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Gray matter alterations are typical features of brain disorders. However, they do not 
impact on the brain randomly. Indeed, it has been suggested that neuropathological 
processes can selectively affect certain assemblies of neurons, which typically are at 
the center of crucial functional networks. Because of their topological centrality, these 
areas form a core set that is more likely to be affected by neuropathological processes. 
In order to identify and study the pattern formed by brain alterations in patients’ with 
Alzheimer’s disease (AD), we devised an innovative meta-analytic method for analyzing 
voxel-based morphometry data. This methodology enabled us to discover that in AD 
gray matter alterations do not occur randomly across the brain but, on the contrary, 
follow identifiable patterns of distribution. This alteration pattern exhibits a network-like 
structure composed of coaltered areas that can be defined as coatrophy network. Within 
the coatrophy network of AD, we were able to further identify a core subnetwork of 
coaltered areas that includes the left hippocampus, left and right amygdalae, right para-
hippocampal gyrus, and right temporal inferior gyrus. In virtue of their network centrality, 
these brain areas can be thought of as pathoconnectivity hubs.

Keywords: brain alterations, coatrophy network, pathoconnectivity hubs, alzheimer’s disease, tauopathy, gray 
matter atrophy, voxel-based morphometry

inTrODUcTiOn

Widespread alterations of gray matter commonly characterize brain disorders. It has been suggested 
that neuropathological processes can selectively affect certain assemblies of neurons (1), which typi-
cally are at the center of crucial functional networks (1–7). Because of their topological centrality, 
these areas or network hubs form a core set that is more likely to be affected by neuropathological 
processes (1, 8–16). In particular, neurodegenerative diseases exhibit structural alterations that seem 
to distribute across the brain in network-like patterns (17, 18). These patterns, which we propose to 
call morphometric coalteration networks or, in the case of gray matter decreases, coatrophy networks, 
can be thought of as a form of pathological anatomical covariance (19, 20) and appear to develop 
according to the organization of brain connectivity (3, 4, 7). Studies aiming to investigate the net-
works formed by coaltered cerebral areas in the pathological brain are providing new insight for a 
better transdiagnostic and neurobiological understanding of the mechanisms at the root of brain 
disorders (21–23).
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This is particularly true in the case of Alzheimer’s disease 
(AD). So far great efforts have been made in order to identify 
a prototypical pattern of gray matter atrophy due to AD, and 
to put it into correlation with clinical symptoms (24). It is now 
known that cortical thinning of specific brain sites can be already 
detected even before the appearance of the symptomatology and 
that the atrophy tends to increase when the condition worsens 
(25). Although the cortical reduction is commonly found in 
normal aging (26, 27), the pathological fingerprints of AD are 
mainly observed in a temporoparietal set of brain areas, includ-
ing hippocampus, entorhinal cortex, precuneus, and posterior 
cingulate cortex (28, 29). The involvement of these regions has 
been repeatedly confirmed by meta-analytical studies, which 
have additionally found the alteration of the right superior frontal 
gyrus (30). According to Ferreira et al. (31) the left medial tempo-
ral lobe is the most impaired area in AD, even in the preclinical 
phases of the disease, so much so that the impairment of this 
area can be a good predictor of the clinical worsening of AD.  
A study of the relationship between the cortical thinning in AD 
and large-scale structural organization of the brain has revealed 
that AD reduces both the nodal centrality of temporal and parietal 
heteromodal association cortices and the positive correlation of 
thickness values normally found bilaterally between the parietal 
regions. In contrast, authors reported an increase of positive 
correlation among brain areas that are part of the default mode 
network (DMN) (32).

Recently, investigations into the cognitive deficits caused by 
AD have taken advantage of the methodology of network analysis 
(33, 34). According to this approach, altered brain areas can be 
represented by means of a set of nodes, linked together by means of 
edges representing different statistical values. Studies in this line of 
research have found that AD increases the correlation between the 
values of cortical thickness of the fusiform gyrus, temporal pole, 
parahippocampal gyrus, and cingulum, which are all in proximity 
to each other. Conversely, a decrease of the correlation has been 
observed between distant areas (35). Of note, it has been suggested 
that, by combining different sources of information: (i) large-scale 
structural networks data, (ii) values of cortical thickness, and (iii) 
the pace of cortical thinning along time, it could be possible to 
distinguish patients with AD from healthy controls with an accu-
racy of 96.1%, as well as predict the conversion of mild cognitive 
impairment (MCI) into AD 6  months before its clinical onset 
(36). These studies raise the issue of moving from group analysis 
to single-subject results, which is an essential aspect when dealing 
with potential biomarkers for diagnostic purposes and surrogate 
endpoints for disease-modifying clinical trials. Recent methods of 
single-subject graph measurements have allowed to link network 
alterations and cognitive decline. For instance, it has been showed 
that the more the network becomes disorganized, the worse the 
clinical condition is (37). Moreover, even in healthy subjects, it 
has been found an association between Aβ42 CSF low levels and 
alteration of network properties, which might be interpreted as a 
very early indication of an underlying pathological process (38). 
All these results provide evidence that the approach based on net-
work analysis can bring valuable insight to clinical practice (33).

So far, at least four important mechanisms have been 
proposed to account for the distribution of brain alterations: 

transneuronal spread, nodal stress, shared vulnerability, and 
trophic failure (4, 5).

The first mechanism suggests that misfolded proteins (native 
peptides with an incomplete or incorrect folding, as well as 
de novo polypeptides that become prone to self-aggregation) 
can diffuse along neuronal pathways (18, 39–41). Increasing 
evidence indicate that the spread of misfolded proteins presents 
several similarities to the plasma membrane prion protein inter-
cellular transfer, along axonal fibers, potentially contributing to 
disease progression (42). This mechanism has been demonstrated  
in neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, 
Huntington’s, amyotrophic lateral sclerosis, and tauopathies  
(43, 44); more recently it has been also generalized to other brain 
disorders (45).

The second mechanism hypothesizes that the functional stress 
of the network hubs may result in a greater vulnerability of these 
areas (1, 4, 14, 46). This susceptibility has been supported in 
human beings with in vivo neuroimaging techniques and voxel-
based meta-analyses (14).

The third mechanism suggests that certain brain regions 
sharing gene or protein expressions may be more vulnerable to 
neuropathology (4, 47–51), with a potential relationship between 
gene expressions and connectivity patterns (51, 52).

Finally, the fourth mechanism hypothesizes a disruption in 
the production of trophic factors, which could bring about the 
deterioration of neural wiring (4, 5, 53, 54).

If we consider the case of AD, neuropathological signatures, 
namely amyloid-β (Aβ) plaques and neurofibrillary tangles, are 
already present in the preclinical phase of the disease, with fur-
ther spreading during progression. In fact several years before the 
clinical onset of AD, Aβ, and tau progressively accumulate in the 
brain with a certain degree of spatial specificity as well as a partial 
overlap among the two deposits (55). The relationship between 
tau and amyloid deposits in the cerebral cortex seems to have a 
hierarchical organization, with tau and Aβ clusters exhibiting dis-
tinctive intramodal and intermodal characterizations (56). These 
findings would support the view of AD as an amyloid-facilitated 
tauopathy (57). Furthermore, Aβ and tau propagation and the 
subsequent deposition and cytotoxicity effects appear to occur 
mainly between anatomically interconnected areas, thus affecting 
the functional communication among them (58).

The concept of a gradual spread of pathological signs is a 
crucial aspect put forward by recent theoretical models. Raj 
et  al. (3) have proposed a network diffusion model of disease 
progression in dementia, according to which the propagation of 
pathogenic proteins follows the regional concentration gradi-
ents under the spatial constraints defined by brain connectivity. 
Other authors have proposed a stochastic epidemic spreading 
model to describe intra-brain Aβ propagation and deposition 
processes, according to which regions with a higher connectivity 
degree are the main target of Aβ, thus suggesting that brain hubs 
are the more exposed to the negative effects of these aberrant 
proteins (40). Finally, in addition to focusing on misfolded pro-
teins and propagation pathways, a further interesting approach 
suggests the need to investigate the relationship between these 
two factors (18). This model considers molecular nexopathies 
as conjunctions of pathogenic protein and brain networks. 
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Key factors are therefore supposed to be structural/functional 
developmental factors and differential vulnerability of neural 
connections. Accordingly, long-range axonal connections may 
be more vulnerable to Aβ, so that functional and structural 
alterations could occur within the large-scale distributed fron-
totemporoparietal network, such as the one that supports the 
DMN processing.

In order to identify and study the coatrophy network of AD,  
we devised an innovative meta-analytic method for analyzing 
voxel-based morphometry (VBM) data. This methodology ena-
bled us to address the following issues:

 a. How do gray matter alterations distribute across the brain 
affected by AD?

 b. Is it possible to recognize a network-like structure in the pat-
tern formed by these coaltered areas?

 c. Can specific clusters of coaltered areas be identified within the 
coatrophy network of AD?

MaTerials anD MeThODs

selection of studies
On March 2017, we performed with the software Sleuth an exten-
sive meta-analytic search in the BrainMap VBM database (www.
brainmap.org) (59–61). All the studies that fulfilled the following 
criteria were retrieved: “Contrast is Gray Matter”; “Context is 
Disease Effect”; “Observed Changes is Controls > Patients” and 
“Diagnosis is Alzheimer’s Disease.” Results were controlled so 
as to keep only experiments comparing subjects diagnosed with 
AD against healthy controls. Our search focused on gray matter 
decreased values only, as the development of AD is strongly char-
acterized by axonal deterioration and neuronal loss that result in 
brain atrophy (62). Furthermore, thus far just a few VBM studies 
have investigated gray matter increase in AD, so that these data 
were not sufficient for obtaining reliable results with our meta-
analytical methods.

To ensure a transparent description of the selection process, 
we followed the “PRISMA Statement” international guidelines  
(63, 64) (Figure S1 in Supplementary Material). The characteris-
tics of the sample can be viewed in Table 1.

anatomical likelihood estimation (ale) 
and the creation of Modeled activation 
(Ma) Maps
Voxel-based morphometry data were statistically elaborated with 
the procedure of the ALE. ALE is a voxel-based meta-analytical 
technique that models the spatial coherence of different results 
(101–103). A three-dimensional Gaussian probability distribu-
tion is then centered on each focus of every experiment, using 
the following formula:
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in which d refers to the Euclidean distance between voxels and 
the considered focus, while e refers to the spatial uncertainty.  

The SD can be obtained by means of the full-width half-maximum, 
such as:
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The combination of these Gaussian distributions constructs 
a MA map for each experiment. The definite ALE map is finally 
generated by uniting the MA maps. ALE maps were thresh-
olded at a voxel-level FWD p < 0.05, in line with Eickhoff et al.  
(102, 104, 105). Given a specific threshold for cluster forming, 
a null distribution of cluster sizes was derived by simulating a 
long series of experiments with the same characteristics of real 
data and then by generating an ALE map. The score histogram 
so obtained was eventually employed to assign a threshold 
p-value.

construction of the Morphometric 
coatrophy network
To identify the distribution of gray matter alterations, we have 
developed a novel methodology capable of constructing the 
morphometric coalteration networks associated with brain 
disorders. Our analysis can in fact discover whether an altered 
brain area, say A, is statistically related to the alteration of one 
or more other brain areas (B, C, etc.). Thus, our analysis can 
construct the morphometric coatrophy network composed of the 
areas occurring to be altered together and, subsequently, inves-
tigate within the coatrophy network (i) how an altered region is 
statistically associated with other altered regions and (ii) which 
regions are likely to be involved in a more widespread net of  
alterations.

node creation and labeling
We superimposed the ALE map on the Talairach atlas so as to 
distinguish automatically the anatomical regions identified by 
the ALE algorithm. If (at least) 20 voxels of the ALE map were 
found to be inside a certain area of the atlas, then this area 
was considered to be altered. We chose this cluster threshold 
so that less relevant regions could be excluded. We employed 
a peak detection algorithm to identify the local maxima of the 
ALE map, and we subsequently selected only those peaks that 
were greater than the 90 percentile of the value distribution. 
This set was further reduced by applying a minimum interpeak 
distance of 10  mm. Finally, we positioned a node, labeled on 
the basis of the Talairach atlas, in correspondence of every  
survived peak.

Thresholding Values applied during nodes 
creation and Their rationale
As described in the previous paragraph, three thresholds were 
applied during the nodes creation procedure.

The first threshold regulates the minimum number of voxel 
(i.e., 20 voxels) necessary to consider a brain area as altered. The 
rationale behind this threshold is to exclude from the coatrophy 
network nodes representing minimally (or, from a meta-analytical 
point of view, rarely) altered brain areas, thus improving and sim-
plifying the interpretability of the results without losing highly 
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Table 1 | Selected studies for the meta-analysis.

iD reference Journal aD patients age scanner 
field (T)

slice thick (mm) smoothing 
(mm)

software

Men Women Total Min Max Mean ± sD

1 Agosta et al. (65) Radiology 14 9 23 – – 74.6 ± 8.6 1.5 0.9 × 0.5 × 0.5 8 SPM5
2 Baron et al. (66) NeuroImage 8 11 19 63 85 73 ± 5 1.5 1.5 × 1 × 1 12 SPM2
3 Baxter et al. (67) Journal of Alzheimer’s Disease 11 4 15 64 91 75.5 ± 7.8 1.5 1.5 × 0.9 × 0.9 12 SPM2
4 Berlingeri et al. (68) Behavioral Neuroscience 8 13 21 – – 76.5 1.5 1 × 1 × 1 – SPM2
5 Boxer et al. (69) Archives of Neurology 8 3 11 – – 69.6 ± 8.2 1.5 – 12 SPM99
6 Bozzali et al. (70) Neurology 11 11 22 – – 67.9 ± 7.6 1.5 1 12 SPM2
7 Brenneis et al. (71) NeuroReport 3 7 10 – – 73.1 ± 7.6 1.5 1 × 1 × 1 – SPM99
8 Canu et al. (72) Neurobiology of Aging 13 29 42 – – 77.8 ± 4.8 1 1.3 8 SPM8

62.5 ± 4.5
9 Chetelat et al. (73) NeuroReport 7 9 16 63 85 72.1 ± 5.8 1.5 2 × 2 × 2 12 SPM99

10 Farrow et al. (74) Psychiatry Research NeuroImaging – – 14 68 87 77 ± 7 1.5 1 × 1 × 1 8 SPM2
78 ± 7

11 Feldmann et al. (75) Psychiatry Research 4 2 6 – – 61.1 ± 7.7 1 0.8 8 SPM2
12 Frisoni et al. (76) Journal of Neurology, Neurosurgery, and Psychiatry 6 23 29 53 86 74 ± 9 1.5 1.3 8 SPM99
13 Guo et al. (77) Neuroscience Letters 6 7 13 58 81 72.1 ± 6.5 3 0.5 × 0.5 × 1 8 SPM2
14 Hall et al. (78) Alzheimers Dementia 16 31 47 – – 83.2 ± 5 1.5 1 × 1 × 1 10 SPM2

79.4
15 Hamalainen et al. (79) Neurobiology of Aging 5 10 15 62 83 73.1 ± 6.7 1.5 2 × 2 × 2 – SPM2
16 Hirao et al. (80) Nuclear Medicine Communications 32 29 61 48 87 70.6 ± 8.4 1.5 1.23 12 SPM2
17 Honea et al. (81) Alzheimer’s Disease and Related Disorders 23 37 60 – – 74.3 ± 6.3 3 1 × 1 × 1 10 SPM5
18 Ishii et al. (82) European Journal of Nuclear Medicine and Molecular 

Imaging
8 22 30 – – 66.8 ± 7.0 1.5 1.5 12 SPM99

19 Kanda et al. (83) European Journal of Nuclear Medicine and Molecular 
Imaging

– – 20 – – 65 1.5 1.5 – SPM2

20 Kawachi et al. (84) European Journal of Nuclear Medicine and Molecular 
Imaging

9 23 32 – – 67 ± 4.5 1.5 – 12 SPM99

21 Kim et al. (85) Journal of Clinical Neuroscience – – 61 – – 70.1 ± 5.0 3 1 12 SPM2
71.1 ± 6.1
73.9 ± 5.5

22 Matsuda et al. (86) Journal of Nuclear Medicine 11 4 15 59 81 71.1 ± 7.1 1 1.23 12 SPM99
23 Matsunari et al. (87) Journal of Nuclear Medicine 12 15 27 – – 68.6 ± 6.8 1.5 0.78 × 1.04 × 1.4 12 SPM2
24 Mazere et al. (88) NeuroImage 3 5 8 – – 80 ± 6.8 1.5 1 8 SPM2
25 Miettinen et al. (89) European Journal of Neuroscience 5 11 16 63 83 74.8 ± 5.4 1.5 2 × 2 × 2 12 SPM2
26 Ohnishi et al. (90) American Journal of Neuroradiology 11 15 26 59 79 72.1 ± 1.1 1.5 – 12 –
27 Rabinovici et al. (91) American Journal of Alzheimer’s Disease and Other 

Dementias
5 6 11 – – 64.5 ± 9.7 1.5 – 12 SPM2

28 Rami et al. (92) International Journal of Geriatric Psychiatry 9 22 31 – – 76.4 ± 6.8 1.5 1.5 10 SPM2
29 Remy et al. (93) NeuroImage 1 7 8 – – 72.2 ± 10.8 1.5 1 × 1 × 1 8 SPM2
30 Shiino et al. (94) NeuroImage 19 21 40 55 82 71.1 + 9.7 1.5 – 12 SPM99
31 Takahashi et al. (95) American Journal of Neuroradiology 20 31 51 – – 72.6 ± 2.9 1.5 1.5 6 SPM8
32 Testa et al. (96) Journal of Magnetic Resonance Imaging 2 5 7 – – 73 ± 11 1.5 2 × 2 × 2 8 SPM99
33 Waragai et al. (97) Journal of the Neurological Sciences 7 8 15 – – 71 ± 5.1 1.5 2 12 SPM5
34 Whitwell et al. (98) Neurobiology of Aging 16 22 38 – – 65.3 ± 6.9 1.5 1.6 8 SPM2
35 Xie et al. (99) Neurology 8 5 13 62 82 71.7 1.5 1.6 8 SPM2
36 Zahn et al. (100) Psychiatry Research NeuroImaging 4 6 10 – – 66.5 ± 8.9 1.5 1.5 × 1.5 × 1.5 8 SPM2

Where no information about slice thickness was provided, the voxel-size was expressed. The items are the result of the entire selection process as shown in PRISMA (Figure S1 in Supplementary Material) flow chart.
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Table 2 | Marginal probabilities between altered and unaltered nodes.

node a

node b altered Unaltered

altered θ1 θ3 θ1 + θ3

Unaltered θ2 θ4 θ2 + θ4

θ1 + θ2 θ3 + θ4 1

5
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relevant information. However, even considering brain areas in 
which only one voxel is altered, the results would have not been 
spurious, since ALE maps were voxel-level thresholded, which 
implies that each single voxel contains statistically significant 
information (104) (see Figure S2 in Supplementary Material for 
the visualization of the network obtained with different threshold 
values). This choice, however, would have unnecessarily increased 
the complexity of the coatrophy network.

The second threshold, applied to the peaks-value distribution, 
allowed us to include in the network only nodes representing 
those areas for which there is a very high consensus between dif-
ferent experiments (i.e., high ALE value) (104). Even in this case, 
this threshold could have been removed; all the nodes that can 
be created with the present methodology represent statistically 
significant effects, since they can only lie inside the anatomical 
regions identified by the ALE algorithm, which already has its 
own statistical thresholding step (see Figure S3 in Supplementary 
Material for the visualization of the network obtained with differ-
ent threshold values).

Finally, the interpeaks distance was chosen considering the 
mean value (10.2 mm; SD = 0.4 mm) of uncertainty in spatial 
location associated with the reported coordinate discussed in 
Eickhoff et al. (101).

Therefore, the only effect of those thresholds on our data is to 
decrease the redundancy of the network, so as to obtain clearer 
results to be visualized and further analyzed, minimizing the 
information loss.

coatrophy Distribution
From the set of the nodes as defined in the previous paragraph, 
we constructed a N  ×  M matrix or a coalteration matrix, in 
which each row referred to an experiment, whereas each column 
referred to a network node. On the basis of a Bernoulli genera-
tion data model, we constructed a probability distribution of joint 
alteration values for each pair of nodes. In other words, for any 
couple of nodes (a and b), we were able to describe their four 
conjoint states of alteration by means of two binary variables:  
(1) a and b both altered; (2) a and b both unaltered; (3) a altered 
and b unaltered; and (4) a unaltered and b altered. Consequently, 
the following four probabilities were obtained by the frequencies 
of the different combinations of all experiments:

 θ1 1 1= = =( )P a b, , 

 θ2 1 0= = =( )P a b, ,  

 θ3 0 1= = =( )P a b, , 

 θ4 0 0= = =( )P a b, .  
These formulas refer to the conjoint frequencies of a couple of 

nodes (a and b) in all their four possible combinations. Table 2 
shows the marginal probabilities for each couple of nodes.

On the grounds of these four probabilities, we have applied the 
Patel’s k index (106)—which has been validated with simulated 
data by Smith et  al. (107)—in order to calculate the degree of 
coalteration between nodes. This index can measure the prob-
ability that two nodes (a and b) are actually coaltered against the 

probability that node a and node b are altered independently of 
each other. Patel’s k is calculated as follows:

 κ ϑ= −( ) ( )−( ) + −( ) − ( )( )( )1 1E D E D E/ ,max minϑ ϑ1 1  

where

 E = +( ) +( )ϑ ϑ ϑ ϑ1 2 1 3 , 

 max , ,ϑ ϑ ϑ ϑ ϑ1 1 2 1 3( ) = + +( )min  

 min , .ϑ ϑ ϑ ϑ1 1 2 30 2 1( ) = + + −( )max  

The numerator refers to the difference between the prob-
ability that a and b are altered together and the expected prob-
ability that a and b are altered independently of each other. The 
denominator refers to a weighted normalizing constant. Min 
(ϑ1) refers to the maximum value of the conjoint probability 
P(a,b), given P(a) and P(b), whereas max (ϑ1) refers to the 
minimum value of P(a,b), given P(a) and P(b). Patel’s k index 
has values that range from −1 to 1. A value of |k| that is close 
to 1 indicates a high degree of connectivity between nodes. The 
statistical significance of this index was assessed with a Monte 
Carlo algorithm that simulated a multinomial, generative 
model, which took into consideration the alteration of all nodes. 
This statistical procedure obtained an estimation of p(k|z) by 
sampling a Dirichlet distribution and by calculating the samples’ 
amount for which k > e, where e was the threshold of statistical 
significance set at p < 0.01.

Topological analysis
We defined our system of interconnected nodes as a network 
of coatrophy areas and examined it with the network analyzer 
included in Cytoscape 3.5.1 (108, 109). We were therefore able 
to achieve a good and reliable description of the net formed by 
the coatrophy areas under both the aspects of brain structure and 
functional organization.

node Degree and edge betweenness
The node degree was defined as the number of edges linked to a 
node. We employed this parameter in order to detect the nodes 
that were more connected within the network, which are com-
monly considered as brain hubs. In turn, the parameter of edge 
betweenness was defined as the number of the shortest routes 
that go through an edge in a graph or a network (110). Thus, 
edges exhibiting high values of betweenness are supposed to be 
involved in a large number of shortest routes, so that their elimi-
nation is likely to have an impact on communication between 
many couples of nodes.

http://www.frontiersin.org/Neurology/
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FigUre 2 | The left panels shows the nodes that entered the coatrophy calculation. The right panel shows the coatrophy matrix. Colors from blue to red indicate 
increasing Patel’s k values (i.e., increasing coalteration probabilities).

FigUre 1 | Gray matter anatomical likelihood estimation (ALE) results. The 
image summarizes the results of all the experiments considered in this 
meta-analysis. Colors from red to green show gray matter decreases [ALE 
maps were thresholded using voxel-level FWD p < 0.05 (104) and visualized 
using Brainvoyager QX].
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k, thus deriving from the original network the highest connected 
subgraph.

resUlTs

common Patterns of Morphometric 
alterations
The ALE performed on all the data retrieved by our search (57 
experiments, 883 subjects, and 691 foci) showed that gray matter 
alterations caused by AD are mainly located in the right medial 
frontal gyrus, the right inferior frontal gyrus, the left inferior 
parietal lobule, the right midcingulate gyrus, the left supramar-
ginal gyrus, the right angular gyrus, the bilateral fusiform gyrus, 
the right precuneus, the bilateral insula, the right thalamus, the 
bilateral superior temporal gyrus, the bilateral superior temporal 
pole, the bilateral hippocampus, the bilateral parahippocampal 
gyrus, the bilateral amygdala, and the left caudate nucleus 
(Figure 1).

Morphometric coatrophy network
The left panel of Figure 2 illustrates the 40 nodes used to build 
the coatrophy network, while the heat map in Figure 2 shows the  
relationship between the elements of each possible couple of 
nodes measured by Patel’s k index. Figure 3 illustrates the whole 
coatrophy network: the colors’ scale ranges from blue to red for 
the 146 edges and indicates an increase in k values. Edges are to 
be assumed as undirected.

Many nodes densely interconnected characterize the temporal 
lobe, especially the hippocampus and the parahippocampal gyrus. 
In contrast, only one node characterizes other brain areas, such 
as the cingulate cortex and precuneus. Although all the edges that 
are shown are statistically significant, the ones with the highest k 
value are those involving the left hippocampus, bilateral amyg-
dala, right parahippocampal gyrus, and right inferior temporal 
lobe (Tables S1 and S2 in Supplementary Material).

network clustering
Given the great number of nodes as well as the high density 
of edges within the coatrophy network, we used the k-core 
decomposition algorithm (111, 112)–as it is implemented in the 
clusterMaker plugin for Cytoscape—to detect a central subnet-
work of highly interconnected nodes. This algorithm eliminates 
all the nodes showing a degree that is lesser than a user-defined 
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FigUre 3 | Morphometric coatrophy network results. Colors from blue to red indicate increasing Patel’s k values (i.e., increasing coalteration probabilities).
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Figure 4 reports the organic option of the yFiles Layouts avail-
able in Cytoscape 3.5.1 (based on a spring-embedded algorithm) 
attributed to the coatrophy network. Thick links connect the 
nodes located in the temporal cortex, parahippocampal gyrus, 
amygdala, and thalamus. The right precuneus is connected to the 
rest of the network just through one edge projecting to the left 
hippocampus, whereas the right cingulate cortex is connected 
to the network core through the right hippocampus and the 
right parahippocampal gyrus. In Figure  4, colors and dimen-
sions of nodes are proportional to their network degree values. 
In particular, Amyg_L_1 shows the highest degree value (17), 
followed by Temp_Inf_R (16). In turn, Fusiform_L, Amyg_L, 
Temp_Pole_Sup_R, SupraMarginal_L, and Cingulum_Mid_R 
exhibit the lowest degree value (1). The edges’ thickness is pro-
portional to their degree of edge betweenness. The edge linking 
the nodes Hipp_R_2 and ParaHipp_R_2 shows the highest value, 
while the edge between Amyg_R and ParaHipp_L_1 shows the 
lowest one.

Figure 5 shows the nodes according to their anatomical posi-
tion. In order to simplify the visual interpretation, we have merged 
two or more nodes referring to the same brain area; however, we 
have kept the edges unchanged. It is worth noting that the coat-
rophy network of AD is composed of more interhemispheric (75) 
than intrahemispheric edges (71). Apart from the hippocampus, 
most of the inter-hemispheric connections link structures in the 

medial temporal lobes. Furthermore, unilateral nodes in the right 
inferior temporal gyrus and right precuneus are linked to areas 
of both hemispheres.

As many nodes populate the hippocampi, we projected them 
on a 2D template in order to better clarify their spatial localiza-
tion (Figure 6). Five out of the six nodes in the left hippocampus 
were found to be located in the anterior part, while the remaining 
one was found to be located in the posterior section. In contrast, 
the right hippocampus exhibits a more uniform pattern, with two 
anterior nodes and one posterior.

We also analyzed the connectivity profile of the hippocampi 
within the coatrophy network so as to better understand their 
relationship with the other nodes of the network (Figure 7). Even 
though hippocampi have a lot of connections, they are scarcely 
interconnected (red edges) and, in particular, between the nodes 
of the right hippocampus there are no direct paths linking them 
to each other. What is more, the left hippocampus presents a 
greater number of edges (45) than the right hippocampus (15); 
however, these edges are generally characterized by a low degree 
of edge betweenness. In contrast, the 15 edges linking the right 
hippocampus to the other nodes of the coatrophy network are 
characterized by a high degree of edge betweenness. Overall, 
considering the anatomical topology of nodes (Figure  6), 
the left anterior hippocampus appears to be the most densely 
connected.
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FigUre 4 | Topological analysis of the coatrophy network of Alzheimer’s disease (organic yFiles Layout). Colors and dimensions of nodes indicate their topological 
degree (smaller node = lower degree; from green to red = from lower to higher values). Thickness of edges indicate the degree of edge betweenness (smaller 
edge = lower degree).

FigUre 5 | Topological analysis of the coatrophy network of Alzheimer’s 
disease. Nodes referring to the same brain areas or strictly close one to the 
other have been collapsed in a single node.
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Given the great number of nodes and the high density of edges 
of the coatrophy network, we used the k-core algorithm to iden-
tify the most connected components of the network. The analysis 
reported a core subnetwork formed by eight interhemispheric 
nodes (Figure  8), including the left and right amygdalae, left 
hippocampus, right parahippocampal gyrus, and right temporal 
inferior gyrus. The bilateral presence of nodes within this core 
subnetwork is consistent with the finding that the coatrophy 
network is characterized by a large number of interhemispheric 
edges.

DiscUssiOn

With an innovative voxel-based meta-analytic method, this 
study aimed to find out whether gray matter decreases caused 
by AD distribute throughout specific and identifiable areas 
rather than affect randomly the whole brain. After constructing 
a morphometric coatrophy network, we intended to identify 
which brain areas are more likely to be altered in conjunc-
tion with other ones rather than alone. Finally, we examined 
the potential existence of relevant subcomponents within the 
coatrophy network.

The gray matter decreases evaluated by ALE involve limbic 
and temporal areas, in particular the hippocampus and para-
hippocampal gyrus. This finding is in accordance with most of 
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FigUre 6 | Anatomical localization of the nodes in the hippocampi. Coordinates refers to Talairach space (right sagittal slice x = 25, left x = 30). Nodes are 
numerically labeled according to a rostrocaudal criterion.

FigUre 7 | Detailed illustration of the role of the hippocampi in the coatrophy 
network of Alzheimer’s disease. Green edges are intrahemispheric, while red 
edges are interhemispheric.
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FigUre 8 | Network clustering with k-core decomposition algorithm. Colors 
and dimensions of nodes indicate their topological degree (smaller 
node = lower degree; from green to red = from lower to higher values). 
Thickness of edges indicate the degree of edge betweenness (smaller 
edge = lower degree). Both node degree and edge betweenness values refer 
to the original coatrophy network.

previous research (30, 113). Nine out of 40 nodes of the coatrophy 
network are localized within the hippocampus. Specifically, six 
nodes are in the left hippocampus (five in its anterior part, one 
in its posterior part) and three in the right one (two anterior, one 
posterior). This is consistent with the neuropathological studies 
suggesting that AD is characterized by an earlier and greater 
involvement of anatomical structures (including hippocampus) 
in the left hemisphere (114–116). Although there is still debate 
about the exact functional organization of the hippocampus 
(117), the neuroscientific community has achieved a substantial 
consensus on its role in learning and memory (118), which are 
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both deteriorated cognitive functions in AD. According to Thal 
et al. (119) the hippocampus (in particular the subfields CA1 and 
subiculum), along with the amygdala, are pretty soon affected 
by Aβ plaques during AD evolution (120). In line with AD 
diagnostic criteria (121) hippocampal and mesial temporal lobe 
atrophy have been considered as biomarkers of neuronal degen-
eration, potentially increasing the probability of an underlying 
AD pathophysiological process. Currently, however, the routinely 
utilization of hippocampal atrophy in clinical practice is not fully 
standardized, but preferentially applied in investigational studies 
and clinical trials. Furthermore, hippocampal atrophy rate could 
be better accounted for as a sensitive marker of disease progres-
sion (122, 123), being able to trace AD natural development 
and potentially representing an interesting surrogate marker 
for disease-modifying clinical trials (124, 125). Interestingly, an 
increased hippocampus and an asymmetry in the shape of the 
amygdala during the development of AD have been recently 
demonstrated, with significant correlation to cognitive impair-
ment (126).

According to our analysis, the gray matter coatrophy network 
of AD appears to be densely interconnected, as suggested by the 
presence of 146 edges and 40 nodes, 39 of which have at least 
one connection. The existence of a set of nodes (altered areas) is 
not a proof per se that the disease is spreading. In fact, generally 
speaking, Patel’s k is not always able to identify edges between 
nodes, which means that, even though some areas are altered, 
there is no apparent temporal coherence in their capitulation 
to the disease. The fact, though, that our analysis was able to 
discover a significant number of edges between nodes is proof of 
the good reliability of our results pointing out that the alteration 
cooccurrence really happens, as well as of the consistency of our 
sample.

Our analysis suggests that AD tends to target a somewhat lim-
ited set of brain regions, rather than randomly affecting distinct 
sites. Furthermore, the left hippocampus, bilateral amygdala, 
right parahippocampal gyrus, and right inferior temporal lobe 
seem to follow a very similar pace of degeneration (Figure S4 in 
Supplementary Material).

In order to evaluate the likelihood of each node of the coat-
rophy network to be coaltered with other ones rather than as an 
individual spot we calculated their node degree. The highest value 
pertains to the node of the left amygdala, which is reached by 17 
edges, but we found other 13 nodes with at least 10 edges. These 
nodes are localized in the temporal lobes, right amygdala, parahip-
pocampal gyrus, left hippocampus, and right thalamus. The high 
degree of pathoconnectivity of these nodes suggests that, when 
gray matter alteration affects one of them, it is highly probable 
that many other regions are also found to be altered. It is also true 
the other way round, that is, when nodes characterized by low 
degree show atrophy, it is very likely that this process cooccurs in 
one of the high-degree nodes, rather than in another low-degree 
node. These results, as well as the k-core decomposition, provide 
evidence that in the coatrophy network of AD certain nodes have 
the characteristic of being pathoconnectivity hubs. Furthermore, 
the values of the edge betweenness distribution indicate the exist-
ence of a dense subnetwork, which is composed of the nodes with 
the higher degree of pathoconnectivity.

The paucity of connections linking the two hippocampi sug-
gests a limited cooccurrence of alterations between them. The 
hippocampus is known to be greatly affected by AD, and the 
MRI volume estimation of this structure is currently considered 
one of the most reliable in vivo biomarker of this disease (62). 
Our results suggest that both the hippocampi are substantially 
altered, albeit somewhat independently. According to previous 
studies, certain molecular alterations typical of AD are more 
evident in the left hippocampus compared to the right one  
(127, 128). This discovery might explain the abundance of edges 
connecting the nodes in the left hippocampus, as well as sup-
port the transneuronal spread mechanism in AD. The nodal 
stress hypothesis could also play a role in virtue of the intense 
functional activity of this region. Finally, our finding that the 
anterior part of the hippocampus exhibits a greater number of 
edges than the posterior part seems consistent with the sugges-
tion that the deterioration of CA1 and subiculum appears to be 
more correlated with the development of AD than the deteriora-
tion of CA3, which appears to be more correlated with healthy 
aging (11, 120). Recently, the presubicular–subicular complex 
has been described as one of the earliest site of atrophy in AD, 
with a significant correlation with memory performances (even 
in MCI phase), potentially reflecting the ongoing degenerative 
process through the subiculum passing from entorhinal cortex 
to dentate gyrus (129, 130).

In addition to the interpretation of the coatrophy network 
as a whole, some specific aspects deserve a detailed consid-
eration. The first is the relationship between hippocampus and 
precuneus. In the coatrophy network of AD these regions are 
linked through an edge exhibiting a very high degree of edge 
betweenness, which reveals a direct interaction. According to  
the “hippocampus disconnection hypothesis” proposed by 
Tahmasian et al. (131), the disruption of functional connectiv-
ity between hippocampus and precuneus could induce the 
characteristic alterations in the hippocampus that we find in 
AD. Tahmasian et al. (131) have in fact demonstrated that in 
AD the hippocampus is much less inhibited, and this disinhi-
bition may result in its hypermetabolism. A similar situation 
could induce neurotoxicity, which might be one of the causes 
behind gray matter decrease measured with VBM, thus explain-
ing the identification of a significant number of nodes in the 
hippocampus.

A second interesting aspect is the relationship between the 
left hippocampus and right inferior temporal gyrus, which 
was highlighted by k-core decomposition. This result is in 
agreement with the study of Wang et  al. (132), which found 
that the interaction between these two areas is typical of AD. 
Of note, Wang et  al. (132) examined 80 pathological subjects 
using Bayesian network analysis and prior-defined regions of 
interest, while the present study has applied a meta-analytical 
approach on a substantially bigger VBM database of 883 patients 
diagnosed with AD. This agreement supports the sensitivity of 
our novel methodology. Furthermore, the slight prevalence of 
inter-hemispheric connections in the coatrophy network of AD 
(see Figure S5 in Supplementary Material) is consistent with 
the deterioration of white matter bundles in AD, in particular 
concerning the corpus callosum (133–137). Callosal atrophy has 
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cOnclUsiOn

This meta-analysis was able to address the following important issues.

 a. In AD, gray matter alterations do not occur randomly across 
the brain but, on the contrary, follow identifiable patterns of 
distribution.

 b. This alteration pattern exhibits a network-like structure com-
posed of coaltered areas that can be defined as coatrophy network.

 c. Within the coatrophy network of AD, certain brain areas, in 
virtue of their node degree and values of edge betweenness, 
can be considered as pathoconnectivity hubs. The alteration of 
these areas is supposed to imply a wider distribution of gray 
matter abnormalities across the brain.

 d. Within the coatrophy network we can identify a core subnet-
work of coaltered areas that includes the left hippocampus, left 
and right amygdalae, right parahippocampal gyrus, and right 
temporal inferior gyrus.

The innovative methodological analysis developed in this 
study for constructing the morphometric coatrophy network 
of an important neurodegenerative disease such as AD opens a 
new window into the comprehension of the pathological brain. 
Increasing evidence is supporting the idea that brain alterations 
distribute according to a network-like structure. The analysis car-
ried out in this study not only provides support for this hypothesis 
but also puts forward the significant finding that certain nodes of 
the coatrophy network may play the role of pathoconnectivity 
hubs. What is more, our methodology can be equally applicable 
to study the morphometric coalteration network of any other 
neuropathological condition. Future investigations into this line 
of research on databases of different diseases promise to provide 
valuable insight to the study of the dynamics of brain disorders, 
so as to achieve a better predictive diagnostic power as well as to 
improve medical care and treatment.
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been associated with cognitive decline rate as well as to disease 
progression (138, 139).

Gray matter alterations found in the hippocampus, precuneus, 
and inferior parietal cortex can be ascribed to the general disrup-
tion of the DMN in patients with AD (58, 140). Recently, a study 
has showed that the DMN dysfunction, as well as the disruption 
of the interaction between different resting state functional 
networks, can be attributed to amyloid burden (58). What is 
more, Chang et al. (141) have found that amyloid burden in the 
cingulate cortex might promote gray matter atrophy in the other 
areas constituting the DMN.

Overall, the crucial role played by pathological proteins in AD 
supports the transneuronal spread hypothesis at the basis of gray 
matter alterations’ distribution (4, 5, 39, 40, 42, 45). However, the 
complex relationship among different factors (such as amyloid 
burden, Tau deposition, gray matter atrophy, and disrupted 
functional connectivity) and the presence of several hub nodes 
within the coatrophy network of AD suggest that the nodal stress 
mechanism could as well be involved in the development of 
the disease (142). Therefore, it is extremely likely that different 
spreading mechanisms, which are not mutually exclusive, may be 
involved in the etiology of AD.

limitations and Future Directions
The present investigation and the methodology on which it is 
based aim to better understand the nature of AD by examining 
its pathological fingerprints over the brain. To do so, we were 
able to get access to a very large sample size of patients. If this is 
an advantage on the one hand, it can also be a limitation on the 
other, as within this sample it was not possible to determine the 
average duration of disease, due to unavailability of information 
in the original studies. This aspect makes it difficult to associate 
the coatrophy network with a specific stage of AD progression. 
However, the methodological procedure for defining the areas 
to be included in the coatrophy network considers primarily 
the frequency of every single area to be found altered. In case 
of a neurodegenerative condition such as Alzheimer’s we could 
imagine, generally speaking, a group of patients with a recent 
diagnosis exhibiting alterations in area A, another group with an 
intermediate development of the disease exhibiting alterations 
in areas A–B, and another group with an advanced development 
of the disease exhibiting alterations in areas A–B–C. Since our 
methodology privileges the frequency of each area to be found 
altered, in the final network area A will be more likely to be rep-
resented, while area C may be even excluded. Moreover, even if 
the group of patients exhibiting alterations in A–B–C were greater 
than the other groups, the pattern A–B–C would be less likely to 
be represented than the sole area A. For this reason, even if our 
input data could contain an overrepresented sample of patients in 
a specific stage of the disease, the resulting coalteration network 
would not represent the pattern of altered areas which is typical 
of that stage.

Future studies on longitudinal data analyzed by different 
methods are needed in order to investigate the sequential 
formation of the coatrophy network identified in this study, so 
as to achieve a more detailed picture of the temporal evolution  
of AD.
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