98 (15)

ToF used to provide video-based rehabilitation to increase 
motivation and treatment efficacy for people with MS. 
Usability and benefits highly rated. System supports 
rehabilitation by allowing for real-time correction of 
abnormal movements (21)
Kinect can detect differences in gait speed and gait “left/
right deviation” in people with MS compared to controls, 
and results correlate with EDSS and T25FW scores (22)

Force platforms GRF pattern
Kinematics

Objectivity
Quantification
Good sensitivity

Restricted to laboratory 
environments

Reliability (ICC) = 0.22–0.97 (23)
CoP error = 1.8 mm
Orientation error = 1.0% (24)
Treadmill mounted force platforms simple 
gait variables are high (ICC = 0.86–0.97); 
for gait variability the reliability is low to 
moderate (ICC = 0.22–0.44) (23)

Changes in walking and jogging gait variables in people 
with MS with minimal disability compared to controls,  
with greater change found during jogging compared to 
walking (25)

Wii Balance Board GRF pattern Objectivity
Quantification
Portability

Clinical, research and home Excellent ICCs. Test–retest reliability 
(0.66–0.94), construct validity (0.77–0.89) 
(26, 27)

Wii Balance Board can discriminate fallers and  
non-fallers with MS (28)
In a single case study Wii Balance Board Measure could 
predict relapse onset and assess intervention efficacy (29)

Instrumented 
walkways (GAITRite)

Spatial and 
temporal variables

Clinical feasibility
Objectivity
Quantification
Good sensitivity

Restricted to clinic or 
laboratory environments
Restricted to few steps at 
a time

MDC = 7–20% (in older adults) (30)
Reliability (ICC) = 0.69–0.99 (31)
1.5% mean error compared to motion  
capture (32)

Quantitative spatiotemporal gait variables (33, 34)
Sensitive in patients with minimal disability (35)
Similar clinical validity as T25FW in people with MS (36)
Detects changes in gait in very early-stage MS patients 
with minimal disability (35, 37)
Gait variables correlate with EDSS system domains (38)

Pressure sensors Spatial and 
temporal variables

Clinical feasibility
Objectivity
Quantification
Good sensitivity
Can be used outside the clinic  
and laboratory

Sensors can impede 
movement
Battery powered

Reliability (ICC) = 0.90–0.99 (39)
Correlation with motion capture > 0.95
Mean error < 5.4% compared to motion 
capture (40)

Differences in gait variability and sites of foot pressure 
throughout gait cycle between MS patients and  
controls (41)

(Continued )
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and toe off, as well as knee and hip angles (56). Algorithms 
have been developed to improve the accuracy of gait measure-
ments with Kinect, resulting in mean error estimates of <1% 
(20, 35, 57). Several studies have demonstrated that Kinect can 
accurately assess stride dynamics during walking to provide 
measures of walking speed, stride time, and stride length in 
healthy subjects (20, 35, 58, 59). Kinect has been used in a 
single study of MS patients during T25FW (22 MS patients, 
median EDSS  =  3) (22). The investigators found differences 
in the degree of directional variability of gait, with good 
test–retest reliability (ICC  >  0.9). Gait speed measured with 
Kinect correlated with T25FW time and EDSS (including 
brainstem and pyramidal subscores) (22). Further investiga-
tions are required to determine the applicability and reliability 
of Kinect for gait analysis in larger MS cohorts in clinical and 
home environments.

Force Platforms
Force platforms are steel blocks equipped with strain gauges or 
piezoelectric transducers measure GRF and can be embedded in 
a walkway or in treadmills for continuous recordings of multiple 
gait cycles. The gait cycle results in a repetitive and unique GRF 
pattern with precisely timed events such as heel-contact and toe-
off that can be quantitatively assessed (60). Additionally, center 
of pressure (CoP) can be measured continuously between the 
body and ground as an indicator of balance. Force platforms are 
generally expensive and require dedicated laboratory environ-
ments and skilled technical personnel to operate. However, 
they can be used in conjunction with motion capture and EMG 
systems to provide joint kinetics (moments, power, and forces 
applied by each joint when braking or propelling) making them 
useful for laboratory-based assessments of gait and balance in 
pwMS. Additionally, graphical representations of gait, known 
as “butterfly diagrams,” can be produced that represent the 2D 
envelop of the GRF vectors during a step and could have clinical 
utility (25).

In-floor force platforms display high test–retest reliability 
for gait (61) and balance (62–65) variables. The reliability of 
treadmill-based force platforms for simple gait variables (mean 
stride frequency, stride width, time and length, and double 
stance phase) is also high (ICC = 0.86–0.97); however, for more 
complex measures such as gait variability, the reliability is low 
to moderate (ICC = 0.22–0.44) (23). Significant differences also 
exist in the GRF patterns during treadmill walking compared 
to overground walking, so it is unclear whether treadmills are 
optimal for identifying pathological gait function in neurologi-
cal diseases (66–68).

In pwMS, force platforms have been used to study changes 
in gait initiation, postural stability, and balance associated with 
therapeutic interventions and disease progression (46, 69–72). 
Notably, Orsnes et al. (73) examined the timing of heel-contact 
and toe-off events in pwMS treated with baclofen (an agent used 
to treat spasticity in pwMS) using treadmill-embedded force 
platforms. The investigators observed only minimal improve-
ments in gait and balance with treatment. A more recent 
study employed treadmill platforms to study both walking 
and jogging in minimally disabled pwMS (mean EDSS = 1.8) 
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(25). Compared to controls, patients displayed greater step 
time difference between left and right feet and increased step 
width during both walking and jogging, but with greater change 
during jogging. The authors also noted that variability in the 
location of the CoP throughout gait cycle correlated with EDSS 
cerebellar scores.

Portable balance boards provide an alternative to laboratory-
based force platforms. These boards use four force transducers 
(one on each corner of the platform) from which the CoP posi-
tion can be calculated using suitable software (26). Nintendo 
Wii Balance Board (Nintendo, Kyoto, Japan) is the most widely 
tested balance board due to its low cost, portability (weighing 
only 3.5 kg), and wide availability. Wii Balance Board is suitable 
for clinical, laboratory, and home testing and demonstrates good 
test–retest reliability (ICC  =  0.66–0.94) and construct validity 
when benchmarked against laboratory-grade force platforms 
(ICC = 0.77–0.89) (26, 27).

Wii Balance Board has been used with custom software to 
study postural sway in pwMS (28). Compared to laboratory 
force plates, Wii tended to overestimate postural sway although 
the test–retest reliability of the Wii has been found to be high 
(84%) (26–28). Castelli et al. (28) were also able to discriminate 
pwMS who reported fallers vs non-fallers. A case study employ-
ing Wii Balance Board noted changes in balance recorded 
during an exercise intervention in a single participant who had 
a relapse in the 6-week intervention period (29). The authors 
suggested that balance changes could provide a means to predict 
relapse onset (29). Several trials using Wii Balance Board have 
been undertaken and have shown potential improvements in 
mobility balance and QoL in pwMS (74–77), indicating that 
physical programs using this low cost technology could be use-
ful for patients’ physical therapy. Overall, the cost and weight 
advantages of Wii, together with its high reliability and validity, 
make it a useful tool for assessing balance in MS in the clinic 
and home. Further investigations are required to identify the 
most useful measures that can be obtained from the device for 
clinical monitoring.

instrumented walkways
Instrumented walkway mats are portable mats a few meters 
in length with sensors to identify foot contacts. GAITRite is 
the most commonly used instrumented walkway mat and can 
determine spatiotemporal measures of gait (including walking 
speed; step and stride lengths; base of support; step, stride, swing, 
stance, single support, and double support times; and toe in/
out angle) with high sensitivity for detecting pathology-related 
changes (30, 32). Spatiotemporal outputs from GAITRite do 
not require skilled personnel for analysis and interpretation 
(78), facilitating its use in clinical settings. The GAITrite has 
been validated against highly advanced motion capture systems 
for spatiotemporal measures (33, 34) and has high test–retest 
reliability (ICC 0.82–0.98) (79, 80) for most gait variables in 
young and older healthy adults at preferred and fast walking 
speeds.

In pwMS, GAITrite measurement of gait variables, includ-
ing time to complete, velocity, cadence and number of steps, 

velocity, swing time, and single support, have been shown to be 
comparable to the T25FW in detecting gait dysfunction (36) and 
correlate with cerebellar EDSS subscores (38). GAITRite is also 
sensitive to changes in gait in very early-stage MS in patients 
with minimal disability (35, 37). A key shortcoming of GAITRite 
for gait assessment in pwMS is the restriction of data capture to 
a few steps at a time. Therefore, GAITRite provides no infor-
mation regarding longer-term variability on any gait measures 
(81), measures that have been suggested as an indicator of gait 
dysfunction in pwMS (14, 37).

Advantages and Disadvantages  
of Non-wearable Systems
Overall, non-wearable systems provide the most comprehensive 
measurements of gait kinematics available. These measurements 
are highly accurate, reliable, and sensitive to pathological changes, 
even early in the disease when clinical assessments lack sensitivity. 
However, these systems can be costly and are difficult to deploy 
in environments where everyday activities are performed (82). 
Low-cost marker-less optical motion capture systems such as 
Kinect, and portable balance boards such as Wii Balance Board, 
could overcome these problems, especially in clinical settings; 
however, as we discuss in the next section, the development of 
wearable technology could provide gait assessment in the com-
munity over longer time periods.

GAiT ANALYSiS TeCHNOLOGieS USiNG 
weARABLe SeNSORS

Wearable sensors have been developed for detailed mea-
surement of gait kinematics in daily life (47). They can be 
placed on various parts of the body (e.g., under the foot, ankle, 
wrist, or waist) depending on requirements (e.g., pressure 
measurement under foot or center of mass movement at the 
waist). Two of the most promising new wearable sensors used 
to study gait dysfunction in pwMS are pressure sensors and 
inertial sensors.

Pressure Sensors
Pressure sensors are instrumented insoles placed or integrated 
into the shoe to measure changes in pressure between the foot and 
the ground. These sensors are comparable to the force platforms 
as they also measure the force from the ground applied to the foot, 
but unlike force platforms, they measure the force irrespective 
of its components in different directions (i.e., x-, y-, and z-axes) 
(39). Pressure sensors use plantar pressure measurements to 
calculate spatial-temporal gait variables, including phases of gait 
(e.g., stance time and swing time), and step time, length, and 
frequency (39, 83). There are a wide range of systems that use 
electromechanical sensors for plantar pressure analysis includ-
ing capacitive, resistive, and piezoresistive sensors (39). When 
compressed, they calculate variations in applied load measur-
ing proportional change in voltage (capacitive), conductance 
(resistive), or voltage (piezoresistive) (39). Arrays of sensors in 
configuration can measure plantar pressure in a matrix along the 
entire plantar surface.
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The accuracy of discrete pressure sensor systems is com-
parable to optical motion capture (5.4% mean error) (40), 
external pressure calibration (ICC = 0.99), and when multiple 
insole pressure sensor systems are compared (ICC > 0.95) (39).  
In general, discrete and matrix pressure sensor insoles have 
good to excellent reliability for pressure measurements within 
and between trials (ICC  =  0.80–0.99) (39, 84). However, as 
gait speed affects plantar pressure, it is recommended that gait 
speeds are controlled when collecting gait data with pressure 
sensors (84).

Three studies have used pressure sensor technology to study 
gait dysfunction in pwMS. One study used discrete pressure 
sensor insoles combined with mobile technology that included 
a hand held mobile device, to assess plantar pressure and step 
timing and observed greater plantar pressure in stance phase 
and greater variability in step timing in pwMS compared to 
controls (41). Two related studies assessed gait in early-stage 
MS (4) and changes in gait over the subsequent 12 months (52). 
Cross-sectionally, pwMS patients with pyramidal signs displayed 
increased double limb support and decreased walking speed and 
stride length compared to those with no pyramidal signs (4). 
Longitudinally, pwMS exhibited a decline in gait performance 
over 12  months in the absence of EDSS change (52). These 
results demonstrate that pressure sensors have the sensitivity to 
detect gait dysfunction in patients with no or minimal clinical 
disability.

inertial Sensors
Inertial sensors measure an object’s acceleration and can also 
be used to report velocity, orientation, and gravitational forces. 
Inertial sensors are the most widely used type of wearable 
systems for gait and balance analysis and have been validated 
in healthy volunteers and in groups with motor impairment 
(85–87). The most promising inertial sensors for 3D gait analy-
sis consist of a combination of tri-axial accelerometer, tri-axial 
gyroscope, and tri-axial magnetometer. Tri-axial sensors can 
capture spatiotemporal (e.g., swing time and cadence) and 3D 
kinematic data including joint and segment angles. Similar to 
the pressure sensors, inertial sensors can be integrated into 
insoles making them highly suitable for gait analysis. However, 
they can also be attached to other parts of the body such as 
on a belt or the wrist as illustrated in Figure  1. Additionally, 
technology is being developed for inertial sensor data collec-
tion, storage and/or transmission with smart devices such as 
phones and watches (88–90).

Trunk- or shank-placed inertial sensors have been used to 
study gait dysfunction in pwMS, commonly during the TUG 
test (termed “instrumented TUG”) (14, 42, 44, 46, 91, 92). 
Spain et  al. (91) reported increased sway acceleration during 
quiet stance with eyes closed and increased trunk motion dur-
ing instrumented TUG in pwMS with normal walking speed. 
In a follow-up longitudinal study (14), the authors assessed 
changes in gait and balance over 18 months, demonstrating no 
worsening of balance and objective gait measures (sway and gait 
velocity, respectively), but differentiation of mild MS (average 
EDSS = 2.2), moderate MS (average EDSS = 4.3), and control 

groups based on gait velocity, trunk motion, sway range, and 
sway area. Variability in sway area, sway range, and trunk motion 
over time were significantly different between all three groups. 
Similarly, Solomon et al. (93) found that inertial sensor data dif-
ferentiated pwMS and no clinical gait dysfunction from controls 
using measures of postural sway (mediolateral sway path length 
and mediolateral sway range). Importantly, inertial sensors 
during TUG appear to be quite reproducible (ICC  >  0.85 for 
all trunk and shank recordings from pwMS tested over two ses-
sions), and some variables (stride velocity, cadence, and cycle 
time) correlate significantly with EDSS and number of recent 
falls (92).

Advantages and Disadvantages  
of wearable Systems
The great advantage of wearable sensors is the ability to measure 
gait in an individual patient’s everyday environment for extended 
periods of time. These systems now employ small wireless sen-
sors that can remotely send signals to the laboratory or clinic. 
Connectivity between wearable systems and ubiquitous smart 
phones and watches could further improve the usability of these 
devices. Importantly, the cost of wearable sensors is generally 
lower than non-wearable systems making analyses on large 
numbers of patients feasible. Finally, wearable systems actively 
engage the patient in both assessment and rehabilitation and 
could reduce clinic visits by providing more real time information 
to the patient and treating clinician (94).

Wearable systems also have certain disadvantages. First, 
wearable sensors can generally measure a smaller number of 
gait variables than non-wearable laboratory systems. Therefore, 
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early studies of wearables should involve benchmarking and 
validation against these more comprehensive systems. Second, 
the placement of the sensors on body parts could hinder daily 
activities, though this could be improved with integration 
of sensors into clothing, smartphones, and watches. Third, 
algorithms used to measure speed and distance with wearable 
systems can lead to amplification of measurement error (95). 
Indeed, the algorithms required to calculate gait variables, 
which in some cases require technical personnel to implement, 
are currently a barrier to clinical application. However, algo-
rithm development is an active area of research and clinician 
and patient interfaces continue to improve (96). Finally, the 
use of wearable sensors by patients themselves in uncontrolled 
everyday environments can make them more susceptible to 
signal noise (e.g., magnetic or vibration interference), leading 
to incorrect data and inadequate durations of recording when 
out of the clinic (97).

CONCLUSiON AND FUTURe 
DiReCTiONS

Escalating treatment in response to changing disease state in 
early MS can substantially affect outcomes, and identifying 
change in disease state throughout the course of MS is essential 
for optimal treatment (6). Current clinical and performance 
tests (EDSS and T25FW) for assessing gait function in pwMS 
are adequate for identifying advanced gait dysfunction, but 
fail to detect early subtle gait dysfunction or progression.  
In contrast, advanced motion analysis using wearable and non-
wearable systems can overcome these problems. Laboratory-
based systems offer the greatest sensitivity and are reliable over 
a wide spectrum of measures; however, these are costly, time- 
and space-intensive, and require technical skills for operation. 
Portable (i.e., Kinect, Wii Balance Board, and GAITRite) and 
wearable sensors offer less expensive alternatives for reliably 
measuring gait and balance variables and can be applied both 

in and out of the clinic. An example clinical application is bal-
ance training interventions for preventing falls (98, 99) that 
could be deployed and assessed using simple balance board 
technologies.

Future developments in portable and wearable systems will, 
in our opinion, allow these technologies to be used for monitor-
ing and predicting disability in real-world environments. The 
feasibility of using wearable sensors has already been demon-
strated for monitoring gait characteristics related to fall risk 
and symptoms in small groups of older adults (100) and people 
with Parkinson’s disease (101). Further studies are needed to 
investigate: (a) the gait characteristics that predict change in 
symptoms such as falls, relapses, or disability progression, and 
(b) the feasibility and utility of continuous monitoring of gait 
and balance in pwMS.
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