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Posttranslational modification by small ubiquitin-like modifier (SUMO) regulates myriad 
physiological processes within cells and has been demonstrated to be highly activated in 
murine brains after cerebral ischemia. Numerous in vitro and murine in vivo studies have 
demonstrated that this increased SUMO conjugation is an endogenous neuroprotective 
stress response that has potential in being leveraged to develop novel therapies for 
ischemic stroke. However, SUMO activation has not yet been studied in poststroke 
human brains, presenting a clear limitation in translating experimental successes in 
murine models to human patients. Accordingly, here, we present a case wherein the 
brain tissue of a stroke patient (procured shortly after death) was processed by multiplex 
immunohistochemistry to investigate SUMO activation.
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INtRoDUCtIoN

An 89-year-old man presented to our facility with acute onset of left-sided weakness and hemine-
glect. Magnetic resonance imaging (MRI) revealed a right middle cerebral artery (MCA) stroke 
with associated hypoperfusion of the right MCA territory and a thrombus in the distal right internal 
carotid artery. The patient was treated with intravenous recombinant tissue plasminogen activator 
(rtPA). The patient’s family provided surrogate consent, and the patient was enrolled in an IRB-
approved natural history observational study (ClinicalTrials.gov NCT00009243). The patient wors-
ened neurologically over the following 24 h and was placed on comfort care. The patient expired 43 h 
after hospital admission due to cardiorespiratory failure. The family provided written consent for an 
unrestricted donation for diagnostic, scientific, or therapeutic purposes, and an autopsy was per-
formed within 12 h of death. Brain tissue was obtained at autopsy and stored at the National Cancer 
Institute Laboratory of Pathology. The surfaces of the cerebrum and brainstem showed mild atrophy, 
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but no softening or masses. There was no evidence of herniation 
of the cingulate gyri, unci, or cerebellar tonsils. Postmortem MRI 
of the brain was obtained after fixation at 7T and co-registered 
to the in vivo MR images obtained at stroke onset. Brain samples 
for immunofluorescent staining were derived from the right 
frontal lobe at the periphery of the ischemic region within an 
area of hypoperfusion as confirmed by MRI, as well as from the 
contralateral region of the left frontal lobe; the penumbra was 
characterized as areas visualized as normal for diffusion but 
abnormal for perfusion (Figure 1).

BaCKGRoUND aND DIsCUssIoN

Posttranslational modification by small ubiquitin-like modifier 
(SUMO) regulates diverse homeostatic processes within cells (1). 
After the demonstration of SUMO activation during hibernation 
torpor (2), further experiments have shown that both global 
and focal transient cerebral ischemia–reperfusion dramatically 
increase the levels and nuclear localization of SUMO-conjugated 
proteins within murine brains, and furthermore, this process 
may contribute toward neuroprotection (3–9, 19). Consequently, 
numerous studies in murine models have sought to induce pro-
tection against ischemia by leveraging SUMOylation (10–12). 
However, at present, evidence of SUMO activation in postisch-
emic human brain tissue has yet to be demonstrated.

Herein, fluorescent multiplex immunohistochemistry (mIHC) 
was employed to visualize the intensity and localization of SUMO 
within the neurons of the penumbral tissue and the corresponding 
tissue of the contralateral hemisphere. Upregulation of SUMO1 
and SUMO2/3 in neurons of the ischemic penumbra was clearly 
observed in the form of an increased intensity of immunoreac-
tivity compared to the matched contralateral tissue (Figure 2). 
Furthermore, SUMO1 and SUMO2/3 immunoreactivity was 
also observed to translocate from the cytoplasm to the nucleus 
(visualized with DAPI) in greater intensity in penumbral neurons 
compared to contralateral neurons (Figure 3).

Briefly, after an ischemic event, the affected tissue can be 
divided into three regions based on factors including collateral 
perfusion, susceptibility to cell death, and duration of blood 
vessel occlusion: the ischemic core, the ischemic penumbra, and 
the oligemia (13–16). The ischemic core is tissue that has suf-
fered irreversible injury due to severe reductions in blood flow 
(<20% of normal) and oxygen delivery and is as such considered 
unsalvageable (15, 17). The ischemic penumbra comprises 
severely hypoperfused (~40% of normal) tissue, is functionally 
impaired, is progressively recruited into the ischemic core as the 
duration of vascular occlusion increases (being detectable with 
PET as late as 18 h after onset), and is considered salvageable if 
perfusion is restored (15, 17, 18). Thus, the ischemic penumbra 
is the target of acute reperfusion therapies (e.g., thrombolysis 
using rtPA), which improve patient outcomes in proportion to 
the volume of penumbra ultimately salvaged (18). Finally, the 
oligemia surrounds the penumbra and suffers a mildly reduced 
CBF (>40% of normal). Tissue in the oligemia is generally not 
at risk barring complications (15). Ultimately, as the ischemic 
penumbra is where therapeutic interventions in ischemic stroke 
are most relevant and efficacious (with the understanding that 

the SUMO pathway has been identified as a potential thera-
peutic target in animal models of stroke), and considering that 
SUMOylation in the brain is a rapidly cycling ATP-dependent 
process (1, 8), tissue from the ischemic penumbra was selected 
for mIHC.

Past studies in murine models of ischemia have demonstrated 
increased SUMO conjugation in the brain after ischemia– 
reperfusion. Notably, the greatest levels of SUMO activation 
and neuronal nuclear localization of SUMO2/3-conjugated 
proteins were observed in cells of the ischemic penumbra (4, 19). 
Significant research investigating the neuroprotective effect of 
SUMO activation in in vitro and murine models of ischemia have 
already been conducted, demonstrating the critical role of SUMO 
activation as an endogenous neuroprotective stress response that 
attenuates neuronal damage caused by ischemia–reperfusion, 
as well as enhanced neuroprotection when SUMO activation 
is induced above physiological levels (2, 5–7, 10, 20–22). Cells 
overexpressing the SUMO E2 conjugase, Ubc9, and subsequently 
demonstrating increased SUMO conjugation, were protected 
from oxygen/glucose deprivation (OGD)-induced damage, 
whereas cells with an inhibited Ubc9 demonstrated decreased 
SUMO conjugation and were sensitized to OGD-induced dam-
age (2). The overexpression of SUMO1 and SUMO2 protected 
cells from OGD-induced damage, while microRNA-induced 
depletion of endogenous SUMO1 and SUMO2/3 sensitized cells 
to OGD-induced damage (5, 20). Suppressing SUMOylation 
through overexpression of SENP1 also sensitized cortical neurons 
to OGD-induced damage (21). Transgenic mice overexpressing 
Ubc9 had increased levels of SUMOylated proteins in their 
brains, were more tolerant to ischemic stress, and had smaller 
infarct volumes after pMCAO compared to wild-type mice (10). 
Meanwhile, transgenic SUMO-knockdown mice in which miR-
NAs specifically silenced SUMO1-3 in neurons displayed worse 
functional outcomes after transient forebrain ischemia compared 
to wild-type mice (9).

Naturally, as upregulation of the SUMOylation pathway has 
been shown to be neuroprotective in preclinical models of brain 
ischemia, several studies have sought to pharmacologically 
modify SUMOylation in an effort to bring this pathway to bear 
on acute ischemic insults (11, 12, 23). For example, a lead com-
pound (N106) has been identified to increase SUMOylation via 
activation of the SUMO E1 enzyme and was capable of inducing 
protection against myocardial insults in  vitro and in  vivo (23). 
Other compounds such as histone deacetylase inhibitors and syn-
thetic retinoids, which increase SUMOylation by inhibiting the 
regulatory miRNAs miR-182 and miR-183, have demonstrated 
protection of cortical neurons in vitro (11). After the discovery 
that quercetin is a potential SENP inhibitor that may induce 
neuroprotection in part via increased SUMOylation (12), quan-
titative high-throughput screens using physiologically relevant 
SUMO substrates have also been developed and employed to 
search for potential neuroprotective compounds that act through 
the inhibition of SENP2 (24). The topic of therapeutic strategies 
leveraging SUMOylation in brain ischemia has been recently 
reviewed in greater detail (25). Ultimately, the search for SUMO-
activating compounds that may be developed into neuroprotec-
tive therapies in humans in ongoing.
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FIGURe 1 | Patient MR images taken during clinical evaluation (acute) (a) and 24 h later (B) [pictured: trace-weighted diffusion weighted imaging (DWI) and ADC 
maps, fluid-attenuated inversion recovery (FLAIR), perfusion mean-transit time (MTT), and a minimum intensity projection of the circle of willis]. (C) MR images taken 
postmortem were analyzed to co-localize regions of interest identified in vivo with the postmortem sample (red boxes: ipsilateral ROI; yellow boxes: contralateral). 
Two regions of interest were segmented, the region of the core (red) taken from the baseline DWI and the region of the penumbra as the mismatch between the  
MTT and the DWI (green), and overlaid onto the 24-h DWI.
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FIGURe 2 | Composite wide-field fluorescent multiplex immunohistochemistry (mIHC) images (yellow, SUMO1; red, SUMO2/3; blue, DAPI,). (a) Ipsilateral, SUMO1. 
(B) Contralateral, SUMO1. (C) Ipsilateral, SUMO2/3. (D) Contralateral, SUMO2/3. Capture parameters of ipsilateral and contralateral images were identical. Cropped 
ROIs were taken from comparable layers of cortex. The intensity of SUMO1 and SUMO2/3 immunoreactivity is increased in neurons residing within the penumbral 
tissue compared to neurons in the matched contralateral anatomy.
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CoNCLUDING ReMaRKs

To date, despite numerous animal studies and the clinical 
importance of developing neuroprotective therapies for ischemic 
stroke, there has been no evidence demonstrating SUMO acti-
vation in human brains after stroke. This report is the first to 
document that within a poststroke human brain, SUMOylation 
patterns are largely concordant with those in postischemic 
murine brains, suggesting that enhanced SUMO conjugation 
may play a similar role in humans as in murine models (i.e., as an 
endogenous neuroprotective stress response that could be thera-
peutically leveraged to attenuate ischemic damage and promote 
functional recovery). Thus, it is the authors’ contention that this 
case serves as an initial validation of the body of research into 
SUMO conjugation-induced neuroprotection, although it must 
be recognized that more studies should be conducted to confirm 
the generalizability of these results.

MateRIaLs aND MetHoDs

Magnetic Resonance Image acquisition
As a part of the baseline clinical evaluation for stroke, and 
research follow-up, the subject was imaged on a 3T MR Scanner 
(Siemens Medical, Malvern, PA, USA) using a standardized 
MRI protocol that included diffusion-weighted imaging 

(DWI), T2* gradient recalled echo, time-of-flight magnetic 
resonance angiogram of the circle of willis, and T2-weighted 
fluid-attenuated inversion recovery (FLAIR). Relevant param-
eters for sequences presented are as follows: forty 3.5-mm thick 
axial-oblique slices aligned along the anterior–posterior com-
missure were acquired co-localized for DWI and FLAIR. DWI 
consisted of 15 direction tensor sequences used to generate 
both trace-weighted DWI and ADC maps, b-value = 1,000, TR/
TE = 100,025x ms, FOV = 24 cm, and 3 mm × 3 mm × 7 mm 
voxels. FLAIR consisted of TR/TE/TI =  9,000/120/2,600 ms. 
Dynamic susceptibility contrast perfusion-weighted imaging 
was performed using an echo-planar T2*-weighed gradient 
recalled echo sequence with the relevant parameters: TR/
TE = 1,200/25 ms, FA = 80, FOV = 220 mm, matrix of 96 × 96, 
twenty 7-mm axial-oblique slices, and 80 dynamics after a 
weight-adjusted single dose of Gd-BOPTA injected at 5 ml/s 
into the antecubital vein. Maps of mean-transit time were 
generated using vendor provided software with arterial input 
function deconvolution.

After extraction and 1-month fixation with 10% formalin, 
the brain was hydrated for 1 week in 1% formalin before being 
transferred to a custom-machined container attached to a 
1/3-horsepower vacuum pump. The brain was then immersed 
under vacuum in fluorinated oil (Fomblin LC/8, Solvay Solexis 
Inc.) that was free of proton MR signal. Whole brain images were 
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FIGURe 3 | High-resolution composite fluorescent multiplex immunohistochemistry (mIHC) images (yellow, SUMO1; red, SUMO2/3; blue, DAPI; green, NeuN; violet, 
GFAP). (a) Ipsilateral, SUMO1. (B) Contralateral, SUMO1. (C) Ipsilateral, SUMO2/3. (D) Contralateral, SUMO2/3. Capture parameters of ipsilateral and contralateral 
images were identical. Cropped ROIs were taken from comparable layers of cortex. The intensity of SUMO1 and SUMO2/3 immunoreactivity is increased in neurons 
residing within the penumbral tissue compared to neurons in the matched contralateral anatomy; in addition, SUMO1 and SUMO2/3 immunoreactivity is translated 
from the cytoplasm to the nucleus in penumbral neuronal tissue.
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acquired using a 7T MRI scanner (Siemens, Erlangen, Germany) 
and analyzed to co-localize regions of interest that had been seen 
in vivo to the postmortem specimen. The brain was sectioned into 
coronal slices, and additional sectioning and histopathological 
processing was performed on ROIs and matching contralateral 
control tissues.

Fluorescence mIHC
Briefly, 10-μm-thick human brain OCT-embedded sections 
were incubated with Human BD Fc Blocking solution (BD 
Biosciences) to block endogenous Fc receptors and then 
incubated in True Black Reagent (Biotium) to quench intrinsic 
tissue autofluorescence. The sections were then immunoreacted 
for 1 h at RT using 1–5 µg/ml cocktail mixture of the following 
immunocompatible primary antibodies: rat IgG2a anti-SUMO 1 
(Sigma-Aldrich), mouse IgG1 anti-SUMO 2/3 (Abcam), mouse 
IgG2b anti-GFAP (BD Biosciences), and guinea pig IgG anti-
NeuN (EMD Millipore). This step was followed by washing off 

excess primary antibodies with PBS supplemented with 1 mg/ml 
bovine serum albumin and staining the sections using a 1 µg/ml 
cocktail mixture of the appropriately cross-adsorbed secondary 
antibodies conjugated to one of the following spectrally com-
patible fluorophores (all purchased from Thermo Fisher): Alexa 
Fluor 488, Alexa Fluor 546, Alexa Fluor 594, and Alexa Fluor 
647. After washing off excess secondary antibodies, sections 
were counterstained using 1 µg/ml DAPI (Thermo Fisher) for 
visualization of cell nuclei. Slides were then coverslipped using 
Immu-Mount medium (Thermo Fisher) and imaged using 
a multichannel wide-field epifluorescence microscope (see 
below).

Fluorescence mIHC Image acquisition
Images were acquired from whole specimen sections using the 
Axio Imager.Z2 slide scanning fluorescence microscope (Zeiss) 
equipped with a 20×/0.8 Plan-Apochromat (Phase-2) non-immer-
sion objective (Zeiss), a high-resolution ORCA-Flash4.0 sCMOS 
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digital camera (Hamamatsu), a 200 W X-Cite 200DC broad band 
lamp source (Excelitas Technologies), and five customized filter 
sets (Semrock) optimized to detect the following fluorophores: 
DAPI, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, and 
Alexa Fluor 647. Image tiles (600  µm  ×  600  µm viewing area) 
were individually captured at 0.325 µm/pixel spatial resolution, 
and the tiles were seamlessly stitched into whole specimen images 
using the ZEN 2 image acquisition and analysis software program 
(Zeiss), with an appropriate color table having been applied to 
each image channel to either match its emission spectrum or 
to set a distinguishing color balance. Pseudocolored stitched 
images were then exported to Adobe Photoshop and overlaid as 
individual layers to create multicolored merged composites.

etHICs stateMeNt

This study was performed on postmortem human brain pro-
cured after the participant’s family provided written informed 

consent for an unrestricted autopsy. While living, the family 
gave written informed consent for the study as well as subse-
quent publication of medically relevant findings. The study 
(NCT00009243) was approved by the local Institutional Review 
Board.
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