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Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, 
and increase neurodegenerative diseases. It is only in recent years that there is growing 
awareness that TBI even in its milder form poses long-term health consequences to not 
only the brain but to other organ systems. Also, the concept that hormonal signals and 
neural circuits that originate in the hypothalamus play key roles in regulating skeletal 
system is gaining recognition based on recent mouse genetic studies. Accordingly, many 
TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, 
and increased risk of skeletal diseases. Research from animal models suggests that 
TBI may exacerbate the activation and inactivation of molecular pathways leading to 
changes in both osteogenesis and bone destruction. TBI has also been found to induce 
the formation of heterotopic ossification and increased callus formation at sites of mus-
cle or fracture injury through increased vascularization and activation of systemic factors. 
Recent studies also suggest that the disruption of endocrine factors and neuropeptides 
caused by TBI may induce adverse skeletal effects. This review will discuss the long-
term consequences of TBI on the skeletal system and TBI-induced signaling pathways 
that contribute to the formation of ectopic bone, altered fracture healing, and reduced 
bone mass.

Keywords: osteoporosis, growth hormone, bone formation, bone resorption, heterotopic ossification, fracture 
repair, neuropeptides

iNTRODUCTiON

Traumatic brain injury (TBI) is the disruption of brain activity due to an external force or violent 
blow to the head. TBI can lead to a series of physical, cognitive, social, emotional, and behavioral 
impairments (1) and is the leading cause of death and disability in both combat and civilian popula-
tions. More than 1.7 million people in the U.S. experience a TBI annually (1), and it is a major cause 
of death and disability worldwide, especially in children and young adults. Significant proportions of 
survivors require hospital care, extended rehabilitation, and may have long-term physical, cognitive, 
and psychological disorders. Many statistics do not account for individuals who have not reported 
an injury or received medical care, and disabilities may be significantly higher, often with long-term 
consequences. TBI may be classified based on severity as mild, moderate, or severe and location 
of injury and time of lost consciousness (2). Symptoms can range from mild concussions, with 
symptoms lasting from seconds, to more severe injuries with symptoms lasting years or even death. 
Individuals who have suffered mild TBI, or concussions, report adverse effects resulting from the 
TBI(s) months later (3) due to the rotational stress caused by head movement. In fact, TBI is the 
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TaBLe 1 | Examples of clinical studies showing relationship between TBI and 
bone-related abnormalities.

Bone 
abnormalities

effects of TBi Reference

Osteoporosis 21.4% had osteoporosis, 41.1%  
had osteopenia, and 27.7% were 
vitamin D deficient

Smith et al. (9)

Osteoporosis 19% had osteoporosis, 50% had 
osteopenia

Scarvell et al. (10)

Low BMD Low BMD in the tibia and radius Banham-Hall et al. (11)

Fracture Increased risk of upper limb fracture  
with mTBI

Jodoin et al. (12)

Fracture Accelerated fracture healing and 
enhanced callus formation

Yang et al. (13)

Fracture Accelerated fracture healing,  
enhanced callus formation, and 
increased osteoblast proliferation

Cadosch et al. (14)

HO 11.4% developed HO after severe TBI Simonsen et al. (15)

HO 22.5% developed HO after TBI Citta-Pietrolungo  
et al. (16)

TBI, traumatic brain injury; BMD, bone mineral density; mTBI, mild traumatic brain 
injury; HO, heterotopic ossification.
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beginning of an ongoing, possibly lifelong, process that impacts 
multiple organ systems and bone that is proximal or distal to the 
site of injury. This review will discuss the consequences that TBI 
on the skeleton and its possible mechanisms.

POSTTRaUMaTiC MORTaLiTY aND 
MORBiDiTY

The clinical severity of TBI has been associated with an increased 
risk for mortality. Per the CDC, there are over 50,000 deaths in the 
U.S. annually and approximately 22% die within the first 5 years 
after suffering a TBI. TBI patients (mild, moderate, or severe) 
with brain edema were eight times as likely to die compared to 
TBI patients without edema and surprisingly, were five times as 
likely to die for mild TBI-related edema (4). Those who survive 
moderate-to-severe TBI and receive rehabilitation have a shorter 
life expectancy by 9 years (5).

A diffusion tensor imaging study of the corpus callosum found 
that those with mild TBI had significant white matter abnorma-
lities up to 3 months post-injury (6). These studies suggest that 
mild TBI, previously considered harmless, could in fact lead to 
more TBI-related morbidity.

NeUROLOGiCaL DiSORDeRS aND 
NeURODeGeNeRaTive DiSeaSeS

Trauma-induced neurological and neurodegenerative sequalae 
are relatively common. An estimated 70% of adults in the United 
States have experienced a traumatic event in their lifetime, in 
which, approximately 20% go on to develop PTSD. These individu-
als are at an increased risk for psychological disorders (i.e., depres-
sion and anxiety), neurological disorders (i.e., epilepsy and sleep 
disorders), physical injuries, substance abuse, and fatigue, all of 
which can lead to poor decisions and actions and can manifest 
into physical symptoms.

Concussion, or mild TBI, accounts for approximately 90% 
of all brain traumas sustained (7). While many impairments 
resulting from a mild TBI tend to resolve within a few months, 
a subset of these individuals, in addition to moderate and severe 
TBI, exhibit gradual cognitive decline and motor deficits such as 
those that are characteristic in Alzheimer’s disease, Parkinson’s 
disease, and chronic traumatic encephalopathy (8).

TBi eFFeCTS ON THe SKeLeTaL SYSTeM

Traumatic brain injury and its associated physiological processes 
have been found to lead to significant skeletal abnormalities that 
often transpire over time (Table 1). While the consequences and 
mechanisms of trauma to the head and the pathophysiological 
and neurochemical events that occur during the course of initial 
hours and days are being extensively investigated, little is known 
regarding the long-term consequence of TBI on remote organs 
that are under the influence of neural and neuroendocrine 
humoral outflow from the brain via the pituitary. Recently, the 
discovery of bone regulation by neural signals represents an 
emerging area of study that is identifying novel regulatory axes 

between the nervous system and bone cells. Based on the key 
role for cells of the hypothalamic nuclei in the neuro(endo)crine 
regulation of bone remodeling, it is predictable that injury to 
the brain will have a severe impact on the regulatory molecules 
that control skeletal growth/maintenance. The rest of this review 
will focus on the long-term consequences of TBI on the skeletal 
system and the potential mechanisms for TBI effects on bone.

Heterotopic Ossification (HO)
Heterotopic ossification is defined as the formation of mature, 
lamellar bone, in non-osseous tissue, typically between the 
muscle and joint capsule. Although, there are rare hereditary dis-
orders associated with HO, it is well established that HO is usually 
acquired following trauma to soft tissues, bone, and neurological 
damage. The incidence of ectopic bone formation is frequently 
seen in patients with TBI (17–22). This ectopic deposition of bone 
elicits symptoms including pain with a significant loss of range of 
motion (17, 23, 24).

Three subtypes of HO have been identified: genetic, trau-
matic, and neurogenic. Genetic HO occurs in individuals with 
inherited conditions such as fibrodysplasia ossificans progressive 
and progressive osseous heteroplasia. Traumatic HO occurs in 
response to injuries such as acetabular fractures, fractures and 
joint dislocations, blast injuries, burns, combat, amputee injuries, 
and muscle trauma (25–28). Neurogenic HO occurs in response 
to TBIs and spinal cord injuries (17, 29). Those with TBI alone go 
on to develop HO throughout the body, distant from the primary 
injury, in locations such as the hip, knee, elbow, or shoulder (30). 
Many returning from military combat develop HO from the 
combination of trauma and neurogenic injuries (18, 31–33). TBI 
occurrence with local tissue injury has been associated with the 
pathogenesis of HO and suggests that both systemic and local 
mechanisms may contribute to HO. Recently, serum collected 
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FiGURe 1 | The interaction between traumatic brain injury (TBI) and hypoxic 
conditions that lead to the development of heterotopic ossification (HO). TBI 
induces a hypoxic environment in tissue that reduces PHD2 activity, which in 
turn, prevents the cleavage of hypoxia-inducible factor (HIF)1α and increases 
angiogenesis. This pathway increases osteogenic precursor cell activity, 
thereby promoting chondrocyte differentiation and hypertrophy in soft tissues 
and leading to bone formation in HO. TBI may also directly affect pro-
osteoinductive molecules that promote increased osteogenic precursor cell 
activity.
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from TBI patients promoted conversion of muscle cells into 
osteoblasts, suggesting that TBI may accelerate the formation of 
ectopic bone at the sites of injury (34).

The identification of cellular and molecular events leading to 
HO continue to remain elusive. Recent studies suggest that the 
activation of the bone morphogenic protein (BMP) signaling may 
play a significant role in the pathogenesis of HO based on the 
established role for BMPs to promote de novo bone formation 
in non-skeletal sites (35–38). Specifically, HO induction with 
BMP-2 led to the expression of osteoblast-specific transcription 
factors in the endonerium, suggesting that endoneurial pro-
genitors are osteogenic precursors that contribute to HO (39). 
Further, osteoblasts isolated from HO bone (rodent and clinical 
models) exhibited increased osteogenic differentiation compared 
to osteoblasts derived from normal bone (40).

Studies have also linked the release of pro-angiogenic factors 
to the onset of HO (Figure  1) (41–43). The vascularization of 
injured tissue represents an important step during the transition 

from hypertrophic cartilage to bone during the endochondral 
ossification of cartilage (44, 45). Neovascularization occurs 
within the injured tissue because of low oxygen tension that is 
caused by reduced activity of prolyl hydroxylase domain proteins 
(PHDs). The early response activity of PHD proteins are oxygen 
dependent and, under normoxia, hydrolyze hypoxia-inducible 
factor (HIF)-α subunits, resulting in their degradation and 
inactivity. Under hypoxia, PHD activity decreases due to reduced 
oxygen levels. Thus, the HIF-1α subunit avoids hydroxylation, 
accumulates in the nucleus, recruits HIF-1β, and together bind 
to penta-nucleotide hypoxia-responsive elements to promote 
transcription of key genes, such as VEGF, involved in the angio-
genesis pathway (44, 46, 47). Hypoxic conditions also impact 
bone formation by stimulating oxygen-sensing factors that 
promote chondrocyte survival and differentiation (35, 48, 49). 
The increase in osteogenic precursor cells create a feedback loop 
to increase angiogenesis and exacerbate chondrocyte differentia-
tion and hypertrophy. Conditional disruption of the Phd2 gene in 
chondrocytes promoted endochondral ossification and dramatic 
increase in trabecular bone mass (50). It was found that loss of 
PHD2 in chondrocytes promoted chondrocyte differentiation 
and osteoblast formation and that this effect was in part mediated 
via upregulation of HIF1α signaling. The extent to which hypoxia 
signaling contributes to ectopic bone formation caused by brain 
injury remains to be elucidated.

Fracture Healing
Fracture healing can be defined as the physiological repair of 
bone tissue, structure, and function after injury. Patients who 
have sustained severe TBI commonly demonstrate alterations in 
the healing process of bone. There is mounting evidence linking 
the association between TBI and enhanced osteogenesis post-
fracture. TBI in combination with fracture results in higher bone 
volume, higher mineral density (51), and accelerated healing with 
enhanced callus formation (14, 52–55).

The physiology of fracture healing involves both local and sys-
temic factors that can be divided into three overlapping phases: 
inflammatory phase, followed by reparation, and finally remod-
eling. During the inflammatory phase, bleeding from the fracture 
and adjacent soft tissues result in the formation of hematoma at 
the injured site. The hemopoietic cells at the hematoma secrete 
cytokines and growth factors and attract osteoprogenitor and 
mesenchymal cells that result in the proliferation of osteoblasts 
and fibroblasts. Cytokines such as interleukin (IL)-6, produced 
by stromal/osteoblastic cells, enhance angiogenesis and osteo-
clastogenesis and regulate bone resorption and callus formation 
(56). During the reparative phase, a primary soft callus develops, 
followed by a medullary (hard) callus several weeks later. During 
the remodeling phase, the fracture site is reshaped by the interac-
tions between osteoclasts resorbing bone and osteoblasts forming 
bone that strengthens the bone.

The existence of whether humoral osteogenic factors released 
post-TBI and/or direct nervous action guides the induction of 
enhanced fracture healing is still being debated. Several studies 
have detected humoral osteogenic factors in the serum of TBI 
patients (57) and in cells (14, 58). There is also evidence in the 
literature to suggest that a combination of signaling cascades 
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FiGURe 2 | The relationship between trauma, neuropeptides, and decreased 
bone formation. Traumatic brain injury (TBI) induces central nervous system 
disruption and inflammation and causes an upregulation in leptin levels due 
to the compromised blood–brain barrier. TBI also causes hypothalamus–
pituitary–adrenal axis (HPA) dysfunction that increases leptin and causes the 
release of neuropeptides such as substance P (SP), neurokinin A (NKA), 
neuropeptide Y (NPY), neurokinin B (NKB), and calcitonin gene-related 
peptide (CGRP). These neuropeptides propagate further inflammation that 
further increase systemic circulation of NPY and other neuropeptides that 
reduce bone formation via the leptin pathway.
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involving humoral, neuronal, and local bone markers may play 
a significant role in fracture repair after trauma (59, 60). Cell 
proliferation was significantly increased in rat osteoblast cells 
treated with serum from TBI patients, suggesting the role of a 
circulating growth factor (either systemic or local) that promoted 
osteogenic activity (61). In another study, growth hormone (GH) 
levels continued to increase during enhanced osteogenesis with a 
gradual increase in IGF-1 during fracture healing in patients with 
combined TBI and fracture (62). Other growth factors have also 
been implicated in the process of fracture healing. Serum levels 
of epidermal growth factor and nerve growth factor gradually 
increase up to 14  days post-TBI and fracture combined injury 
compared to fracture or TBI groups alone (63).

The central and peripheral nervous systems play important 
roles in the regulation of bone with many factors influencing 
this densely innervated tissue in the body. One of these factors is 
leptin, and it has been hypothesized to be an integral part of frac-
ture healing (Figure 2). Leptin is an adipocyte-derived hormone 

expressed in several tissues that primarily controls energy and 
food intake (64) and is involved in the regulation of insulin 
homeostasis, reproduction, immune function, and brain devel-
opment (65). More recently, in vivo studies have shown elevated 
levels of GH and IGF-I in serum of TBI and fractured rabbits (66) 
that could be caused by increase in leptin levels presumably due to 
disruption of blood–brain barrier. In addition, higher percentage 
of leptin-positive cells in the callus have also been detected in 
combined TBI and fractured rats (67, 68). Further, studies using 
knockout mice suggest that changes in callus formation were 
not detected in leptin-deficient ob/ob mice that underwent TBI 
and osteonomy (69); however, peripheral injections of leptin 
significantly increased bone mass and osteoblastic activity in 
ob/ob mice (65, 70). Neuropeptide Y (NPY), a neurotransmitter 
with regulatory functions in bone homeostasis, is downstream 
of leptin signaling. NPY levels increase and promote osteogenic 
differentiation in patients with TBI and fractures (71). NPY and 
leptin share an inverse relationship, and recent studies suggest 
that NPY may mediate part of the skeletal phenotype in ob/ob  
mice (72, 73). Another factor is Semaphorin 3A, a secreted 
cytokine regulated by neural injury and is known to guide axonal 
and dendritic growth and neural migration. Recent studies have 
suggested that Semaphorin 3A can suppress bone resorption by 
binding to neurophilin-1 that in turn inhibits receptor activator 
of nuclear factor κB ligand-induced osteoclast differentiation 
and other pathways and synchronously stimulates osteoblasts 
and enhanced osteogenesis via canonical Wnt-signaling (74). In 
addition, stromal cell-derived factor-1, a chemokine protein, has 
been found to contribute to endochondral bone repair in TBI and 
fracture healing via increased expression surrounding tissues of 
fractured bone (75). Thus, while a number of signaling molecules 
have been implicated in the accelerated fracture healing caused by 
TBI, the mechanism by which brain injury influences these mol-
ecules and the extent to which the identified molecules interact to 
regulate fracture healing remain to be established.

Low Bone Mass
Patients who have experienced TBI may have an increased risk 
of osteopenia and osteoporosis (9, 11), which are asymptomatic 
systemic skeletal diseases result in the micro-architectural dete-
rioration of bone tissue leading to bone fragility and ultimately, 
fractures. Changes in bone are characterized by reduced bone 
mineral density (BMD) due from immobility and other metabo-
lism-related factors. In animal models, TBI significantly reduces 
BMD in cortical bone (2, 76) and decreases in tibial trabecular 
bone mass (77) irrespective of mobility. In stroke patients, the 
highest rate of bone loss occurs within the first year (78), par-
ticularly, greatest loss of BMD in the paretic hip and upper limbs. 
Adults with TBI have been shown to have higher BMD loss in 
the femur and vitamin D deficiency (9). Several groups of stroke 
patients have also been shown to have deficiency in vitamin 
D levels (25-hydroxyvitamin D or 1,25-dihydroxyvitamin D)  
(79, 80). Although low vitamin D levels in stroke patients may be 
attributed to lack of exposure to sunlight following stroke and the 
hypoparathyroidism induced by immobilization hypercalcemia, 
it may also be that many stroke patients have insufficient levels 
of vitamin D prior to stroke (81).
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Traumatic brain injury-induced skeletal changes seems to 
be dependent in part on the variations in parathyroid hor-
mone (PTH) and vitamin D axis. TBI reduces PTH activity, 
thereby reducing 1,25-dihydroxyvitamin D production and 
activity. The resulting hypoparathyroidism and reduced serum 
calcium levels leads to increased bone resorption and reduced 
microstructural integrity (82), and, thereby, increasing risk for 
fractures (9, 83, 84).

MeCHaNiSMS DeTRiMeNTaL  
eFFeCTS OF TBi ON BONe

inflammation
Activation of the inflammatory response in the brain occurs 
within a few seconds after trauma and with the permeation of 
the blood–brain barrier and activation of several injury cascades 
(85, 86). Injury to the central nervous system (CNS) results in 
an increase of blood products, tissue debris, prostaglandins, 
reactive oxygen specials, and nitrogen species. These factors, 
in turn, trigger an innate response of resident immune cells  
(i.e., macrophages, mast cells, granulocytes, dendritic cells, and nat-
ural killer cells) through the activation of microglia and astrocytes, 
increased migration and recruitment of leukocytes, and the release 
of inflammatory mediators such as cytokines and chemokines 
(pro- and/or anti-inflammatory) and results in local and systemic 
immune responses (87, 88). Systemic inflammation shifts toward 
an adaptive immune response and to the chronic stages post-TBI 
(days, weeks, months, years), which may, in fact, exacerbate the 
onset of skeletal deterioration. For example, increased systemic 
IL-6 and IL-11 may directly stimulate osteoclastic activity or act 
via osteoblast lineage cells that increase osteoclast formation 
through receptor activator of nuclear factor kappa-B ligand (89). 
Similarly, increased levels of systemic IL-18 has been associated 
with poor clinical outcome in TBI patients (90).

Neuropeptides
Trauma also leads to neurogenic inflammation, where the acti-
vation of sensory unmyelinated neurons by noxious stimuli  
(i.e., TBI) causes the simultaneous release of neuropeptides such 
as substance P (SP), neurokinin A, neuropeptide Y (NPY), neuro-
kinin B, and calcitonin gene-related peptide as shown in Figure 2. 
The release of peptides results in vasodilation, increased vascular 
and blood–brain barrier permeability (91). The compromised 
blood–brain barrier causes an influx of plasma proteins that 
enhances the inflammatory response, as well as creating a posi-
tive feedback with neurogenic inflammation to propagate further 
inflammation with the release of pro-inflammatory mediators, 
oxidative factors, etc., which causes further neural damage. In 
addition, the disruption of the hypothalamus may increase the 
circulation of peripheral NPY and reduce bone formation via 
leptin (72, 73).

Hypothalamus–Pituitary–adrenal  
axis (HPa)
Together with the central nervous and circulatory systems, the 
HPA axis, also the endocrine system, is critical for the integration 

and coordination for many bodily functions such as stress reac-
tions, digestion, immune system, mood and emotions, sexuality, 
etc. The HPA axis acts as a complex integration and feedback net-
work between three endocrine glands: hypothalamus, pituitary 
gland, and the adrenal gland. The hypothalamus synthesizes and 
secretes vasopressin and corticotropin-releasing hormone, which 
in turn stimulates the secretion of adrenocorticotropic hormone 
in the pituitary gland and further stimulates the production of 
glucocorticoid hormones. The glucocorticoid hormones in turn 
act back on the hypothalamus in a negative feedback loop, secret-
ing hormones as necessary for function. In healthy individuals, 
HPA signaling maintains homeostasis. In response to brain injury, 
the function of the HPA axis is disrupted, causing a reduction 
in the production of many endocrine factors (hypopituitarism; 
Figure 1) (92, 93). It has been reported that 70% of patients with 
TBI have hypothalamic–pituitary dysfunction (94). For example, 
a 12-month prospective study found that the rate of hypopitui-
tarism in post-TBI patients was reduced by 33 and 23% at 3 and 
12 months, respectively (95). Another clinical study also reported 
anterior pituitary dysfunction in 56 and 36% of TBI patients at 
3 and 12  months post injury, respectively (96). These studies 
indicate that HPA dysfunction is a key consequence of TBI.

Hypopituitarism is the most common manifestation of the 
HPA axis disruption via TBI that causes hormonal deficiencies 
(Figure 3) (97–101). Individuals suffering from TBI are at the risk 
of developing long-term negative consequences on the skeleton 
via deficiencies in GH, gonadotrophin, and thyroid-stimulating 
hormone (TSH), all of which significantly influence bone 
metabolism. For example, GH is known to have anabolic and 
catabolic mechanistic pathways that may be injury dependent in 
bone. GH interacts with insulin-like growth factor-1 and both 
contribute to the regulation of bone mass through the stimula-
tion of osteoblast activity (102, 103). Deficiency in GH created a 
catabolic effect that increases skeletal fragility and low bone mass 
that leads to higher fracture risk (104) and delayed fracture heal-
ing (105). However, GH creates an anabolic effect by stimulating 
accelerated fracture healing (106, 107). TSH directly inhibits 
osteoclast skeletal remodeling and osteoblast bone formation 
(108) and lower levels of TSH significantly increases bone resorp-
tion and reduces bone osteogenesis (109). Pituitary hormone 
disturbances are frequently found after TBI and lead to changes 
in bone mineralization (110). These hypothalamic–pituitary 
changes may be exacerbated in repetitive trauma. We have found 
that mild repetitive TBI led to significant loss skeletal mass (2), 
and more recently, we have shown that these negative effects on 
bone microarchitecture and mechanical properties were medi-
ated by osteoblast function via reduced endocrine IGF-1 actions 
(111). Recent studies also demonstrate an important role for 
central control of bone mass involving leptins and neuropeptides  
(112, 113). Thus, the hormonal disruption of the HPA leads to 
many detrimental skeletal effects.

CLiNiCaL ReCOMMeNDaTiONS

The physical presentation of bone metabolism abnormalities 
post-TBI may not be detected until considerable skeletal damage 
has already occurred. We recommend the assessment of serum 
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FiGURe 3 | Trauma-induced hypothalamus–pituitary–adrenal axis (HPA) 
dysfunction lead to reduced bone formation. Traumatic brain injury causes 
significant HPA dysfunction that leads to increased levels of 
adrenocorticotropin (ACTH), prolactin (PRL), and growth hormone (GH), but 
decreased or unchanged levels in luteinizing hormone (LH), follicle-stimulating 
hormone (FSH), PRL, melanocyte-stimulating hormone (MSH), and 
thyrotropin (TSH) levels. The altered secretion of hormones impact osteoblast 
function and impair bone formation.
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from TBI patients for levels of biochemical markers of bone 
metabolism (i.e., bone-specific alkaline phosphatase, osteoc-
alcin, N-terminal propeptide of type I procollagen, N-terminal 
telopeptide of type I collagen, and C-terminal telopeptide of type 
I collagen) and GH deficiency (GH, insulin-like growth factor-I, 
IGF binding protein-3, and acid labile subunit) (60) as the first 
line of preventative treatment. Patients with increased serum 
markers of bone turnover and GH deficiency would benefit from 
DXA imaging to monitor skeletal deficits across time. Changes 

in serum levels of bone markers can be used to further tailor 
pharmacological interventions toward promoting bone forma-
tion (PTH, sclerostin antibody) or inhibiting bone resorption 
(bisphosphonates). Thus, a multifaceted treatment approach is 
necessary for the detection and prevention of skeletal deficit in 
TBI patients.

CONCLUSiON

Traumatic brain injury leads to significant functional impair-
ments and structural alterations that can lead to permanent 
long-term changes in TBI survivors. These changes include sleep 
disturbances, impaired movement, cognitive dysfunction, and 
neurodegenerative diseases. Alterations in the CNS, as well as the 
disruption of the HPA axis alter skeletal remodeling processes and 
enhance resorption in sites distal to the site of injury, ultimately 
leading to low bone mass and skeletal fragility. Interestingly, TBI 
stimulates osteoblasts and enhanced osteogenesis in fractured 
healing bones. We conclude that TBI is a complex multifaceted 
process that leads to acute and long-term skeletal consequences 
that directly impacts bone integrity and function in TBI survivors.

FUTURe PeRSPeCTiveS

Although several studies have revealed key mechanisms in the 
pathogenesis of TBI-induced bone alterations, particularly in 
the release of humoral and osteogenic factors, many mechanistic 
pathways remain to be explored to fully understand the processes. 
Further studies are needed to investigate the consequences of 
moderate to severe TBI and whether the mechanistic pathways 
leading to skeletal alterations are similar or different. These inves-
tigations would lead to pharmacological approaches targeting 
pathways simultaneously may aid in preventing adverse skeletal 
changes.
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