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introduction: Sleep and migraine share a common pathophysiological substrate, 
although the underlying mechanisms are unknown. The serotonergic and orexinergic 
systems are both involved in the regulation of sleep/wake cycle, and numerous stud-
ies show that both are involved in the migraine etiopathogenesis. These two systems 
are anatomically and functionally interconnected. Our hypothesis is that in migraine a 
dysfunction of orexinergic projections on the median raphe (MR) nuclei, interfering with 
serotonergic regulation, may cause Non-Rapid Eye Movement parasomnias, such as 
somnambulism.

Hypothesis/theory: Acting on the serotonergic neurons of the raphe nuclei, the 
dysfunction of orexinergic neurons would lead to a higher release of serotonin. The 
activation of serotonergic receptors located on the walls of large cerebral vessels would 
lead to abnormal vasodilatation and consequently increase transmural pressure. This 
process could activate the trigeminal nerve terminals that innervate vascular walls. As a 
consequence, there is activation of sensory nerve endings at the level of hard vessels in 
the meninges, with release of pro-inflammatory peptides (e.g., substance P and CGRP). 
Within this hypothetical frame, the released serotonin could also interact with trigemi-
novascular afferents to activate and/or facilitate the release of the neuropeptide at the 
level of the trigeminal ganglion. The dysregulation of the physiological negative feedback 
of serotonin on the orexinergic neurons, in turn, would contribute to an alteration of the 
whole system, altering the sleep–wake cycle.
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Conclusion: Serotonergic neurons of the MR nuclei receive an excitatory input from 
hypothalamic orexin/hypocretin neurons and reciprocally inhibit orexin/hypocretin neu-
rons through the serotonin 1A receptor (or 5-HT1A receptor). Considering this complex 
system, if there is an alteration it may facilitate the pathophysiological mechanisms 
involved in the migraine, while it may produce at the same time an alteration of the 
sleep–wake rhythm, causing sleep disorders such as sleepwalking. Understanding 
the complex mechanisms underlying migraine and sleep disorders and how these 
mechanisms can interact with each other, it would be crucial to pave the way for new 
therapeutic strategies.

Keywords: serotonergic system, orexinergic system, sleep–wake rhythm, migraine, pro-inflammatory peptides

introdUCtion/BaCKGroUnd oF 
MiGraine and non-rapid eye 
MoVeMent (nreM) parasoMnias

Sleep and migraine share a common pathophysiological sub-
strate. While the mechanisms by which sleep deprivation or sleep 
dysfunction leads to headache are unknown, their association has 
been recognized for decades. The frontal aching headaches can 
develop both in normal subjects and in those who suffer from 
tension-type headaches who are deprived of sleep (1, 2).

The serotonergic system, well known as being central in the 
migraine attacks, demonstrates circadian and circannual rhyth-
micity. It is under control of the central nervous system (CNS), 
like other biorhythms (e.g., blood pressure). During the onset of 
a migraine attack, the urinary excretion of 5-hydroxyindoleacetic 
acid (5-HIAA)—the main metabolite of serotonin—increases 
while platelet 5-hydroxytryptamine (5-HT) rapidly decreases. 
5-HT pharmacologic depletion can induce a migraine attack 
and intravenous 5-HT can stop acute migraine attacks as well. 
Alike, during REM sleep when the dorsal raphe (DR) nucleus 
is silent, the systemic serotonin decreases. In part, this could 
explain the relationship between REM sleep and migraine. In 
addition, their relationship is also explained by the relationship 
between the hypothalamus (with other crucial regions involved 
in sleep regulation) and the areas engaged in nociception and 
migraine pathogenesis. These findings suggest that dysfunction 
in the sleep-regulating systems could generate headaches. Sleep 
loss may worsen pain, but not sleep fragmentation. As previously 
described in healthy mice, sleep loss increases the sensitivity 
to noxious stimuli without sensory hyperresponsiveness (3, 4). 
Moreover, the role of melatonin MT2 receptors in the antinocic-
eption modulation through the glutamatergic pathway (5) could 
also be considered and that melatonin levels are lower in the 
migraine sufferers regardless of the age, so suggesting its potential 
role as preventive therapy both for nociception modulation and 
sleep cycle regulation (6–12).

Headache and sleep have some anatomical and functional in 
common. The incidence of somnambulism (sleepwalking) may 
be increased in children with migraine (13, 14), and it has been 
proposed as a minor diagnostic criterion for migraine. On the 
other hand, serotonergic neurotransmission is involved during 
slow wave sleep (SWS), playing a predominant role in the migraine 

mechanisms. Clinical similarities such as genetic predisposition or 
reactivity to external stimuli suggest that migraine and somnambu-
lism could have similar predisposing factors and perhaps common 
physiologic pathways. Medications used to treat migraine, such as 
propranolol (15) or amitriptyline (16), have sometimes induced, 
but most often cured, sleepwalking or other NREM parasomnias 
(17–19). In this hypothesis paper, we do not suggest that migraine 
headache and somnambulism may be part of the same pathology, 
but that migraine and somnambulism may follow a common 
pathway, either chemical or topographic (20, 21).

Several reports have described the association between 
migraine and NREM parasomnias in the pediatric age. Barabas 
et  al. (13) performed the first study describing a correlation 
between these two disorders. Analyzing 4 groups of patients (60 
with migraine, 42 with non-migraine headache, 60 with epilepsy, 
and 60 with learning disabilities/neurologic impairment), they 
found at least 2 episodes of somnambulism in 30% of migraineurs 
vs. 4.8% of those with non-migraine headaches, 5% of those 
with learning disabilities/neurologic impairment, and 6.6% of 
epileptics. Other studies confirmed these data. Pradalier et  al. 
(15) found an incidence of sleepwalking in 21.9% of migraine 
subjects vs. 6.6% of controls. Giroud et al. (14) found a history 
of somnambulism in 29.4% of migraine subjects vs. 5.4% of 
non-migraine headache subjects. The analysis of different types 
of migraine showed that the highest prevalence was found in 
the ophthalmic migraine (70%), in common migraine (24%), 
and in classic migraine (20%). Noticing that the somnambulism 
appeared before migraine, those authors hypothesized that this 
sleep disorder and migraine could be a different age-related 
expression of the same neurotransmitter imbalance, probably 
of the serotonergic axis. The actual classification of headache 
disorders ICHD-3 (22) includes sleepwalking, sleep talking, night 
terrors, and bruxism among the additional conditions that may 
also occur in patients affected by migraine independently on sex 
and age (code 1.6). This suggests a close relationship between 
sleep disorders and migraine, particularly with disorders of 
arousal/NREM parasomnias (2, 23–30). In a study published in 
1986 (31), Dexter asked to the parents of 100 migrainous patients 
about the occurrence of these disturbances (such as night terrors, 
sleepwalking, and nocturnal enuresis in the first 2 decades of 
life). Dexter found an incidence of 71% for night terrors/pavor 
nocturnus (vs. 11% of controls), 55% of somnambulism (vs. 16% 
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of controls), and 41% of nocturnal enuresis (vs. 16% of controls). 
These findings were similar to those described by Giroud in 1986 
(14) and by Miller in 2003 (32), while another study failed to 
confirm these findings data (33).

Sleepwalking has been associated with migraine. Somnam-
bulism and migraine can appear at different ages, the former 
during late infancy, the latter during childhood, and both could 
be linked to a different age-related expression of a serotonergic 
metabolic dysfunction (27), which could occur independently 
on sleep-disordered breathing. Instead, when both conditions 
are present, the association may be linked to the hypercapnic 
acidosis, which leads to a stimulation of serotonergic neurons, 
resulting in an increased excitability of motoneurons directing to 
the somnambulism (27, 34).

The relationship between sleep disturbance and migraine/
headache could involve another fundamental neurobiological 
system, the orexin/hypocretin system, which seems to play 
a key role in regulating both the sleep/wake cycle and REM 
sleep (35), and it may also be associated with migraine patho-
genesis. Indeed, orexin/hypocretin A and orexin/hypocretin B 
are hypothalamic excitatory neuropeptides that, in addition to 
regulating sleep/wake rhythm, play a role in many biological 
pathways involved in thermoregulation, energy metabolism 
control, mood and emotional regulation, energy homeostasis, 
reward mechanisms, drug dependence, cardiovascular responses, 
sexual behavior, nutritional behavior, and spontaneous physical 
activity (36–38). It is interesting to note that some symptoms 
associated with migraine such as tiredness, yawning, drowsiness, 
and desire for certain foods may be due to an involvement of 
the orexin/hypocretin system. In mammals, orexin/hypocretin 
A and orexin/hypocretin B are both synthesized from pre–pro-
orexin in hypothalamic and central areas (39, 40). The orexin/
hypocretin peptides influence two specific receptors: orexin/
hypocretin 1-receptor (OX1R), localized in prefrontal cortex 
and infralimbic, hippocampus, amygdala, stria terminalis bed 
nucleus, paraventricular thalamus, front hypothalamus, median 
raphe (MR) nucleus, ventral tegmental area/pedunculopontine 
nucleus (41, 42), and orexin/hypocretin 2-receptor (OX2R), 
localized at amygdala, tuberomammillary nucleus, Arc, dorso-
median hypothalamic nucleus, locus coeruleus and laterodorsal 
tegmental nucleus, lateral hypothalamus, stria terminalis bed 
nucleus, paraventricular thalamus, DR, ventral tegmental area/
pedunculopontine nucleus, hippocampus, and median septal 
nucleus (42). The activity of orexin/hypocretin neurons is modu-
lated by several neurotransmitters: GABA (43), noradrenaline, 
and serotonin inhibit the activity of orexin/hypocretin neurons 
(44); glutamate (45), cholecystokinin, neurotensin, oxytocin, and 
vasopressin seem to have instead an excitatory action on orexin 
neurons (46–48). The complex mechanisms by which the orexin/
hypocretin system interacts with other brain systems and with the 
whole organism and the roles that these interactions may play are 
still to be clarified.

HypotHesis/tHeory

Neural pathways controlling sleep and pain are anatomically, 
physiologically, and neurochemically crossed. These neural 

systems are found in the brain, hypothalamus, and basal brain. 
The activity of the serotonergic nuclei of the cerebral trunk (MR 
nuclei) is physiologically reduced during REM sleep, and these 
structures are involved in anti-nociceptive control. About the 
main serotonergic system, the MR and DR nuclei provide parallel 
and overlapping projections to many forebrain structures with 
axon fibers exhibiting distinct structural and functional charac-
teristics. Serotonin neurons within the rostral DR are uniquely 
interconnected with brain areas associated with emotion and 
motivation such as the amygdala, accumbens, and ventral pal-
lidum nuclei. In contrast, the serotonin neurons in the MR are 
characterized by their dominion over the septum and hippocam-
pus (49). Serotonin pathways have been found to be important 
in the migraine pathophysiology. One of the main sleep–wake 
rhythm control systems is the orexin/hypocretin system (50). 
Orexin/hypocretin neurons are localized in the lateral hypo-
thalamus and give projections throughout the brain and spinal 
cord, densely innervating the DR nucleus and MR nucleus, which 
contain serotonergic neurons (51).

Our hypothesis is that in migraines a dysfunction of orexinergic 
projections on the MR nuclei, interfering with serotonergic regu-
lation, may cause NREM parasomnias, such as somnambulism.

eVaLUation oF tHe HypotHesis

Serotonin and orexin/hypocretin systems are anatomically 
and functionally interconnected. Serotonergic neurons receive 
excitatory input from hypothalamic orexin/hypocretin neurons 
and reciprocally inhibit orexin/hypocretin neurons through 
the 5HT1A receptor. It is possible that if this complex system 
is altered, it may facilitate the pathophysiological mechanisms 
involved in the migraine and on the other hand produce an 
alteration of the sleep–wake rhythm causing sleep disorders, 
such as sleepwalking. About the orexinergic innervation role in 
the migraine pathophysiology, axons immunoreactive to orexin/
hypocretin A are reported as present at low density in lateral 
posterior (LP), and lateral dorsal (LD) nuclei of thalamus, and 
most median part of thalamic posterior complex (Po), and at 
very low density in ventral posterior median nucleus of thalamus 
(VPM) and most lateral part of Po (52). Moreover, if examined in 
sections containing the trigeminovascular neuron(s), low density 
of orexinergic immunopositive axons and varicosities appears 
to be close apposition to the proximal and distal dendrites but 
not the cell body (52, 53). These data show that the orexinergic 
axons originate mainly in the perifornical hypothalamic area. The 
orexin/hypocretin system originates in the LH and projects to the 
cortex, thalamus, brainstem, spinal cord, and other hypothalamic 
nuclei (39, 54–56). The wide distribution of orexin fibers in the 
brain supports a role in regulating food intake, arousal, wakeful-
ness, and sympathetically mediated increase in body temperature, 
heart rate, sexual behavior, and blood pressure (57).

About the potential relevance for the pathophysiology of 
migraine, the orexinergic axons are in nociceptive laminae of 
the medullary dorsal horn and in close apposition to thalamic 
trigeminovascular neurons, although no data are yet available 
regarding the direction in which orexin/hypocretin may modu-
late the thalamic trigeminovascular neurons. In the migraine 
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context, it is reasonable to hypothesize that the mechanism by 
which eating may reduce headache intensity involves not only 
local release of GABA from activated melanin-concentrating 
hormone (MCH)-expressing neurons but also inhibition of 
facilitatory orexin input to thalamic trigeminovascular neurons. 
These activities are induced by glucose level increase, considering 
that orexin/hypocretin neurons are inhibited by glucose (51, 58). 
The chemical pathway to modulate the activity of thalamic 
trigeminovascular neurons has been reported to be controlled 
mainly by glutamate, GABA, dopamine, and serotonin and in a 
minor level by noradrenaline and histamine, MCH, and orexin/
hypocretin (52, 59).

Serotonin function has been long implicated in the patho-
physiology of migraine (60, 61). However, the underlying mecha-
nisms of this correlation are not fully clarified yet. It has been 
hypothesized (62) that a massive release of serotonin from the 
MR nucleus would be implicated in the activation of serotonergic 
receptors located on the walls of large cerebral vessels. This event 
could lead to abnormal vasodilatation increasing transmural 
pressure. Subsequently, the terminal trigeminal nerve is activated 
with consequent antidromal stimulation of sensory nerve end-
ings at the level of hard vessels in the meninges, generating the 
release of pro-inflammatory peptides (substance P and CGRP). 
Within this hypothetical scheme, serotonin released may also 
interact with trigeminovascular afferents to activate and/or facili-
tate the release of the neuropeptide at the level of the trigeminal 
ganglion. In light of the mutual regulation of these two systems, 
serotonergic and orexinergic, it is plausible that at the basis of this 
serotonergic pathway dysfunction, there may be an alteration of 
the orexinergic system. This alteration, therefore, would cause the 
cascade of events leading to the onset of migraine pain and to the 
dysregulation of the sleep/wake cycle (Figure 1).

disCUssion and eMpiriCaL data

Migraine is a chronic neurovascular disease characterized by 
recurrent headache associated with autonomic, gastrointestinal, 
and focal neurological symptoms, and it is often associated with 
mood disorders and sleep disturbances. Migraine is a public 
health problem with great impact on both patients and society. 
Prevalence is estimated to be about 30% for women and 25% for 
men (63). In addition, this disease also affects pediatric age, with a 
prevalence of 1–3% between 3 and 7 years, 4–11% between 7 and 
11 years, and 8–28% of adolescents (13–18 years) (64). Migraine 
is classified as one of the most disabling chronic disorders of 
the World Health Organization. The annual cost of loss-related 
productivity associated with migraine is heavy and has been 
estimated as the most expensive neurological disorder in Europe 
(65). Although migraine is a neurological disorder that has been 
studied for many years, many aspects of its neurophysiopathol-
ogy remain to be clarified. Among the neurobiological systems 
that could be implicated in the migraine etiopathogenesis, both 
serotonergic and orexinergic systems have been considered in 
numerous studies. These same systems could be involved in the 
onset of sleep disorders. Biochemical, genetic, and pharmacologi-
cal studies have investigated potential dysfunction of serotonergic 
system in the migraine. For example, as previously described, 

5-HT plasma levels are reduced in patients with migraine com-
pared to controls, during attack-free periods (66, 67); in addition, 
the urinary excretion of 5-HIAA (the most important serotonin 
metabolite) decreases with the frequency of migraine attacks (68). 
Moreover, in the scientific literature, it is reported that platelets 
of migraineurs showing qualitative differences in their serotonin 
released reaction and clumping (69). Even neuroimaging stud-
ies (particularly PET studies) suggest that cerebral synthesis of 
serotonin can be quantitatively altered in migraineurs (70). The 
most commonly used drugs for treating migraine attacks are the 
triptans, selective agonists for serotonin 5-HT1B and 5-HT1D 
receptors. It was hypothesized that triptans could reduce migraine 
pain decreasing serotonin brain synthesis (71). In general, the very 
dense innervation of thalamic trigeminovascular neurons can 
provide an anatomical substrate for a predominantly inhibitory 
effect of serotonin on transmission of trigeminovascular informa-
tion between the thalamus and the cortex, as well as the inhibition 
of trigeminovascular thalamic neurons by local administration 
of 5HT1 agonists (52, 72). The total absence of 5HT1D receptors 
in the thalamus region may suggest that inhibition of thalamic 
trigeminovascular neurons response to dural stimulation occurs 
at an earlier synapse along the trigeminovascular pathway (73). 
Serotonergic neurons located in the MR nucleus are also involved 
in the regulation of the sleep/wakefulness cycle. As previously 
described, the destruction of these neurons or the administration 
of the inhibitor p-chloro-phenylalanine generates the insomniac 
habit that disappears restoring the synthesis of 5HT. The activ-
ity of serotonergic neurons in raphe dorsal nucleus is higher in 
wakefulness, lower during SWS, and almost quiescent during 
REM stages (74–77).

Specifically, orexins/hypocretins can regulate multiple homeo-
static processes, including reward and arousal/wake state, excit-
ing serotonergic DR and MR neurons (78, 79).

However, in which manner the serotonin regulates sleep/
wake is still unclear. This neurotransmitter promotes waking and 
inhibits REM sleep in some cases, but it may also act as a sleep 
activator (80). These conflictual relationships could be due to 
the interaction between serotonergic neurons and other neurons 
involved in sleep/wake regulation, such as orexin/hypocretin 
neurons in the hypothalamus, which densely innervate seroton-
ergic neurons in the MR nucleus, activating them directly and 
indirectly by binding OX1R and OX2R (81, 82).

In addition, orexin/hypocretin neurons receive dense sero-
tonergic innervation and are inhibited by 5HT via the 5HT1A 
receptor, activating the GIRK channels (83, 84). It is not clear 
yet, though, how this circuit functions to regulate the sleep/
wake cycle. It was described that orexinergic and serotonergic 
neurons located in raphe nuclei are more active in waking and less 
active during sleep SWS and REM. Moreover, as demonstrated 
in animal models, there is a critical role of the DRN–amygdale 
pathway in the orexinergic suppression of cataplectic episode 
(85). However, the level of activation of orexin/hypocretin 
cells is not directly related only to the arousal state, but they 
are less active during quiet wakefulness and discharge in active 
waking (86, 87). Regarding the role of orexin/hypocretin in the 
migraine, various studies suggest that mutation of the gene that 
encodes proteins involved in the orexin/hypocretin system may 
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play a role in the etiopathogenesis of migraine. In particular, 
it was described that the HCRTR1 gene (orexin/hypocretin 
receptor 1 gene) may be related to migraine (88) and that the 

1246G/A polymorphism of the hypocretin receptor 2 (HCRTR2) 
gene is significantly associated with headache cluster (89). As 
already mentioned, the orexin/hypocretin system seems to play 
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many biological functions, and it appears to be involved in the 
regulation of dietary behaviors and energy expenditure (90–94). 
Furthermore, it may be related to the obesity control mechanisms 
(95). It is interesting to note that many studies suggest that obesity 
is comorbid with headache in general and migraine in particular. 
The obesity seems to be a risk factor for migraine progression and 
for migraine frequency both in adults and in children (96–101). 
Moreover, considering the complexity of the migraine symptom 
cascade (especially prodromal and postictal phases), the massive 
involvement of multiple cortical, subcortical, diencephalic, and 
brainstem structures is evident (102), making it much more than 
a simple headache (103).

Finally, we cannot omit that the orexin/hypocretin system 
is relevant in wakefulness and pain perception and integration 
(104), with an activation linked to the circadian periodicity 
(105). The orexin/hypocretin release levels are higher during 
the early day and lowest during the night (rest) (106), showing 
an evident role in sleep–wake regulation. When in humans 
and other mammalians, this complex system is dysregulated or 

disrupted, the narcoleptic syndrome can emerge with the rel-
evant fragmented sleep–wake cycle and increase in the migraine 
prevalence (107).

Understanding the complex mechanisms underlying migraine 
and sleep disorders and how these mechanisms can interact with 
each other could pave the way for studies of new therapeutic 
strategies. Considering the social and economic implications of 
this disease on the world’s population, further studies are needed.
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