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Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) 
is halted by a lack of understanding early underlying pathological mechanisms. Systems 
biology encompasses several techniques including genomics, epigenomics, transcrip-
tomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that 
offers great potential for the diagnosis and prognosis of neurodegenerative diseases as 
an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles 
and influences from the environment. Advancements in the field of metabolomics have 
demonstrated the complexity of dynamic changes associated with AD progression 
underscoring challenges with the development of efficacious therapeutic interventions. 
Defining systems-level alterations in AD could provide insights into disease mechanisms, 
reveal sex-specific changes, advance the development of biomarker panels, and aid in 
monitoring therapeutic efficacy, which should advance individualized medicine. Since 
metabolic pathways are largely conserved between species, metabolomics could 
improve the translation of preclinical research conducted in animal models of AD into 
humans. A summary of recent developments in the application of metabolomics to 
advance the AD field is provided below.
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iNTRODUCTiON

Alzheimer’s disease (AD) is the leading cause of dementia resulting in memory loss, difficulty with 
thinking, and behavioral changes (1). Patients with early-onset familial AD (FAD) carry mutations in 
genes coding for amyloid precursor protein (APP; chromosome 21), presenilin-1 (PS1; chromosome 
14), and presenilin-2 (PS2; chromosome 1) (2). Each of these mutations results in an increased 
production of amyloid-β (Aβ) peptides (3–6). However, the majority of AD cases are sporadic (>95% 
prevalence) without a specific genetic link. Individuals carrying the ε4 allele of apolipoprotein E 
(APOE), a lipid transport protein, have increased risk for developing AD at a younger age (7). 
Approximately 25% of AD patients in the United States carry one or more copy of the APOE ε4 allele 
(8). The disease is progressive with age being the greatest risk factor (9). According to the Alzheimer’s 
Association, nearly two-thirds of Americans with AD are females (10). Women who are positive 
for the APOE ε4 allele are at greater risk of developing AD compared to men with the same variant 
(11). Additionally, female APOE ε4 carriers develop more severe behavioral changes compared to 
men (12). However, the molecular mechanisms behind these differences remain to be elucidated. 
To date, strategies approved for AD treatment provide only symptomatic relief for some individuals. 
Disappointingly, recent clinical trials that focused on the prevention of Aβ production have con-
sistently failed (13). Lack of success may be related to the enrollment of participants into clinical 
trials at a point when it may be too late to reverse or stop disease progression. Furthermore, several 
Aβ-independent mechanisms including impaired calcium and lipid homeostasis, mitochondrial 
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dysfunction, altered cell signaling, synaptic transmission, oxida-
tive stress, and inflammation have been shown to contribute to 
AD pathogenesis (13). Therefore, targeting Aβ alone may not be 
sufficient to achieve therapeutic efficacy, especially during late 
stages of the disease (14). Indeed, it became increasingly recog-
nized that cellular decline in AD patients begins up to 20 years 
prior to the manifestation of clinical symptoms. As AD progresses, 
multiple pathways are synergistically affected activating a vicious 
cycle that ultimately devastates neuronal formation of synapses 
resulting in declined cognitive function (15). Interestingly, 
metabolic decline is one of the earliest symptoms detected using 
fluorodeoxyglucose positron emission tomography (FDG-PET) 
in patients with mild cognitive impairment (MCI), an early stage 
of AD (16). This suggests that metabolism could play an essential 
role in early AD mechanisms. Depending on the stage of AD and 
individual traits (e.g., age, sex, race, etc.), treatment options may 
vary and most likely will require combinatorial therapy (17, 18). 
Thus, novel technologies for the unbiased detection of changes 
associated with early disease mechanisms could be instrumental 
in the development of biomarkers for preclinical and clinical 
diagnosis, prognosis, and monitoring the outcome of treatment.

Metabolomics is the newest systems biology approach 
where multiple platforms are utilized to measure levels of small 
molecule metabolites in biological samples (19). Metabolic 
signatures are unique to an individual wherein perturbations in 
metabolite levels may inform on the disease state and underlying 
mechanisms of the disorder. The strength of metabolomics is 
in its ability to identify dynamic, qualitative, and quantitative 
changes in a large number of metabolites (in the thousands) rep-
resenting alterations in multiple functional networks. Indeed, 
Oliver et al. first used the term metabolome to emphasize the 
importance of measuring changes in metabolite concentrations 
as a result of altered gene expression (20). Initially utilized as 
a high-throughput analytical tool primarily in studies related 
to toxicology, metabolomics has become increasingly used to 
research metabolic perturbations in multiple human diseases 
including AD. The availability of biorepositories, such as 
Coriell Cell Repository and Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), which contain biofluids and tissue samples 
from control (CN) and AD patients provide an outstanding 
opportunity to advance the understanding of sex- and disease-
specific metabolic signatures and mechanisms. As blood is a 
readily available biofluid for recurrent measures, longitudinal 
studies using metabolomics could significantly enhance the 
precision of individualized medicine. Moreover, since metabolic 
pathways are largely conserved between species, application of 
metabolomics could provide a strong tool to translate experi-
mental findings in preclinical mouse models to humans. Below 
we review recent applications of metabolomics to develop 
disease biomarkers, conduct preclinical drug discovery, and 
advance our knowledge of the etiology and pathogenesis of AD.

MeTABOLiC DeCLiNe iN AD

In patients with MCI, a prodromal stage of AD (21, 22), early 
abnormalities are associated with reduced glucose utilization 
detected using FDG-PET (23, 24). This brain hypometabolism 

occurs ~20 years prior to the manifestation of clinical symptoms 
suggesting that metabolic dysfunction is a contributing factor 
for AD development (6–9). The brain is highly dependent on 
glucose consuming approximately 20% of total glucose-derived 
energy while accounting for about 2% of body weight (25). When 
glycolytic functions in the brain are perturbed, compensatory 
mechanisms switch to alternative fuel sources to maintain energy 
homeostasis (Figure 1) (26). Indeed, white matter degeneration in 
the brain tissue of aged wild-type mice is linked to the catabolism 
of lipids in order to compensate for reduced glucose utilization, 
which could be similar to that observed in the aging female brain 
(27). Supplementation with ketone bodies in AD transgenic mice 
and patients suggest that a ketogenic diet may improve cogni-
tion (27–29). Studies, including our own, have shown unique 
metabolic signatures associated with altered energy homeostasis 
in plasma and cerebrospinal fluid (CSF) of patients with MCI, 
which became more pronounced in patients with AD (30–32). 
Metabolic networks perturbed early in MCI individuals included 
lysine metabolism, tricarboxylic acid (TCA) cycle, lipid metabo-
lism, and mitochondrial ketone bodies when compared to healthy 
individuals (30). In AD patients, metabolic alterations in multiple 
networks including neurotransmission and inflammation were 
detected in both CSF and plasma; however, the most pronounced 
changes in energetic pathways remained (30). Similar findings 
were also observed in multiple mouse models of AD where changes 
in metabolic pathways related to energetic stress in female mice 
were greater compared to males (33). By identifying longitudinal 
changes in the metabolic networks of CN, MCI, and AD patients, 
it is possible to establish panels of metabolic biomarkers and gain 
valuable mechanistic insight into disease mechanisms. With the 
recent failure of clinical trials aimed to modulate Aβ production, 
the attention in preclinical drug discovery and academic research 
has shifted toward the identification of new therapeutic targets 
and early mechanisms of AD including altered brain energetics 
and mitochondrial dysfunction (34). As metabolomics allows 
monitoring changes in multiple connected networks essential for 
understanding complex metabolic alterations, its application in 
AD research is gaining momentum.

ANALYTiCAL PLATFORMS

Metabolomics encompasses several techniques including 
untargeted metabolomics, targeted metabolomics, lipidomics, 
and fluxomics (35–37). Untargeted metabolomics measures 
hundreds of metabolites in order to identify metabolic signatures 
related to a particular disease state or phenotype. This approach 
provides relative changes in metabolites and is useful for discov-
ery projects where affected metabolic pathways are unknown. 
Targeted metabolomics provides quantitative measurements of a 
defined set of metabolites in a pathway of interest (e.g., glycolysis 
or TCA cycle). Lipidomics estimates changes in lipid profiles 
and requires specialized protocols for the detection and analysis 
of water-insoluble metabolites. Fluxomics incorporates stable 
isotope tracers to provide a dynamic, as opposed to static, assess-
ment of metabolic changes and is done in cells or in vivo. Most 
often, heavy carbon (13C) precursors are introduced into a system, 
which can be traced through a metabolic pathway by measuring 
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FigURe 1 | Pathways involved in glucose, ketone body, and lipid metabolism. Glucose can be catabolized via glycolysis or the pentose phosphate pathway to 
produce intermediate metabolites that promote cell growth and function. Oxidation of glucose generates pyruvate, which is shuttled into mitochondria where it is 
converted to acetyl-CoA. Utilization of acetyl-CoA in the TCA cycle generates several intermediates that can be used for nucleotide, lipid, and amino acid synthesis. 
Electrons from the reducing equivalents NADH and FADH2 are used for oxidative phosphorylation (OXPHOS) to generate ATP. Healthy neurons are highly glycolytic 
catabolizing glucose via glycolysis and the TCA cycle in order to produce ATP through OXPHOS. Metabolic instability and decreased glucose utilization in AD 
patients can be detected by metabolomics approaches and fluorodeoxyglucose positron emission tomography. Impaired glycolytic processes in the brain can cause 
a shift toward the use of alternative fuel sources including ketone bodies and fatty acids. Processing of ketone bodies and fatty acids can produce acetyl-CoA for 
use in the TCA cycle and OXPHOS. αKG, alpha-ketoglutaric acid; βOHB, β-hydroxybutyric acid; CACT, carnitine acylcarnitine translocase; CPT1/CPT2, carnitine 
palmitoyltransferase 1/2; FACS, fatty acyl-CoA synthetase; FADH2, flavin adenine dinucleotide + hydrogen (H); FATP, fatty acid transport protein; GLUT, glucose 
transporter; IMM, inner mitochondrial membrane; MCT1/MCT2, monocarboxylate transporter 1/2; NADH, nicotinamide adenine dinucleotide (NAD) + hydrogen (H); 
OMM, outer mitochondrial membrane; TCA, tricarboxylic acid.
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different mass isotopomers providing insight into the flux (rate) 
through a specific network. Each of these applications can be 
done in a variety of samples including cells, tissue, and biofluids.

Metabolites are small molecules (<1,500  Da) implicated 
in most biological functions (38). The human metabolome is 
estimated to contain approximately 150,000 or more metabolites 
(39). Currently, the Human Metabolome Database contains over 
100,000 metabolite entries (40). While a large fraction of human 
metabolites are unidentified, significant efforts are dedicated 
toward their discovery and identification. Due to the complex 
nature of the human metabolome and the diversity of sample 
composition, several analytical platforms have been adopted for 
proper detection of each group of metabolites. Mass spectrometry 
(MS) and nuclear magnetic resonance (NMR) spectroscopy are 
two analytical platforms regularly used for detection, quantifica-
tion, and characterization of metabolites. A comparison of NMR 
and MS is outlined in Table 1.

Nuclear magnetic resonance spectroscopy is a quantitative 
non-destructive technique that provides detailed information on 
molecular structure. Several advantages of NMR include minimal 
sample preparation, high-throughput capability, low cost per 
sample, and excellent data acquisition and reproducibility (41). 
However, NMR has relatively low sensitivity and limited detec-
tion of low molecular weight molecules (42). The use of high-field 
magnets, cryogenically cooled probes, and microcoil detectors 
can increase sensitivity (43, 44) but usually leads to longer times 
of analysis.

Mass spectrometry-based metabolomics offers higher sensi-
tivity (femtomole levels) and the capability of detecting a broader 
range of metabolites. Biological samples are typically separated 
prior to MS analysis using various chromatography techniques 
including gas chromatography (GC) (45), liquid chromatography 
(LC) (46, 47), ultraperformance LC (UPLC) (48), high pressure 
LC (47), capillary electrophoresis/electrospray ionization (49), 
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TABLe 1 | Analytical platforms utilized for metabolomics research.

Nuclear magnetic resonance Mass spectrometry

Platform cost •	 High •	 Moderate

Analysis •	 Untargeted analysis
•	 Reproducibility is high

•	 Targeted analysis
•	 Untargeted analysis
•	 Reproducibility is moderate

Sample preparation •	 Minimal preparation
•	 Can be directly applied to biofluids and intact tissues
•	 Sample recovery is possible

•	 Moderate preparation
•	 Metabolite extraction is usually required
•	 GC-MS is volatile and typically requires derivatization
•	 LC-MS can form adducts

Sensitivity •	 Low detection range (micromolar)
•	 Requires protonated compounds
•	 Detects most organic molecules

•	 High detection range (femtomolar)
•	 Detects most organic molecules
•	 Detects some inorganic molecules

Measurements •	 Detects all metabolites in a single measurement within detectable range
•	 Spectral analysis is demanding

•	 Requires multiple techniques for a comprehensive analysis
•	 Has broader range of metabolite detection
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Fourier transform (FT) infrared spectroscopy (50), and FT ion 
cyclotron resonance (51). Chromatography coupled to MS offers 
a multidimensional analysis providing data related to chemical 
structure, mass, isotope distribution, and detection of unidenti-
fied molecules (52). For these reasons, LC- and GC-MS are often 
the preferred platforms. However, LC- and GC-MS require elabo-
rate sample preparation, which can reduce metabolite recovery 
(53). Additionally, separation of molecules increases the time 
of analysis involving multiple runs for a large batch of samples 
leading to inter-batch variation, which is a common issue for 
MS-based metabolomics. Furthermore, while the selectivity of 
LC- and GC-MS (non-volatile and volatile, respectively) improves 
sensitivity, parallel application of the techniques is often required 
for a comprehensive analysis of the metabolome.

APPLiCATiON OF MeTABOLOMiCS iN 
HUMAN SAMPLeS

One of the most promising applications of metabolomics is the 
development of biomarker panels to detect alterations in mul-
tiple interconnected networks. Metabolomics-based biomarkers 
could provide comprehensive information compared to a single 
metabolite approach (54). To date, the definitive diagnosis of AD 
can only be done by postmortem examination of brain tissue for 
the presence of Aβ plaques and neurofibrillary tangles (NFTs) 
composed of hyperphosphorylated microtubule-associated 
protein tau (MAPT; p-tau) (55). Provisional diagnosis of AD 
relies on the results of neuropsychological tests and appearance of 
typical symptoms of the disease (56). The use of biomarkers such 
as levels of Aβ, p-tau, and t-tau (total-tau) in the CSF together 
with brain imaging using positron emission tomography with 
Pittsburgh compound B (PiB-PET) or magnetic resonance imag-
ing increases the accuracy of diagnosis and helps to discriminate 
between different types of dementia. However, these tests are 
expensive. Furthermore, collection of CSF is associated with 
some health risk and may not be suitable for recurring testing. 
Therefore, the development of a simple, safe, and accurate test 
in readily available biological fluids, such as blood, is of great 
importance. In our earlier review, we described metabolomics 

studies performed prior to 2013 (57). Here, we summarize the 
most recent work (Table 2).

MeTABOLiC CHANgeS iN HUMAN 
POSTMORTeM BRAiN TiSSUe AND CSF

Using unbiased lipidomics and metabolomics approaches, Paglia 
and colleagues analyzed changes in postmortem frontal cortex 
from patients with AD and age- and sex-matched CN (58). Thirty 
four significantly altered metabolites that distinguished AD from 
CN belonged to six metabolic pathways: (1) alanine, aspartate, 
and glutamate metabolism, (2) arginine and proline metabolism, 
(3) cysteine and methionine metabolism, (4) glycine, serine, and 
threonine metabolism, (5) purine metabolism, and (6) panto-
thenate and CoA biosynthesis (58). Using partial least-squares 
regression, the authors correlated their metabolic findings with 
clinical significance (e.g., dementia and AD pathology). Results 
indicated that alanine, aspartate, and glutamate metabolism most 
strongly correlated with AD status while sex, age, body mass 
index, and postmortem interval had little to no correlation (58). 
Notably, their findings suggest that mitochondrial dysfunction, 
particularly aspartate metabolism, correlates with dementia and 
AD pathology. N-acetylaspartate (NAA) is a highly concentrated 
molecule in the brain, which is synthesized by mitochondria 
from aspartic acid and acetyl-CoA (71). Findings in AD patients 
showed a 15–20% reduction of NAA levels, which may relate 
to neuronal and mitochondrial dysfunction associated with 
decreased memory (71).

To identify brain region-specific metabolic changes, Snowden 
et al. used untargeted metabolomics to profile three brain regions 
differentially affected in AD patients (59). Brain tissue was col-
lected from the cerebellum (CB), which is typically devoid of 
AD pathology, the middle frontal gyrus (MFG), and inferior 
temporal gyrus (ITG), which are vulnerable to Aβ and tau deposi-
tion, respectively. Furthermore, this study included individuals 
with AD, healthy CN, and asymptomatic patients (ASYMAD) 
without evident cognitive impairment but a significant display 
of AD pathology at death (59). Tissue samples from ASYMAD 
patients with AD pathology lacking dementia provide a unique 
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TABLe 2 | Application of metabolomics in samples from MCI and AD patients.

Analytical platform Samples Findings Reference

UPLC-HILIC-MS and ionKey/MS Frontal cortex from 21 AD and 19 CN •	 Glycerophospholipid predominately altered in AD cortex
•	 ↑ NAA in AD cortex
•	 Mitochondrial dysfunction and aspartate metabolism 

correlated with dementia and AD pathology

(58)

HILIC LC-MS and GC-MS Cerebellum (little AD pathology), middle 
frontal gyrus (increased AD pathology), 
inferior temporal gyrus (increased tau 
pathology) from 14 AD, 14 CN, and 15 
asymptomatic (display AD pathology 
without dementia)

•	 Global brain UFA perturbations as well as region-specific 
alterations in AD patients

•	 Within middle frontal gyrus ↓ Linoleic acid, linolenic 
acid, and arachidonic acid (CN > ASYMAD > AD) and ↑ 
docosahexanoic acid (AD > ASYMAD > CN) may serve as 
regional threshold markers associated with Aβ plaques, tau 
tangles, and cognitive decline

(59)

Biocrates Absolute IDQ p180 Kit 
measured using FIA-MS/MS and 
HPLC-MS/MS

CSF from 50 AD-like (↓ Aβ42, ↑ t-tau and 
p-tau) and 50 CN

•	 Two SM, five glycerophospholipids, and one AC were 
significantly altered in CSF with pathological Aβ and tau levels

•	 ↑ SM (d18:1/18:0) was 76% specific and 66% sensitive as a 
biomarker

(60)

UPLC-MS/MS CSF from 6 AD and 6 CN •	 ↑ Gly, SAH, and ↓ SAM in AD CSF
•	 Established method for quantifying 17 metabolites of 

homocysteine-methionine metabolism

(61)

Biocrates Absolute IDQ p180 Kit 
measured by UPLC-MS/MS

732 fasting plasma samples from ADNI 
cohort

•	 Bonferroni analysis correlated 13 metabolites with AD 
pathogenesis

•	 CSF Aβ42 metabolites: PC ae C36:2, PC ae 40:3, PC ae 
C42:4, PC ae C44:4, SM (OH) C14:1, SM C16:0

•	 CSF t-tau/Aβ42 metabolites: C18, PC ae C36:2, SM C16:0, 
SM C20:2

•	 Cognitive decline metabolites: C14:1, C16:1, SM C20:2, 
α-AAA, and Val

•	 Brain atrophy metabolites: C12, C16:1, PC ae C42:4, PC ae 
C44:4, α-AAA, and Val

(18)

HRMS Plasma from 37 CN, 16 MCI, and 19 
individuals who converted from MCI to AD 
(MCI_AD)

•	 Polyamine and saturated fatty acid biosynthesis was most 
altered with MCI vs CN

•	 MCI_AD vs CN showed differences in cholesterol and 
sphingolipid transport and saturated fatty acid biosynthesis

•	 MCI_AD vs MCI was most perturbed in cholesterol and 
sphingolipid transport and polyamine metabolism

•	 Polyamine metabolism and l-Arg metabolism were common 
between CN, MCI, and MCI_AD

(62)

HPLC Lipidomics Plasma from CN, MCI, and AD along with 
brain atrophy

•	 10 molecules significantly altered that predicted AD patients 
with 79% accuracy including six ChEs following the trend 
CN > MCI > AD

•	 PC36:5 decreased in AD plasma associated with 
hippocampal atrophy

•	 Ceramides were associated with hippocampal atrophy in 
younger (age < 75 years) group while PCs correlated at 
age > 75 years

(63–65)

Biocrates Absolute IDQ p180 Kit  
by UPLC-MS

Plasma from 73 CN and 28 
phenoconverters

•	 Identified 24 plasma metabolites for the detection of 
preclinical AD with 95% accuracy

•	 13 ↓ PCs (PC ae C34:0, PC ae C36:4, PC ae C40:6, PC ae 
C42:1, PC aa C32:0, PC aa C34:4, PC aa C36:6, PC aa 
C38:0, PC aa C38:3, PC aa C38:6, PC aa C40:1, PC aa 
C40:5, lysoPC a C18:2)

•	 6 ↓ ACs (C3, C5, C5-OH (C3-DC-M), C9 C10:2, C18:1-OH) 
and 3 ↑ ACs (C10:1, C12:1, C16:2)

•	 Asn
•	 ADMA

(66, 67)

Biocrates Absolute IDQ p180 Kit 
measured by FIA-MS/MS and UPLC-MS

Plasma from 41 participants with superior 
memory, 109 CN, and 74 aMCI/AD

•	 Developed a 12-metabolite panel for detection of superior 
memory

•	 valerylcarnitine, hydroxyhexadecadienylcarnitine, 
3-hydroxypalmitoleylcarnitine, lysoPC a C28:1, lysoPC a 
C17:0, PC aa C38:5, Asp, Asn, Arg, histamine, citrulline, and 
nitrotyrosine

(68)

(Continued)

5

Wilkins and Trushina Application of Metabolomics in Alzheimer’s Disease

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 719

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Analytical platform Samples Findings Reference

1H NMR Saliva from 9 AD, 8 MCI, and 12 CN •	 Group separation achieved using logistic regression models
•	 Strongest predictive markers between MCI and CN were 

galactose, imidazole, and acetone with sensitivity and 
specificity of 90 and 94%, respectively

(69)

Faster UPLC-MS Saliva from 256 AD and 218 CN •	 PCA identified sphinganine-1-phosphate, ornithine, 
phenyllactic acid, inosine, 3-dehydrocarnitine, and 
hypoxanthine as significantly altered in AD saliva

•	 ↑ sphinganine-1-phosphate in AD patients was a major 
biomarker with sensitivity of 99.4% and specificity of 98.2%

(70)

1H NMR, proton nuclear magnetic resonance; AC, acylcarnitines where C denotes species; AD, Alzheimer’s disease; ADMA, asymmetric dimethylarginine; ADNI, Alzheimer’s 
Disease Neuroimaging Initiative; aMCI, amnestic MCI; Arg, arginine; ASYMAD, asymptomatic patients; Asn, asparagine; Asp, aspartate; ChE, cholesteryl ester; CN, control; 
CSF, cerebrospinal fluid; FIA-MS/MS, flow injection analysis-MS/MS; GC-MS, gas chromatography-MS; Gly, glycine; HILIC, hydrophilic interaction liquid chromatography; 
HPLC-MS/MS, high-performance liquid chromatography-MS/MS; HRMS, high-resolution MS; lysoPC, lysophosphatidylcholine; MCI, mild cognitive impairment; MS, mass 
spectrometry; MS/MS, tandem mass spectrometry; NAA, N-acetylaspartate; PC a, phosphatidylcholine acyl; PC aa, phosphatidylcholine diacyl; PC ae, phosphatidylcholine 
acyl-alkyl; PCA, principle component analysis; p-tau, phospho-tau; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SM, sphingomyelin; t-tau, total-tau; UFA, 
unsaturated fatty acid; UPLC-MS/MS, ultra performance liquid chromatography-MS/MS; Val, valine; α-AAA, α-aminoadipic acid.

TABLe 2 | Continued
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longitudinal assessment. Additionally, observations made in brain 
regions differentially affected in AD enhance the understand-
ing of spatial-temporal changes. The authors used untargeted 
metabolomics to measure 3,482 metabolites using LC-MS and 
an additional 1,415 metabolites using GC-MS. They identified 
six unsaturated fatty acids (UFAs; linoleic acid, linolenic acid, 
docosahexaenoic acid, eicosapentaenoic acid, oleic acid, and 
arachidonic acid) that correlated with AD pathology and clinical 
symptoms (59). The authors suggested that changes in the con-
centration of these UFAs may serve as regional threshold markers 
in the brain defining the onset of Aβ- and tau-induced cognitive 
decline (59). In the ITG, levels UFAs had the greatest change 
in ASYMAD when compared to CN. The MFG had a consist-
ent alteration in UFA abundance with AD > ASYMAD > CN. 
Interestingly, the authors observed significant UFA changes in 
the CB of AD patients relative to CN suggesting that metabolic 
alterations are systemic affecting multiple brain regions irrelevant 
of the presence of Aβ and/or tau pathology.

Cerebrospinal fluid is the extracellular fluid that surrounds 
the brain representing an ideal source for determining neurobio-
chemical changes that occur in the central nervous system of AD 
patients. Using a Biocrates Absolute IDQ p180 metabolomics kit, 
which targets five compound classes (acylcarnitines, amino acids, 
biogenic amines, hexoses, and phospho- and sphingolipids), Koal 
et al. analyzed 50 CSF samples from patients with AD-like pathol-
ogy defined by decreased Aβ42 and increased t-tau and p-tau 
CSF levels (60). Compared to healthy CN, they identified eight 
metabolites that were significantly increased in the CSF samples 
with AD-like pathology including one acylcarnitine (C3), two 
sphingomyelins [SM (d18:1/18:0) and SM (d18:1/18:1)], and five 
glycerophospholipids (PC aa C32:0, PC aa C34:1, PC aa C36:1, 
PC aa C38:4, and PC aa C38:6) (60). Using logistic regression 
analysis with forward variable selection, SM (d18:1/18:0) was 
identified as a potential biomarker capable of distinguishing 
between AD-like and healthy CN (60). Sphingomyelins represent 
major components of myelin sheaths. Catabolism of myelin and 
sphingomyelin has been shown to provide an alternative fuel 
source (in the form of ketones) in multiple diseases including 

AD and aging (27). Furthermore, sphingomyelin is enriched in 
lipid rafts that are also the site where gamma-secretases (PS1/
PS2) localize, which may influence the processing of APP (72). 
While samples used in the study by Koal et al. were not derived 
from patients clinically diagnosed with AD, the concentration of 
SM (d18:1/18:0) significantly correlated with AD-like pathology 
as determined by levels of Aβ and tau in the CSF (60) suggesting 
that this marker may serve for early detection of the disorder.

In another study, Guiraud et  al. utilized UPLC-MS/MS to 
quantitate 17 metabolites of the methionine cycle in the CSF 
of patients diagnosed with AD (61). They applied a new multi-
analyte strategy to monitor both metabolites and cofactors of 
methionine metabolism simultaneously. Using this approach, 
Guiraud and colleagues identified significant increases of 
glycine and S-adenosylhomocysteine (SAH) with decreased 
S-adenosylmethionine (SAM) in the CSF of patients diagnosed 
with AD (61). The metabolites SAM and SAH are key intermedi-
ates in the methionine cycle important for protein synthesis and 
maintaining cellular methylation of DNA, proteins, and neuro-
transmitters (73). In cells, methionine is primed forming SAM, 
which serves as a cofactor for methyl transferases. SAH is gener-
ated after transfer of the methyl group is complete. Dysregulation 
of methionine, SAM, and SAH metabolism has been linked to 
several neurodegenerative diseases including AD (74–76). For 
example, mice fed with an l-methionine-enriched diet had 
increased levels of Aβ oligomers and p-tau (77). Additionally, 
several studies have demonstrated a strong correlation between 
AD and altered DNA methylation profiles (78–80). Combined, 
these findings provide insight into possible epigenetic alterations 
that may explain the sporadic nature of AD.

MeTABOLiC PROFiLiNg iN HUMAN 
PLASMA

Plasma is an easily accessible biofluid suitable for recurrent 
measures. Multiple studies were conducted in the plasma of 
patients with different severity of AD to establish metabolic 
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changes indicative of the disease progression (57). Our earlier 
studies demonstrated that changes in metabolic pathways 
involved in altered energy homeostasis detected in the CSF of 
patients with MCI and AD could be accurately recapitulated in 
plasma (30). However, the reproducibility of results reported in 
a number of studies using metabolic profiling in plasma varied 
substantially (57). Part of the problem includes small sample 
sizes and inconsistent processing techniques. One of the largest 
metabolomics studies to date was conducted in plasma from 
AD patients collected within the ADNI cohort by researchers 
of the Alzheimer’s Disease Metabolomics Consortium (18). In 
this study, Toledo et  al. analyzed serum from over 700 ADNI 
participants and correlated metabolic changes with clinical data 
available for each patient including CSF levels of Aβ42 and tau, 
brain structure assessed by MRI, and cognitive performance 
determined by ADAS-Cog scores (18, 81–83). Using Bonferroni 
multiple comparisons, Toledo et  al. identified 13 key metabo-
lites altered at the various stages of AD. Six metabolites were 
associated with increased CSF Aβ42 including PC ae C36:2, PC 
ae C40:3, PC ae C42:4, PC ae C44:4, SM (OH) C14:1, and SM 
C16:0, and four were linked with t-tau/Aβ42 ratio (C18, PC ae 
C36:2, SM C16:0, SM C20:2). Five metabolites (C14:1, C16:1, SM 
C20:2, α-aminoadipic acid [α-AAA], and valine) accompanied 
decreased cognitive function while six (C12, C16:1, PC ae C42:4, 
PC ae C44:4, α-AAA, and valine) correlated with increased brain 
atrophy (18). For each of the clinical predictors of AD, a decrease 
in valine and α-AAA were detected while levels of acylcarnitines, 
PCs, and SMs increased. The integrated approaches taken by 
Toledo and colleagues provided valuable insight into mecha-
nisms of AD (18). First, they found that changes in the membrane 
lipid PCs and SMs occurred in the initial stages of AD pathology 
associated with abnormal CSF Aβ42 levels, which may suggest 
that membrane alterations involved in neurodegeneration begin 
early (18). Following aberrant Aβ levels, the authors identified 
tau-associated changes in long-chain acylcarnitines and SMs 
implicated in lipid metabolism. Since tau-associated metabolite 
alterations preceded brain atrophy and cognitive decline and 
were distinctive from Aβ42 perturbations, these results may 
indicate intermediate changes that correlate with altered lipid 
metabolism and mitochondrial bioenergetics (18). This further 
suggests that tau-associated metabolic alterations could serve 
as an intermediate biomarker indicative of cognitive decline. 
Lastly, partial correlation networks and coexpression network 
analysis suggested that changes in brain volume and cognition 
(assessed by MRI and ADAS-Cog scores) correlated with a shift 
in substrate utilization from fatty acids to amino acids (18). This 
AD-associated shift in energy metabolites provides new insights 
into metabolic transitions that occur late in the disease process. 
Amino acids, particularly alanine and glutamine in addition to 
threonine, glycine, and serine, can be used to synthesize glucose 
via gluconeogenesis (84). As the brain is highly glycolytic, this 
may indicate an attempt to reestablish glycolysis that is altered in 
AD (Figure 1). Taken together, this study suggests that specific 
metabolic changes occur during the progression of AD and that 
blood-based metabolite markers could improve disease diagnosis.

In line with results from Toledo et al. (18), several additional 
metabolomics studies have revealed perturbed metabolic profiles 

in the plasma of AD patients. Graham and colleagues (62) used 
high-resolution MS in a longitudinal study to analyze metabolic 
changes in plasma samples from 37 healthy CN, 16 patients 
with MCI, and 19 patients that converted from MCI to AD 
(MCI_AD). Comparison of MCI to CN showed that polyamine 
metabolism and saturated fatty acid biosynthesis were highly 
altered. The most affected metabolic pathways when comparing 
MCI_AD to CN included cholesterol and sphingolipid transport 
and saturated fatty acid biosynthesis. Conversion from MCI to 
MCI_AD was associated with metabolic alterations in choles-
terol and sphingolipid transport and polyamine metabolism. 
Consistently disrupted across all three comparisons, however, 
was polyamine metabolism and l-arginine metabolism sug-
gesting that these metabolic pathways are highly implicated 
in the conversion of healthy individuals to MCI and AD (62). 
The authors further noted that several metabolites were shared 
across polyamine and l-arginine metabolism, which have been 
reported to be important for neuronal health, survival, growth, 
and cell death (62, 85–89). Polyamine synthesis begins in the 
mitochondria via conversion of arginine to ornithine by the 
enzyme arginase (ARG2) (90). Subsequent reactions lead to the 
production of polyamines (e.g., spermidine and spermine). Of 
note, methionine/SAM metabolism is required for polyamine 
synthesis, which was found to be significantly increased in the 
CSF of AD patients by Guiraud and colleagues (61, 90). The 
polyamines spermine and spermidine have also been shown 
to act as agonists for N-methyl-d-aspartate (NMDA) receptors 
that bind to the neurotransmitter glutamate (91). The drug 
memantine, approved for the treatment of AD, is an NMDA 
antagonist, which reduces excitotoxicity of glutamate signaling 
protecting against synaptic loss and cognitive decline (92). 
Metabolic findings by Graham and colleagues suggest a role for 
polyamines in NMDA-mediated excitotoxicity in AD.

Proitsi el al. used untargeted lipidomics to compare plasma 
from 123 individuals (40 CN, 48 MCI, and 35 AD patients 
from the Dementia Case Register cohort and EU funded 
AddNeuroMed study) (63). Using univariate analysis, Proitsi 
et al. identified 41 metabolites associated with AD. After applying 
Random Forest and backward elimination, the authors narrowed 
the list of metabolites to a panel of 10 molecules that could 
identify AD patients with 79% accuracy. Six of these metabolites 
were identified as cholesteryl esters (ChEs), which Proitsi et al. 
noted as a class of metabolites not previously associated with 
AD (63). However, previous findings have reported alterations 
of phosphatidylcholines (PCs) in AD (93, 94), which are precur-
sors for the synthesis of ChEs. The enzyme lecithin-cholesterol 
acyltransferase synthesizes ChEs from PC and cholesterol to 
allow for more efficient transport of cholesterol in the blood 
stream. In two recent follow-up studies from Legido-Quigley’s 
group, the authors further implicated changes in plasma lipids in 
AD. Kim et al. demonstrated a correlation between altered lipid 
concentrations in AD patients and brain atrophy (64). Three 
ceramides (Cer16:0, Cer18:0, and Cer20:0) were elevated in the 
plasma of AD patients and were associated with hippocampal 
atrophy in adults younger than 75 years of age. For AD patients 
over 75 years of age, a decrease in PC38:6 and PC40:6 were linked 
to hippocampal atrophy. These findings suggest that impaired 
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PC and ceramide metabolism could be associated with various 
stages of AD progression and hippocampal atrophy (64). Using 
additional samples from the Dementia Case Register cohort and 
EU funded AddNeuroMed study (148 AD and 152 CN), Proitsi 
et al. replicated their previous findings in the plasma of MCI and 
AD patients (63, 65). Proitsi further demonstrated a correlation 
between altered lipids (including new putative lipids) with AD 
progression and brain atrophy (65). Together, the results from 
Legido-Quigley’s group support an association between altered 
plasma PCs, ChEs, and ceramides with AD progression, which is 
consistent with the implication of altered lipid metabolism in AD 
pathogenesis (27, 30, 95–97).

Mapstone and colleagues previously developed a panel of 
blood-based biomarkers that could predict the conversion of 
cognitively normal individuals to amnestic MCI (aMCI) or 
AD, referred to as phenoconversion (66). Their panel consisted 
of 10 plasma lipids, which could predict phenoconversion of 
individuals (approximately 80 years of age) within a 2–3-year 
timeframe with 85% accuracy (66). However, low positive 
predictive values remained an issue reducing clinical value. 
More recently, using the same cohort, Fiandaca et  al. refined 
and expanded the blood-based panel to include 24 metabolites 
resulting in increased positive predictive values (67). The 
updated panel consists of 13 glycerophosphatidylcholines 
(PCs), 9 acylcarnitines, asparagine, and asymmetric dimethy-
larginine (ADMA), which improved their predictive accuracy 
to 95% (67). These results are in line with other studies where 
plasma PCs, acylcarnitines, and amino acids were found to be 
altered in MCI and AD patients (18, 62–65). Additionally, two 
metabolomics studies using CSF or brain tissue from patients 
without cognitive impairment but with AD-like pathology also 
identified differentially regulated lipids and UFAs when com-
pared to CN (59, 60). In the CSF of AD patients, Guiraud et al. 
observed significant changes in SAM (61), which is needed for 
the generation of ADMA (98). These results strongly implicate 
lipids as pre- and post-symptomatic markers for dementia 
and AD. Furthermore, these data strengthen the notion that 
peripheral blood may be an appropriate biofluid that can reflect 
changes in the CSF and brain tissue.

Aging is characterized by a decline in memory and cognition 
and is considered the greatest risk factor for AD. In search for 
metabolic markers of healthy aging, Mapstone et al. identified 
metabolites in older individuals (approximately 80–85 years of 
age) with superior memory performance compared to normal 
and aMCI/AD patients (68). Participants were scored based 
on cognitive performance including attention, executive, 
language, memory, and visuospatial properties. Performance 
studies identified 41 participants with superior memory, 109 
with normal memory performance, and 74 people were classi-
fied as having aMCI/AD. Plasma samples were analyzed using 
the Biocrates Absolute IDQ p180 Kit measured with FIA-MS/
MS and UPLC-MS. Comparison of individuals with superior 
memory to controls by least absolute shrinkage selection opera-
tor analysis revealed 12 metabolites capable of distinguishing 
between the two groups. The 12-metabolite panel included 
valerylcarnitine, hydroxyhexadecadienylcarnitine, 3-hydroxy-
palmitoleylcarnitine, lysoPC a C28:1, lysoPC a C17:0, PC aa 

C38:5, aspartate, asparagine, arginine, histamine, citrulline, 
and nitrotyrosine (68). Using this panel, the authors were able 
to distinguish between the elderly with superior memory and 
aMCI/AD or preclinical AD suggesting these markers may 
indicate early memory deficits (68). Interestingly, their previ-
ously identified 10-lipid panel (66), which putatively detected 
early signs of neurodegeneration, only modestly associated with 
the 12-metabolite healthy aging panel (68). Superior memory-
associated metabolites identified by Mapstone and colleagues 
may provide insight into metabolic pathways that are important 
for proper cognitive function.

MeTABOLiC PROFiLiNg iN HUMAN 
SALivA

Saliva is a readily accessible biofluid that contains proteins, 
mRNA, microRNA, enzymes for the breakdown of lipids and 
starches, and molecules important for biological functions 
including taste, lubrication, and immune responses (99–101). 
Unlike CSF and plasma, composition of saliva rapidly changes in 
response to biological stimuli (102, 103). In a recent study, Yilmaz 
et al. utilized NMR-based metabolomics to identify 22 salivary 
metabolites that were useful for distinguishing between AD, 
MCI, and healthy patients (69). Group separation between AD 
and CN was achieved using logistic regression models identify-
ing significant changes in the metabolites propionate and acetone 
(69). Similarly, galactose, imidazole, and acetone distinguished 
between MCI and CN, while creatine and 5-aminopentanoate 
separated AD vs MCI (69). In another study using faster 
UPLC-MS, the authors analyzed the saliva from 256 patients 
with AD and 218 age-matched healthy controls (70). Using 
principal component analysis, Liang and colleagues identified six 
metabolites (Sphinganine-1-phosphate, ornithine, phenyllactic 
acid, inosine, 3-dehydrocarnitine, and hypoxanthine) that were 
significantly different in AD patients compared to CN. Three 
of these metabolites (sphinganine-1-phosphate, ornithine, and 
phenyllactic acid) were strong predictors of AD (predictive accu-
racy; area under curve = 0.998) (70). Ornithine is an intermediate 
metabolite of polyamine metabolism, which was affected in the 
plasma of AD patients (62). These results demonstrate the poten-
tial use of metabolomics to develop salivary biomarkers capable 
of diagnosing AD.

MeTABOLOMiCS iN MOUSe MODeLS  
OF AD

In 1907, Dr. Alois Alzheimer described the first patient with 
senile plaques and NFTs, which represent the major hallmarks 
of AD (104, 105). Since the initial description, significant 
progress has been made to enhance our understanding of AD 
mechanisms including the identification of familial gene muta-
tions in APP (106–108), PS1, and PS2 (109, 110) implicated in 
the accumulation of amyloid peptides. While only a very small 
number of AD cases are associated with familial mutations, the 
development of mouse models that express human APP, PS1, and 
PS2 transgenes significantly expanded the ability to study disease 
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TABLe 3 | Common transgenic mouse models of AD utilized in metabolomics studies.

Model Transgene/mutation Phenotype Reference

APP (Tg2576) APP: KM670/671NL (Swedish) •	 5- and 14-fold increase of Aβ40 and Aβ42/43, respectively
•	 Aβ plaques by 11 months
•	 Gliosis identified near Aβ plaques by 10 months
•	 Cognitive impairment detected by 3–6 months

(114, 115)

PS1 (line 5.1) PSEN1: M146L •	 2- to 3-fold increase of mutant PSEN1
•	 Elevated Aβ42/43 in the brain

(116)

APP/PS1 APP: KM670/671NL (Swedish)
PSEN1: M146L

•	 Enhanced pathology compared to single transgene
•	 Aβ deposits by 6 months
•	 Gliosis by 6 months
•	 Cognitive impairment detected by 3 months

(117, 118)

3xTg APP: KM670/671NL (Swedish)
PSEN1: M146V
MAPT: P301L

•	 Age-associated pathology
•	 Aβ deposits by 6 months
•	 Tau pathology by 12 months
•	 Gliosis by 7 months
•	 Cognitive impairment detected by 4 months

(119–121)

5xFAD APP: KM670/671NL (Swedish); I716V 
(Florida); V717I (London)
PSEN1: M146L; L286V

•	 Early and aggressive presentation
•	 Aβ deposits by 1.5 months
•	 Gliosis by 2 months
•	 Cognitive impairment detected by 4 months

(122, 123)

APOE4 APOE4 targeted replacement •	 APOE levels and plasma lipids in ε4 mice do not differ significantly to ε3 mice
•	 APOE4 mice have reduced VLDL clearance rate compared to APOE3 mice

(124)

EFAD 5xFAD with APOE (2, 3, or 4) knock-in •	 APOE4 mice (E4FAD) have increased plaques compared to E3FAD and E2FAD models
•	 Plaque formation between 4 and 6 months
•	 Gliosis at 6 months of age in all models
•	 Cognitive decline in E4FAD > E3/E2FAD

(125)

APOE, apolipoprotein E; APP, amyloid precursor protein; FAD, familial Alzheimer’s disease; MAPT, microtubule-associated protein tau; PS1/PSEN1, presenilin-1; VLDL, very low 
density lipoprotein.
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mechanisms. Mice can also harbor the human transgene encod-
ing MAPT, which in its hyperphosphorylated state forms NFTs 
(111). Currently, along with the popular models of FAD including 
APP (Tg2576), APP/PS1, or 3xTg AD mice, the development of 
humanized mouse models expressing genetic risk factors, such 
as APOE ε4 allele, allows researchers to study mechanisms of 
late-onset sporadic AD (111–113). Table  3 represents some of 
the most commonly used mouse models of AD.

Mice have become a common model to study AD since they 
share 99% of their genes with humans, have a relatively short 
life span (approximately 2–3  years), are easy to handle and to 
house, have a simple reproductive scheme, and can be genetically 
modified (126). However, while mice carry endogenous genes 
encoding for APP and tau, they do not naturally develop AD. 
While the exact reasons for that are unknown, it may be due to 
the three amino acid difference between human and rodent Aβ 
or that mice do not live long enough (127). Although there is no 
single mouse model that recapitulates the complexity of human 
AD, transgenic mice provide an invaluable resource for study-
ing the effect of individual genetic components on the disease 
progression and for preclinical validation of experimental thera-
peutics (114–121). Application of metabolomics confirmed early 
energetic and metabolic alterations in multiple mouse models of 
FAD that recapitulate human conditions (33, 57). The most recent 
applications of metabolomics to study metabolic disturbances in 
biofluids and brain tissue of AD mouse models are summarized 
in Table 4.

MeTABOLiC PROFiLiNg iN BRAiN TiSSUe 
AND BLOOD FROM TRANSgeNiC MOUSe 
MODeLS OF AD

In two consecutive studies, Gonzalez-Dominguez and colleagues 
used direct infusion MS (DIMS) to explore altered metabolic 
profiles in APP/PS1 mice compared to non-transgenic (NTG) 
CN mice (128, 129). In the first study, the authors focused on the 
evaluation of region-specific metabolic changes in the hippocam-
pus, cortex, CB, and olfactory bulbs of male and female mice 
6 months of age. The greatest changes in metabolite composition 
were found in the cortex and hippocampus of AD compared 
to NTG mice including the accumulation of fatty acids and 
alterations in phospholipids and acylcarnitines related to neural 
membrane degradation and impaired β-oxidation, respectively 
(128). In all brain regions examined, levels of the neurotransmit-
ter dopamine were altered in AD compared to NTG mice similar 
to that observed in AD patients (128, 138, 139). The cortex and 
hippocampus are two regions primarily affected in AD with high 
levels of amyloid plaques and NFTs (140). Consistent with this, 
the authors found the greatest disturbances in the cortex and 
hippocampus supporting that metabolic alterations are closely 
linked to neuropathological changes in AD (141, 142). Similar to 
AD patients, region-specific changes in fatty acids were detected 
in postmortem AD brains (59).

In the second study, Gonzalez-Dominguez and colleagues 
analyzed serum from APP/PS1 mice using a two-step extraction 
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TABLe 4 | Application of metabolomics in samples from AD mouse models.

Analytical 
platform

Samples Findings Reference

DIMS Brains and plasma from APP/
PS1 and WT mice

•	 APP/PS1 cortex and hippocampus had altered phospholipids and ACs
•	 APP/PS1 blood serum had significant alterations in eicosanoids (LB4, HEPE, and 

prostaglandins)
•	 Studies suggest altered lipid metabolism and energy utilization in APP/PS1 mice

(128, 129)

Absolute IDQ p180 
Kit measured by 
UPLC-MS

Longitudinal collection 
(6–18 months) of APP/PS1 
and WT mouse brains and 
plasma

•	 6 months: ↑ Arg in brain, ↓ Gln and Pro in plasma
•	 At 6–10 months: ↑ polyamines putrescine, spermidine, and spermine in brain and plasma
•	 10–12 months: ↓ Thr
•	 12 months: ↓ Gln and citrulline in plasma
•	 Potential temporal disturbance in amino acids and lipid metabolism

(130)

Bile acid kit 
measured by 
LC-MS/MS

Plasma and whole brain tissue 
from 5 APP/PS1 at 6 and 
12 months of age
Plasma and neocortex from 10 
AD and CN patients

•	 Bile acids are perturbed in AD samples
•	 Human plasma had ↓ CA in AD patients
•	 APP/PS1 mouse plasma had ↑ CA at 6 months and ↓ hyodeoxycholic acid at 12 months
•	 Human neocortex had ↓ taurocholic acid
•	 APP/PS1 brain tissue: 6 months had ↑ lithocholic acid and ↓ TMCA; 12 months had ↓ TMCA, 

CA, β-muricholic acid, Ω-muricholic acid, taurocholic acid, and tauroursodeoxycholic acid

(131)

UHPLC-MS Urine from 30 APP/PS1 and 
CN mice at 2 months of age

•	 Identification of potential early biomarkers in urine
•	 ↑ Spermic acid, 2,4-guanidinobutanoic acid, nicotinuric acid, l-isoleucyl-l-proline, l-2,3-

dihydrodipicolinate, 3,4-dihydroxyphenylglycol o-sulfate, N-acetyl-l-tyrosine, 5-hydroxyindoleacetic 
acid, 3-methoxybenzenepropanoic acid, and 3,4-dimethoxyphenylacetic acid

•	 Dimethylarginine, 1-methyladenosine, citric acid, 5′-deoxyadenosine,  
1-(beta-d-ribofuranosyl)-1,4-dihydronicotinamide, 7-methylinosine, 2-keto-6-acetamidocaproate, 
7-aminomethyl-7-carbaguanine, succinyladenosine, benzaldehyde, urothion,  
6-hydroxy-5-methoxyindole glucuronide, monobutyl phthalate, and tetrahydrocortisol

•	 Had greatest impact on glyoxylate and dicarboxylate metabolism

(132)

Head-space 
GC-MS

Urine of 15 APP mice, 15 
Tg2576 mice, 9 TgCRND8 
mice, and 10 APPLd2 mice 
and NTG littermates

•	 ↑ Phenylacetone across all three APP mice
•	 Linear discriminant analysis predicted groups with <16% error
•	 Predictive metabolites include 6-hydroxy-6-methyl-3-heptanone, 3-methylcyclopentanone, 

4-methyl-6-hepten-3-one, 1-octen-3-ol, 2-sec-butyl-4,5-dihydrothiazole, acetophenone, 
phenylacetone, o-toluidine

(133)

LC-MS and 
GC-MS

Cortex and plasma from 
symptomatic APP/PS1 mice

•	 CAD-31 was found to be neuroprotective
•	 CAD-31 in plasma of APP/PS1 mice ↑ sphingolipids (glycosyl-N-stearoyl-sphingosine and 

sphingosine-1-phosphate)
•	 CAD-31 in cortex of APP/PS1 mice ↑ monoacylglycerols (1-palmitoylglycerol, 2-palmitoylglycerol, 

2-oleoylglycerol)
•	 CAD-31 in plasma of control mice ↓ long-chain fatty acids (margarate, pentadecanoate, 

10-nonadoconoate), ↑ acylcarnitines (C0, C16, C18:1), ↑ ketone body 3-hydroxybutyrate, ↑ 
sphingolipids (glycosyl-N-stearoyl-sphingosine, sphinganine-1-phosphate,  
sphingosine-1-phosphate, sphinganine)

•	 CAD-31 in cortex of control mice was similar to plasma

(134)

HPLC-QTOF-MS Plasma from AD-induced 
mice (via Aβ42 injection) and 
controls (n = 8 per group)

•	 Breviscapine treatment was neuroprotective in Aβ injected mice
•	 Multivariate analysis of breviscapine treated Aβ mice identified indoleacrylic acid, C16 

sphinganine, LPE (22:6), sulfolithocholic acid, LPC (16:0), PA (22:1/0:0), taurodeoxycholic acid, 
and PC (0:0/18:0)

•	 Phospholipid and cholesterol modulation may be neuroprotective

(135)

IC-MS/MS Primary astrocytes of 5xFAD 
mice from neocorticies of  
1- to 3-day-old mice

•	 Pantethine has anti-inflammatory properties
•	 AD astrocytes treated with pantethine had improved glycolytic and TCA cycle flux
•	 Pantethine treatment in AD astrocytes augmented glucose-6-phosphate, glycerol-3-phosphate, 

αKG, fumarate, and succinate levels

(136)

EIS-MS/MS BMDMs derived from Trem2−/− 
and WT mice

•	 ↓ UDP-glucose, CDP-ethanolamine, glucose-6-phosphate, fructose bisphosphate, citrate, and 
succinate

•	 ↑ Indolacetate, glycerol-3-phosphate, malate, and fumarate
•	 TREM2 deficiency perturbs mTOR signaling and nucleotide, glycolytic, and TCA cycle metabolites
•	 Cyclone creatine supplement alleviates TREM2 deficiency in BMDMs

(137)

αKG, αketoglutarate; AD, Alzheimer’s disease; Arg, arginine; APP, amyloid precursor protein; BMDMs, bone marrow-derived macrophages; CA, cholic acid; CDP, cytidine 
diphosphate; CN, control; DIMS, direct infusion mass spectrometry; EIS-MS/MS, electrospray ionization; FAD, familial Alzheimer’s disease; Gln, glutamine; GC-MS, gas 
chromatography-MS; HEPE, hydroxy-eicosapentaenoic acid; HPLC-QTOF-MS, high-performance liquid chromatography quadropole-time-of-flight MS; IC-MS/MS, ion 
chromatography-MS/MS; LB4, leukotriene B4; LC-MS, liquid chromatography-MS; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MS/MS, tandem mass 
spectrometry; mTOR, mammalian target of rapamycin; NTG, non-transgenic; PA, phosphatidic acid; PC, phosphatidylcholine; Pro, proline; PS1/PSEN1, presenilin-1; TCA, 
tricarboxylic acid; Thr, threonine; TMCA, tauromuricholic acid; TREM2, triggering receptor expressed on myeloid cells 2; UDP, uridine diphosphate; UHPLC, Ultra high-performance 
liquid chromatography; UPLC-MS/MS, ultra performance liquid chromatography-MS/MS; WT, wild type.
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method to increase the range of metabolites detected (129). 
Combined DIMS with electrospray ionization and flow injection 
atmospheric pressure photoionization MS techniques allowed 
for a fast comprehensive scan of polar and non-polar metabo-
lites, respectively. The largest alterations in the serum of APP/
PS1 compared to NTG mice were found in levels of eicosanoids 
including leukotriene B4 (LTB4), hydroxy-eicosapentaenoic acid 
(HEPE), and prostaglandins (129). Eicosanoids are derived from 
polyunsaturated fatty acids known for their role in inflammatory 
and immune responses (143). Consistent with these results, 
eicosanoids have been linked to neuroinflammation and AD 
etiology (144, 145). Metabolomics studies in human plasma also 
identified perturbed fatty acid metabolism (18) further suggest-
ing that APP/PS1 mice recapitulate peripheral metabolic changes 
associated with the progression of AD in humans.

One of the advantages for studying AD in transgenic mouse 
models is the ability to easily collect and analyze longitudinal 
samples for metabolic changes during various disease stages in 
respect to amyloid deposition and cognitive function. Pan et al. 
conducted one of the first longitudinal metabolic profiles using 
brain tissue and plasma from 6, 8, 10, 12, and 18 months old APP/
PS1 mice relative to NTG controls (130). Longitudinal samples 
were analyzed using a Biocrates Absolute IDQ p180 Kit measured 
by UPLC-MS. Metabolic pathway analysis identified perturbed 
polyamine metabolism in the brain tissue and plasma of APP/
PS1 mice. Additional alterations were detected in essential 
amino acids, branched-chain amino acids, and the neurotrans-
mitter serotonin. The authors noted that metabolic changes 
detected in the brain tissue of APP/PS1 mice were observed in 
the blood 2–4  months later (130). For instance, phospholipids 
were found most significantly altered in the brain of APP/PS1 
mice at 8  months of age with the same alterations detected in 
blood 4 months later. This suggests a temporal sequence of events 
where changes in brain metabolites precede those in the blood. 
The authors determined that group separation between APP/
PS1 and NTG mice based on metabolic signatures was the most 
pronounced between the ages of 8 and 12 months. In contrast, the 
brain and blood metabolic profiles between APP/PS1 and NTG 
mice in the youngest (6 months) and oldest (18 months) popula-
tions were less clearly separated (130). In the study by Pan and 
colleagues (130), it is worth noting that over a span of 12 months, 
the metabolic disturbances in APP/PS1 mice were transient sug-
gesting that increasing AD pathology has a progressive impact 
on metabolism. This is in agreement with observations reported 
by Toledo et  al. in the plasma of patients with AD enrolled in 
the ADNI study (18). Furthermore, Pan et al. detected increased 
levels of the polyamines spermine and spermidine at 8 months 
in the brain tissue and plasma of APP/PS1 mice (130), which is 
similar to changes identified in our previous study (30) and by 
others in the plasma of AD patients (62).

MeTABOLiC PROFiLiNg iN MOUSe AND 
HUMAN BiLe ACiDS

Primary bile acids are synthesized in the liver and are well known 
for their role in cholesterol catabolism (146). Bile acid-induced 

signaling through nuclear receptors and cell surface G-proteins 
can modulate several metabolic, immune, and inflammatory 
processes (147). Secretion of bile acids into the intestine results 
in further modification by gut microbiota, which is thought to 
influence brain morphology, injury, and stress via the gut–brain 
axis (148). Increasing evidence implicates bile acids in several 
neurological diseases including AD (149–151). Feeding APP/
PS1 mice with 0.4% tauroursodeoxycholic acid for 6  months 
resulted in decreased levels of Aβ in the hippocampus and cortex 
along with increased memory performance (152). Furthermore, 
therapeutic approaches targeting bile acid metabolism and 
signaling have shown beneficial effects in several metabolic and 
neurodegenerative disorders (151, 153–155). Using human and 
mouse samples, Pan et  al. investigated longitudinal changes of 
bile acids in respect to AD development (131). Metabolic changes 
in human postmortem brain tissue (neocortex, n  =  10) from 
confirmed AD cases along with plasma obtained from patients 
predicted to have AD (n  =  10) was compared to age-matched 
controls. Additionally, the authors profiled whole brain tissue 
and plasma from APP/PS1 mice at 6 and 12 months of age. The 
authors quantitated 22 bile acids using the Biocrates Bile Acid Kit 
analyzed by LC-MS/MS (131). In human plasma, they identified 
a single bile acid, cholic acid, which was significantly lower in 
AD patients compared to controls. Analysis of AD brain tissue 
from humans revealed a significant decrease in taurocholic 
acid (131). Bile acid analysis in the plasma from APP/PS1 mice 
revealed that cholic acid was significantly higher in 6-month-old 
mice while hyodeoxycholic acid was decreased in 12-month-old 
mice compared to NTG controls (131). In APP/PS1 mouse brain 
tissue, the authors identified two perturbed bile acids at 6 months 
of age compared to NTG. At 12 months of age, APP/PS1 mice had 
six bile acids that were significantly altered. Among the altered 
bile acids, only tauromuricholic acid was decreased in APP/PS1 
mice in both age groups (131). A decrease in taurocholic acid was 
observed in both human AD cortex and APP/PS1 mouse brain 
tissue (131). Hydrolysis of taurocholic acid yields the nonessential 
amino acid taurine (156). Transgenic APP/PS1 mice administered 
taurine via drinking water displayed improved cognition with 
slightly reduced levels of Aβ in the cortex (157). Taken together, 
these findings warrant further investigation into the relationship 
between bile acid perturbations and AD.

MeTABOLiC PROFiLiNg iN MOUSe URiNe

Yu et  al. investigated metabolic changes in the urine of APP/
PS1 transgenic mice prior to cognitive impairment (132). At 
2 months of age, the spatial working memory of APP/PS1 mice 
showed no significant differences when compared to NTG 
controls (132). However, metabolomics analysis of urine from 
the 2-month-old mice indicated that several metabolites were 
differentially regulated in APP/PS1 mice compared to controls. 
Applying UPLC coupled with quadruple time-of-flight MS, Yu 
et al. identified 10 metabolites that were significantly upregulated 
and 14 metabolites that were downregulated in APP/PS1 mice 
(132). These results suggest that early metabolic changes occur 
prior to spatial memory and cognitive impairment. Pathway 
analysis of the dysregulated metabolites allude to perturbations 
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in pentose and glucoronate interconversions, glyoxylate and 
dicarboxylate metabolism, starch and sucrose metabolism, the 
citrate cycle, arginine and proline metabolism, and tryptophan 
metabolism early in APP/PS1 mice compared to controls (132). 
The metabolite 5-hydroxyindoleacetic acid (5-HIAA) was sig-
nificantly increased in the urine of APP/PS1 mice compared to 
controls (132). In urine, the concentration of 5-HIAA is routinely 
used to estimate levels of serotonin in the body (158). Serotonin 
is a neurotransmitter that can affect cognition, and changes in 
its levels have been implicated in AD (31, 159, 160). Therefore, 
metabolic analysis of urine from APP/PS1 mice may reflect 
fluctuations in the brain.

Using GC-MS, levels of volatile metabolites were investigated 
in the urine from three different transgenic APP mouse mod-
els (133). Each mouse model has a distinct pathological time 
course (114, 161, 162). The three strains included the Tg2576, 
TgCRND8, and APPld2 mice, which developed amyloidosis 
between 3–16, 2–8, and 4–23 months of age, respectively (133). 
The authors identified seven urine metabolites that discriminated 
transgenic mice from NTG littermates. Common across all three 
transgenic models was a disruption in 1-octen-3-ol (octenol) 
(133), which has previously been implicated in disrupting dopa-
mine homeostasis resulting in neurodegeneration (163). Three 
additional unique metabolites were identified in Tg2576 mice 
(2-sec-butyl-4,5-dihydrothiazole, acetophenone, and phenylac-
etone), one in TgCRND8 mice (4-methyl-6-hepten-3-one), and 
two in APPLd2 mice (3-methylcyclopentanone and o-toluidine) 
(133). While these results identified a common dysregulated 
metabolite (octenol) in the urine of all three transgenic mouse 
models, their respective unique signatures further suggest that 
varying Aβ pathology has a gradual impact on the metabolome.

APPLiCATiON OF MeTABOLOMiCS TO 
MONiTOR THeRAPeUTiC eFFiCACY

To date, there are no disease-modifying strategies for AD. 
Multiple clinical trials designed to reduce Aβ production or clear-
ance have failed (164). One explanation is that most treatments 
were administered at a late stage of the disease when irreversible 
damage has already occurred. There is a clear need for more 
accurate and early diagnosis of people who are on the trajectory 
to develop AD so clinical trials can be conducted in individuals 
where the course of the disease could be modified or reversed. 
Additionally, there is a need to monitor therapeutic efficacy of 
experimental treatments. While some clinical trials now include 
the collection of biofluids to monitor therapeutic outcomes using 
metabolomics, these results have not been published yet. Several 
recent studies, however, have used metabolomics to monitor 
efficacy of new therapeutic approaches in preclinical transgenic 
mouse models of AD.

Schubert and colleagues developed a drug that has neurogenic 
and neuroprotective properties (134, 165, 166). The drug derives 
from a hybrid of curcumin and cyclohexyl-bisphenol A (166, 167). 
A derivative of this compound, CAD-31, showed potent neuropro-
tection and memory enhancing properties in AD mouse models 
(165). In a follow-up study, Daugherty and colleagues studied the 

effects CAD-31 on the metabolome of AD mice (134). Transgenic 
female APP/PS1 mice were administered CAD-31 starting at 
10 months of age for 3 months. Cortex brain tissue and plasma 
samples from CAD-31 treated and untreated mice were analyzed 
using non-targeted GC-MS and LC-MS (134). Metabolomics 
analysis in plasma of AD mice demonstrated that sphingolipids 
were significantly altered by CAD-31 treatment, while ketone 
bodies, long-chain fatty acids, acylcarnitines, and sphingolipids 
were affected in CN mice (134). In the cortex of CAD-31-treated 
APP/PS1 mice, the most significantly altered metabolites were 
monoacylglycerols including 1- and 2-palmitoylglycerol and 
2-oleoylglycerol (134). Decreased brain glucose utilization is a 
well-characterized early metabolic phenotype detected in AD 
patients. This brain hypometabolism indicates the requirement 
for the use of alternative fuel sources in order to maintain neu-
ronal function (27, 168, 169). The neuroprotective and memory 
enhancing effects seen in AD mice treated with CAD-31 may, in 
part, be associated with a metabolic shift toward lipid utilization. 
Metabolites affected by CAD-31 treatment in WT mice included 
ketones, acylcarnitines, and acetyl-CoA, which suggest that mito-
chondrial energetics and lipid metabolism were favorably altered. 
However, in APP/PS1 mice, only monoacylglycerols were signifi-
cantly altered by CAD-31 treatment (134). The monoacylglycerol 
2-arachidonoylglycerol (2-AG), known for its role in neurotrans-
mission (170), has previously been implicated in the pathogenesis 
of AD (171). Hydrolysis of 2-AG by monoacylglycerol lipase 
results in the formation of arachidonic acid, which is a precursor 
for the eicosanoids LTB4, HEPE, and prostaglandins (171–174). 
In line with these findings, Gonzalez-Dominguez and colleagues 
identified altered levels of LTB4, HEPE, and prostaglandins in 
the serum of APP/PS1 mice (129). These findings could indicate 
that modulation of lipid metabolism and monoacylglycerols may 
be an effective therapeutic strategy to favorably alter cellular 
energetics and synaptic signaling in AD.

Erigerontis Herba is a traditional Chinese medicine used to 
treat cardiovascular diseases (175). Scutellarin, a flavone found 
in Erigerontis Herba, has been shown to prevent β-amyloid 
aggregation (176). In an attempt to identify the underlying 
therapeutic mechanisms of Erigerontis Herba administration, 
Xia et al. investigated metabolic changes in AD mice treated with 
breviscapine, a drug containing >85% scutellarin (135, 175). In 
this study, AD was induced in mice via unilateral ventricle injec-
tion of aggregated Aβ42 peptides. AD-induced mice displayed 
decreased learning and memory abilities compared to controls 
(135). Dose-dependent treatment of AD mice treated with 
breviscapine showed improved performance in behavior tests 
compared to untreated controls (135). Plasma from AD mice 
treated with breviscapine was analyzed using LC-MS metabo-
lomics. The authors identified eight metabolites implicated in 
lipid metabolism including indoleacrylic acid, C16 sphinganine, 
lysophosphatidylethanolamine, sulfolithocholic acid, lysophos-
phatidylcholine, phosphatidic acid, taurodeoxycholic acid, and 
phosphatidylcholine (135). Consistent with other studies (66, 67, 
131), these results suggest that modulation of lipid metabolism in 
AD can enhance neuroprotection.

Unbalanced inflammatory mechanisms from several neural 
cells, including microglia, oligodendrocytes, and astrocytes, are 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


13

Wilkins and Trushina Application of Metabolomics in Alzheimer’s Disease

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 8 | Article 719

thought to contribute to the progression of AD (177). Pantethine, 
a precursor to vitamin B5, has previously been shown to alleviate 
symptoms related to immune and inflammatory responses (178, 
179). Furthermore, pantethine has been shown to be beneficial 
in treating metabolic disorders associated with mitochondrial 
dysfunction and neurodegeneration (180–182). Using astrocytes 
from newborn 5xFAD mice, van Gijsel-Bonnello et  al. studied 
early mechanisms of inflammation and metabolic disorder that 
contribute to AD (136). The authors evaluated if treatment 
with pantethine in 5xFAD astrocytes would prevent inflamma-
tory and metabolic dysfunction (136). Non-targeted analysis 
revealed disturbances in metabolites of the glycolytic pathway 
(glucose-6-phosphate and glycerol-3-phosphate) and TCA cycle 
(αketoglutarate, fumarate, and succinate) in 5xFAD astrocytes 
compared to controls (136). Pantethine treatment reduced the 
extent of alterations seen in 5xFAD astrocytes (136). The authors 
linked improved glycolytic and TCA cycle flux with nucleotide 
homeostasis and increased ATP levels (136). Additionally, they 
reported reduced inflammatory processes in 5xFAD astrocytes 
treated with pantethine highlighting the benefits of augmenting 
altered brain energetics early in AD (136).

The protein triggering receptor expressed on myeloid cells 2 
(TREM2) is a cell surface receptor known for its role in immune 
signaling (183). Recent GWAS studies associated a mutation in 
TREM2 (R47H) with increased risk for AD (184). TREM2 was 
further shown to be a sensor for lipids associated with Aβ, which 
is impaired by the R47H mutation (185). Furthermore, Trem2 
deficiency in 5xFAD mice led to increased Aβ burden (185). Using 
a combination of transmission electron microscopy and confocal 
imaging, Ulland et al. observed an increase in autophagic vesicles 
in microglia from Trem2−/− 5xFAD mice compared to wild-type 
mice (137). The authors hypothesized that increased autophagic 
vesicles may be indicative of metabolic stress mediated, in part, 
by dysregulation of the mammalian target of rapamycin (mTOR) 
pathway, which is known for its role in controlling metabolism 
and autophagy (137, 186). Indeed, mTOR signaling was impaired 
in the microglia of Trem2−/− 5xFAD mice (137). In a parallel 
model, using bone marrow-derived macrophages deficient of 
Trem2, the authors applied electrospray ionization (EIS)-MS/
MS metabolomics to reveal potential mTOR-mediated energetic 
stress responses (137). In Trem2−/− macrophages, the authors 
found significant decreases in uridine diphosphate-glucose, 
cytidine diphosphate-thanolamine, glucose-6-phosphate, 
fructose bisphosphate, citrate, and succinate accompanied by 
increases in indolacetate, glycerol-3-phosphate, malate, and 
fumarate when compared to wild-type cells (137). Their results 
suggest that TREM2 deficiency and perturbed mTOR signaling 
results in marked decreases in nucleotide, glycolytic, and TCA 
cycle metabolites with an increase in catabolic products of amino 
acids and phospholipids (137). The authors further investigated 
whether supplementation with cyclone creatine, known to 
increase ATP/ADP ratio (137, 187), could alleviate metabolic 
deficiency established in Trem2−/− macrophages. Their results 
demonstrated that bypassing the energetic stress identified in 
Trem2−/− macrophages by supplementation with cyclone creatine 
improved bioenergetics and mTOR signaling (137). These results 
intricately demonstrate the capability to identify biomarkers 

associated with AD and provide proof of concept for the ability 
to restore dysfunctional pathways identified using metabolomics.

DiSCUSSiON

Recent advances in the field of AD have highlighted the need 
to identify biomarkers for early disease diagnosis, develop new 
therapeutic strategies to modify or halt the disease progression, 
and establish models that provide reliable and strong transla-
tional value. The analysis of recent literature demonstrates that 
metabolomics, sparse in the past, is becoming more frequently 
utilized in human and animal studies extending the application 
to various systems including CSF, plasma, brain tissue, cells, 
urine, and saliva among others. Together with changes in the 
brain, metabolic alterations are detected in multiple tissues and 
fluids in AD patients suggesting a systemic nature of the disease. 
This underlines the potential utility of metabolomics to study 
pathophysiological mechanisms in living patients and establish 
biomarkers using readily available biofluids and tissue (e.g., 
plasma and skin fibroblasts).

The strength of metabolomics is in the capability of meas-
uring the plethora of metabolites providing a snapshot of an 
individual’s current biological status. Since the metabolome 
reflects individual’s unique genomic, proteomic, and transcrip-
tomic alterations, metabolomics can provide a global system 
analysis offering greater insight compared to other approaches. 
Application of metabolomics in animal models of AD demon-
strated a significant overlap in the affected pathways identified 
in humans (Tables 2 and 4). This is of considerable importance 
providing a justification for the use of transgenic mouse models 
for translational research. The ability to conduct longitudinal 
studies assaying metabolic changes simultaneously in the brain 
tissue and the periphery represents an outstanding advantage 
of mouse models to define the relationship between preclinical 
biomarkers of AD vs clinical signatures. Metabolomics analysis 
conducted in biological samples of patients with MCI and AD 
identified metabolic changes associated with preclinical (18, 59, 
60, 62, 132) and clinical AD (18, 58, 61, 62, 129). These findings 
suggest that metabolomics-based biomarkers could be used to 
improve disease diagnosis, which will allow to target pathways 
altered early in AD. As shown in mouse models of AD, monitor-
ing therapeutic efficacy could also provide valuable insight into 
the mechanistic effects of potential disease-modifying drugs 
(134–137).

Studies using metabolomics and lipidomics have identified 
several metabolic pathways altered in AD including methio-
nine, arginine, and glutamate metabolism, fatty acid biosyn-
thesis and lipid metabolism, and mitochondrial bioenergetics 
(Tables 2 and 4). However, most of the published studies agreed 
that lipid metabolism is the most consistently altered pathway 
in AD pathogenesis. Toledo et al. performed one of the larg-
est blood-based metabolomics studies in AD patients to date 
correlating alterations in sphingomyelins and ether-containing 
phosphatidylcholines with preclinical biomarker-defined AD 
stages and symptomatic changes with acylcarnitines, amines, 
and branched-chain amino acids (18). In line with these results, 
several other studies identified significantly altered lipids in AD 
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(Tables  2 and  4). Specifically, changes in sphingomyelin, an 
important component of lipid rafts, were associated with early 
preclinical AD (60). Snowden et al. further demonstrated that 
changes in UFAs occur in the CB, which is relatively unaffected 
by Aβ and tau pathologies (59). These results suggested that 
changes in UFAs might occur early in AD development inde-
pendently of Aβ and tau accumulation in the brain. Similarly, 
Legido-Quigley’s group observed perturbed levels of fatty acids 
in the plasma of AD patients including phosphatidylcholines, 
ChEs, and ceramides, which was further correlated with brain 
atrophy (63–65). Metabolomics analysis by Pan et al. of plasma 
and brain tissue from both humans and mice reveled that bile 
acids, which are important for lipid metabolism, are perturbed 
in AD (131). These experiments conducted using metabo-
lomics and lipidomics clearly implicate these metabolites in 
the pathology of AD.

Taken together, metabolomics and lipidomics profiling has 
provided strong evidence that multiple factors are involved in 
the pathology of AD where lipid homeostasis appears to be an 
essential component. Lipids play a major role in normal biologi-
cal functions including membrane structure, β-oxidation, cell 
signaling, and formation of bile acids. The first report by Alois 
Alzheimer described altered lipid composition in the brain tissue 
of AD patients (104, 105). Identification of the APOE ε4 allele as 
a major genetic risk factor for sporadic AD further strengthened 
the involvement of lipid homeostasis in AD pathogenesis. APOE 
is known for its primary role in lipid uptake and transport in 
cells. The allelic variant ε4 is associated with an increase in levels 
of toxic Aβ oligomers in the brain (188). In addition to APOE, 
lipids are also implicated in the regulation of the membrane-
bound proteins associated with AD including APP, BACE1, and 
the presenilin proteins (189–191). Furthermore, the phospho-
rylation of tau protein could be influenced by various lipids 
(192, 193).

While metabolic profiling has provided significant insight 
into AD mechanisms, findings can be conflicting and inconsist-
ent between studies. Variability in metabolic profiling arises 
from several factors including the experimental design, sample 
processing, platform selection, data analysis, and the account-
ing for confounders such as medication. For human studies, 
experimental design is often limited by the availability of samples 
for the analysis reducing statistical significance. Sometimes 
samples are not matched by age, sex, and race. Many studies 
lack the sufficient number of males and females, which can 
introduce a significant bias by overlooking sex-specific changes. 
Confounders, such as medications, could further complicate 
data analysis. However, several additional factors including diet, 
environment, comorbidities, and whether patients fast prior to 
sample collection can influence an individual’s metabolome and 
should also be considered. While mice allow us to control for 
many of these variables, several problems regarding their trans-
lational potential still exist. For instance, mice do not naturally 
develop AD and require the expression of human transgenes 
to develop symptoms. While inbreeding reduces variance in 
mice, this can also produce results that do not reflect a normal 
population. Equally important in human and mouse studies is 
the handling and processing of samples. Metabolic changes are 

dynamic and occur quickly. Therefore, careful considerations are 
needed to minimize metabolic alterations that could be induced 
during sample collection and storage. Additionally, regional 
tissue variation (e.g., hippocampus vs cortex) should be consid-
ered. The methodologies utilized for extraction vary depending 
on the nature of metabolites under investigation (e.g., lipids vs 
amino acids). Due to their inherent properties, different classes 
of metabolites require optimized extraction methods, which 
should be standardized in order to provide a direct comparison 
between results generated in different laboratories. Irrespective 
of the analytical platform, internal standards and reference 
samples are important for data normalization and quality control 
measurements. Finally, several multivariate statistical models 
exist to analyze metabolomics data (194). Proper modeling of 
metabolomics data is necessary to ensure accurate fitting of the 
data and identification of biomarkers, which is usually validated 
in a separate study (194). Additional post-analytical tools can 
be useful in the interpretation of metabolomics data for clini-
cal application. For instance, CLIR (Collaborative Laboratory 
Integrated Reports; https://clir.mayo.edu/) is a web-based tool 
designed at the Mayo Clinic that uses multivariate pattern recog-
nition software, which has an integrated database of clinical and 
laboratory data. This database is used to generate post-analytical 
tools capable of evaluating metabolite ratios that may discrimi-
nate between various conditions (e.g., AD vs healthy controls). 
The CLIR software combines multiple parameters to produce a 
single score that reflects the probability of having a particular 
condition. Using complementary analytical approaches will 
likely enhance the identification and accuracy of metabolic AD 
biomarkers and their application in the clinic.

CONCLUSiON

A majority of our knowledge of the molecular mechanisms of 
AD has derived from the identification of key genes involved in 
the etiology and pathology of the disease. These genes include 
APP, PSEN1, and PSEN2 associated with FAD. However, the 
majority of AD cases are sporadic with no direct genetic cause 
and only associated with a few identified risk factors such as the 
APOE ε4 allele and TREM2 variants (195). Application of current 
diagnostic tools strongly suggests that metabolic alterations con-
tribute to early disease mechanisms. The identification of several 
metabolic networks, including lipid and amino acid metabolism, 
and metabolic pathways involved in glucose and energy substrate 
utilization provides insights into potential disease mechanism 
and therapeutic targets. These findings together with the identi-
fication of additional risk factors for AD, such as type 2 diabetes, 
strengthen the notion that AD is a metabolic disorder (196–200). 
Metabolomics profiling coupled to pathway analysis could aid in 
the understanding of the underlying disease mechanisms lead-
ing to the development of novel blood-based biomarkers for the 
diagnosis, prognosis, and monitoring therapeutic efficacy.
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