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Objective: To determine the changes in interhemispheric functional coordination in patients 
with obstructive sleep apnea–hypopnea syndrome (OSAHS) relative to controls, using a 
recently introduced method of analysis: voxel-mirrored homotopic connectivity (VMHC).

Methods: Twenty-nine patients with OSAHS and twenty-six normal sex-, age-, and 
education-matched controls were recruited and resting-state functional magnetic reso-
nance imaging data were obtained. We employed VMHC to analyze the interhemispheric 
functional connectivity differences between groups. The z-values of alterations in VMHC 
in brain region were correlated with clinical characteristics.

results: Compared with controls, patients with OSAHS had significantly higher scores 
for body mass index (t = 5.749, P < 0.001), apnea–hypopnea index (AHI; t = 7.706, 
P < 0.001), oxygen desaturation index (t = 6.041, P < 0.001), and Epworth sleepiness 
scale (t = 3.711, P < 0.001), but significantly lower scores on the Rey–Osterrieth com-
plex figure test-immediate recall (t = −3.727, P < 0.05). On the same basis, the VMHC 
showed significant increases in bilateral calcarine cortex and precuneus. Moreover, 
significant, positive correlations were found in only these areas between the AHI and the 
VMHC change coefficients (r = 0.399, P = 0.032; r = 0.378, P = 0.043).

conclusion: We found a memory defect in patients with OSAHS. The correlation 
between the abnormal VMHC and the AHI in patients with OSAHS suggested that AHI 
might be a key factor in cognitive dysfunction, which might offer new insights into the 
neural pathophysiology underlying OSAHS-related cognitive deficits.

Keywords: resting-state functional magnetic resonance imaging, obstructive sleep apnea–hypopnea syndrome, 
voxel-mirrored homotopic connectivity, functional connectivity, cognitive deficits

inTrODUcTiOn

Obstructive sleep apnea–hypopnea syndrome (OSAHS) is a common, chronic sleep disease, whose 
characteristics include repeated episodes of partial or complete obstruction of the upper airway, 
and continual diaphragmatic efforts to breathe during sleep (1). Demographic studies show that 
the incidence of obstructive sleep apnea for middle-aged people is 2–4%, making it a major public 

Abbreviations: AHI, apnea–hypopnea index; CFT, Rey–Osterrieth complex figure test; DMN, default mode network; ESS, 
Epworth sleepiness scale; FC, functional connectivity; LMT, logical memory test; MMSE, mini-mental state examination; MRI, 
magnetic resonance imaging; ODI, oxygen desaturation index; OSAHS, obstructive sleep apnea–hypopnea syndrome; VMHC, 
voxel-mirrored homotopic connectivity.
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health problem (2). Several cognitive domains could be affected by 
OSAHS, resulting in psychomotor dysfunction, memory weakness, 
decrements in vigilance and attention, and executive dysfunctions 
(3–5). Over the last 20 years, it has been shown that OSAHS can 
produce functional and structural alterations in the brain (6–8). 
Several studies using a voxel-based morphometry method found 
gray matter loss in patients with OSAHS compared with healthy 
controls in multiple brain regions, including posterior lateral 
parietal cortex, inferior temporal gyrus, hippocampus, parahip-
pocampal gyrus, anterior cingulate gyrus, quadrangular lobule, 
and cerebellum (9–11). Using diffusion tensor imaging-based 
mean diffusivity procedures, global brain mean diffusivity values 
were found to be significantly decreased in patients with OSAHS. 
Some brain regions are especially affected, which may be a result of 
axonal, glial, and other cell alterations (12). In arterial spin labeling 
imaging, patients with OSAHS showed decreased cerebral blood 
flow values in multiple bilateral brain regions, including superior 
cerebellar peduncle, corticospinal tract, and pontocerebellar tract 
(13). Magnetic resonance spectroscopy has proved to be a useful 
neuroimaging tool able to detect alterations in cerebral metabo-
lism, which may reflect pathological insults to brain integrity. 
Several magnetic resonance spectroscopy studies have revealed 
remarkable metabolic alterations in OSAHS (14–16).

Resting-state functional magnetic resonance imaging (MRI) 
based on blood-oxygenation-level dependent contrast (perhaps 
better known as BOLD contrast) has been widely used in various 
functional connectivity (FC) studies ranging from examinations 
of psychiatric disorders to neurological conditions (17), as well 
as human brain function studies (18–20). Previous neuroimaging 
studies have demonstrated altered brain function and connectiv-
ity in patients with OSAHS. The main findings are as follows: 
(1) significantly reduced FC within the anterior default mode 
network (DMN), bilateral fronto-parietal network, and sensori-
motor network but increased FC within the posterior DMN (21), 
(2) the FC within the DMN, especially between the insula and the 
other DMN regions, is disrupted, and this abnormal FC associ-
ates with the severity of OSAHS (22, 23), and (3) resting-state 
FC disturbances of DMN are present in patients with OSAHS, as 
revealed by CONN software in our previous study (24).

As the largest commissural fiber bundle, the corpus callosum 
can facilitate communication and integration of emotional, cog-
nitive, motor, and sensory information between the two cerebral 
hemispheres (25, 26). Despite its importance, little information is 
available regarding alterations in interhemispheric FC in patients 
with OSAHS. Diffusion tensor imaging has demonstrated changes  
in white matter integrity in the corpus callosum of these patients 
(27). Pathological alterations of the corpus callosum could impair 
the interhemispheric functional interactions that are foundational 
for the integration of executive control and attentional processing 
(28, 29). This is consistent with the observation of dysfunctions 
of executive control and attention in patients with OSAHS (3–5). 
In general, these studies raise the question of whether there are 
significant differences in interhemispheric functional coordina-
tion between patients with OSAHS and normal controls.

To explore this issue, we used calculations of voxel-mirrored 
homotopic connectivity (VMHC) to investigate interhemispheric 
FC. This method is a voxel-wise measurement of functional 

homotopy that reveals the synchrony of resting-state BOLD fluc-
tuations between a voxel in one hemisphere and its mirror-image 
counterpart in the other. VMHC has been successfully applied 
to investigate interhemispheric functional homotopy in several 
diseases including autism, cocaine addiction, and schizophrenia 
(30–34). VMHC is an emerging method of analyzing the resting-
state, functional magnetic resonance image (rs-fMRI). As far as we 
know, ours is the first study to use it to explore interhemispheric 
synchrony and thus to obtain correlations between measures of 
interhemispheric FC and clinical variables in OSAHS.

MaTerials anD MeThODs

subjects
Twenty-nine newly diagnosed, untreated patients with OSAHS 
and twenty-six normal gender-, education-, and age-comparable  
controls were recruited by the Sleep Laboratory of the 
Otolaryngology-Head and Neck Surgery Department of Zhongda 
Hospital, Southeast University. No patient had comorbid condi-
tions such as heart failure or central nervous system diseases  
(e.g., epilepsy, stroke, and tumor) or a history of psychotropic 
drug use. Patients with a history of airway, laryngeal, or phar-
yngeal surgery were also excluded. All controls were healthy, 
without any history of brain abnormalities or heart failure. All 
participants in both the OSAHS and control groups were between  
20 and 60 years of age, right-handed, and free of metallic implants  
or other contraindications for MRI scan.

This study was carried out in accordance with the recom-
mendations of the Institutional Ethics Committee of Zhongda 
Hospital, Southeast University, Nanjing. Before the study, all 
participants gave written, informed consent in accordance with 
the Declaration of Helsinki and the protocol was approved by the 
Institutional Ethics Committee of Zhongda Hospital, Southeast 
University, Nanjing.

cognition and sleep assessment
We used the mini-mental state examination (MMSE) to screen for 
dementia and cognitive impairments (35). The Rey–Osterrieth 
complex figure test (CFT) and the logical memory test (LMT) 
of the Wechsler memory scale-revised were used for evaluating 
memory, attention, and executive functions (36). The Epworth 
sleepiness scale (ESS) was applied to evaluate sleep quality and 
daytime sleepiness (37).

Polysomnography
The night before functional MRI (fMRI) scanning, the OSAHS 
and control groups were asked to undergo polysomnogra-
phy monitoring (YH-2000A system) in the Department of 
Otolaryngology-Head and Neck Surgery of Zhongda hospital. 
All participants were prohibited from drinking alcohol or caf-
feinated beverages for 12  h before polysomnography. For all 
participants, polysomnography was performed from 11:00 p.m. 
to 07:00 a.m. A standard encephalogram (nine channels, used to 
distinguish between sleep and wakefulness, sleep stages, and to 
measure the proportion of sleep stages), chin electromyography, 
electrocardiography, oculography, oral cavity and nasal cavity 
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airflow, movements of the chest and abdomen, oximeter, physi-
cal position, and stertor were recorded. Two indexes related to 
sleep were then calculated in accordance with the criteria of 
the American Academy of Sleep Medicine (38, 39). These were 
apnea–hypopnea index (AHI, total number of hypopnea and 
apnea events per hour of sleep) and oxygen desaturation index 
(ODI, the number of desaturation events per hour of sleep).  
A hypopnea was defined as a drop in breathing extent of 30% 
lasting at least 10 s, associated with repeated respiratory effort and 
a drop in oxygen saturation of at least 4%. An obstructive apnea 
was defined as a drop in respiratory amplitude of 90% lasting 
at least 10 s, associated with continued or increased inspiratory 
effort. A desaturation was defined as a drop in oxygen saturation 
of at least four percent lasting at least 3 s.

Magnetic resonance imaging
Functional and structural MRI scans were performed on all par-
ticipants at the Radiology Department of Zhongda Hospital using 
a 3.0  T MRI scanner (MAGENETOMTrio, Siemens, Erlangen, 
Germany). We adopted earplugs to reduce scanning noise and 
foam padding to decrease head motion. All participants were asked 
to close their eyes and not sleep, not to think about anything in 
particular, and to avoid any head motion as far as possible dur-
ing scanning. The rs-fMRI data were acquired axially by applying 
an echo-planar imaging sequence sensitive to BOLD contrast. 
One hundred eighty functional images were obtained covering 
the whole brain (repetition time 2,000 ms, echo time 25 ms, flip 
angle 90°, field of view 240 mm × 240 mm, matrix 64 × 64, slice 
number 36, slice thickness 4 mm, no gap, aggregate duration of 
scan 6 min and 6 s). High-spatial-resolution, T1-weighted images 
were also obtained from each participant by applying a magnetic 
prepared gradient echo sequence, yielding 176 structural images 
(repetition time 1,900 ms, echo time 2.48 ms, flip angle 9°, field of 
view 256 mm × 256 mm, matrix 256 × 256, slice thickness 1 mm, 
no gap, duration 4 min and 18 s). Furthermore, 20 fluid-attenuated 
inversion-recovery images (perhaps better known as FLAIR 
images) were acquired to screen for structural brain lesions (repeti-
tion time 8,500 ms, echo time 94 ms, slice thickness 5 mm, duration 
1 min and 59 s). The total duration of scanning was 12 min, 23 s.

Mri Data Processing
Functional MRI data analysis was performed using DPARSFA 
(rs-fMRI Advanced Edition) with statistical parametric map-
ping (SPM81) and rs-fMRI data analysis toolkits (REST2) with 
the MATLAB 2010a platform (40). A total of 180 volumes were 
acquired. The first 10 volumes were discarded because of instabil-
ity in the initial MRI signals and adaptation of the participants 
to the scanner environment, and the remaining 170 volumes 
were submitted to the following processing, beginning with slice 
timing adjustment for acquisition time delays between different 
slices and realignment for head motion correction. (Any partici-
pant whose head motions were more than 2.0-mm of translation 
or more than 2.0° of rotation was excluded.) Then the fMRI data 

1 http://www.fil.ion.ucl.ac.uk/spm/ (Accessed: 2010).
2 http://www.restfmri.net/ (Accessed: 2011).

were spatially normalized to the Montreal Neurological Institute 
template with resampling to a 3 mm × 3 mm × 3 mm voxel size, 
smoothing with an isotropic Gaussian kernel (full-width at half 
maximum = 4 mm) and finally, detrending and bandpass filtering 
at 0.01–0.08 Hz.

VMhc analysis
We used REST software to compute the VMHC. The Pearson’s 
correlation coefficient between the remaining time series of each 
voxel and that of its mirrored interhemispheric voxel was calcu-
lated and the homotopic FC was measured (41). Subsequently, 
the correlation values were converted to z-values using Fisher’s 
r-to-z transformation to enhance the stability of the values. The 
resulting values were considered a measure of VMHC and were 
used for the final intergroup analysis.

statistical analysis
A two-sample t-test was used for VMHC-map analysis to 
investigate altered interhemispheric FC in patients with OSAHS. 
P < 0.05 was considered statistically significant, and cluster sizes 
were set at 63 voxels, as determined by Monte Carlo simulations 
using the AFNI AlphaSim program. Because of the influence of 
micromovements from volume to volume on the FC (42), frame-
wise displacement values were calculated to reflect the temporal 
derivative of the movement parameters for each patient. Analysis 
revealed no remarkable difference in the mean framewise dis-
placement values between patients with OSAHS and normal 
controls. Finally, a Pearson correlation analysis was performed 
to explore the correlations between VMHC and clinical variables 
relevant to OSAHS including AHI, ODI, body mass index (BMI), 
MMSE, CFT, LMT, and ESS. Partial correlation with some covari-
ates (age, sex, and years of education) was performed to evaluate 
the effects of these covariates on increased VMHC.

Two-sample t-tests and χ2-tests were used to analyze differ-
ences in demographic data between patients with OSAHS and 
normal controls. P < 0.05 was considered to indicate statistical 
significance.

resUlTs

Demographic and clinical Data
In our study, 55 participants (29 patients with OSAHS and 26 
normal controls) were included in the final data analysis. The 
demographic and clinical data of all participants are presented in 
Table 1. No significant differences were found between patients 
with OSAHS and controls in age, sex, or years of education 
(P > 0.05). However, the patients with OSAHS had significantly 
higher scores for BMI (t =  5.749, P <  0.001), AHI (t =  7.706, 
P  <  0.001), ODI (t  =  6.041, P  <  0.001), and ESS (t  =  3.711, 
P  <  0.001), but significantly lower scores for CFT-immediate 
recall (t  =  −3.727, P  <  0.05) compared with controls. No sig-
nificant differences were observed between patients with OSAHS 
and controls in CFT-delayed recall (t  =  −1.862, P  >  0.05), 
LMT-immediate recall (t = −0.322, P > 0.05), LMT-delay recall 
(t  =  −0.371, P  >  0.05), or score on the MMSE (t  =  −1.439, 
P > 0.05).

https://www.frontiersin.org/Neurology/
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FigUre 1 | Shown is a significantly increased voxel-mirrored homotopic connectivity (VMHC) in obstructive sleep apnea–hypopnea syndrome patients as compared 
with controls. Thresholds are set at a corrected P < 0.05, as determined by Monte Carlo simulation. Red indicates increased VMHC. The left side of the images 
represents the right of the brain and vice versa.

Table 1 | Population statistics and clinical information.

characteristics controls (26) Osahs (29) P value t Value es

Age 34.46 ± 9.97 39.62 ± 9.95 0.061 1.918 0.250
Sex (female/male) 8/18 6/23 0.392 0.734 0.592
Education (years) 13.96 ± 2.58 12.67 ± 3.17 0.103 −1.658 −0.218
BMI 22.16 ± 2.93 27.99 ± 4.37 0.000 5.749 0.617
AHI 2.43 ± 1.68 33.67 ± 21.75 0.000 7.706 0.711
ODI 0.93 ± 1.03 32.07 ± 27.73 0.000 6.041 0.621
MMSE 28.96 ± 1.51 28.34 ± 1.65 0.156 −1.439 −0.192
CFT-immediate 
recall

35.92 ± 0.39 35.17 ± 1.00 0.001 −3.727 −0.442

CFT-delay recall 21.88 ± 5.96 18.48 ± 7.41 0.068 −1.862 −0.245
LMT-immediate 
recall

20.69 ± 6.19 20.07 ± 7.93 0.749 −0.322 −0.043

LMT-delay recall 19.77 ± 5.88 19.03 ± 8.41 0.712 −0.371 −0.051
ESS 4.81 ± 2.61 7.69 ± 3.09 0.000 3.711 0.449

Averages are accompanied by the 95% confidence limits.
OSAHS, obstructive sleep apnea–hypopnea syndrome; ES, effect size; BMI, body 
mass index; AHI, apnea–hypopnea index; ODI, oxygen desaturation index; MMSE, 
mini-mental state examination; CFT, Rey–Osterrieth complex figure test; LMT, logical 
memory test of the Wechsler memory scale-revised; ESS, Epworth sleepiness scale.
For the sex ratio, the χ2 value substitutes for the t-value.
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in patients with OSAHS. The details are presented in Figures 1 
and 2 and Table 2.

correlation analysis
In patients with OSAHS, a significant positive correlation was 
found in the precuneus between VMHC values and AHI (r = 0.378, 
P = 0.043). In addition, a significant positive correlation was found  
in the calcarine cortex between VMHC values and AHI (r = 0.399, 
P = 0.032) (see Figures 3 and 4). VMHC did not associate with 
ODI, BMI, MMSE, CFT, or ESS. There were no significant correla-
tions between increased VMHC and any covariate (age, P = 0.676, 
r = 0.106; gender, P = 0.433, r = 0.197; years of education, P = 0.636, 
r = −0.120).

DiscUssiOn

In this study, we adopt a VMHC approach to investigate pos-
sible differences in interhemispheric FC between patients with 
OSAHS and controls. We found a significant increased VMHC 
in the precuneus and calcarine cortex in patients with OSAHS 
compared with controls. What is more, there were significant 
positive correlations between the AHI and the VMHC in these 
brain areas.

Few past studies have reported increased activities in the 
precuneus in patients with OSAHS. However, here we found 
significantly increased VMHC in the precuneus of such patients. 
Huynh and coworkers found no difference in gray matter volume 

changes in VMhc in Patients With Osahs 
compared With normal controls
Patients with OSAHS showed significantly increased VMHCs 
in the calcarine cortex and precuneus compared with healthy 
controls. However, relatively decreased VMHCs were not seen 
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FigUre 2 | Shown is a significantly increased voxel-mirrored homotopic connectivity (VMHC) in obstructive sleep apnea–hypopnea syndrome patients as compared 
with controls. Thresholds are set at a corrected P < 0.05, as determined by Monte Carlo simulation. Red indicates increased VMHC. The left side of the images 
represents the right of the brain and vice versa.

Table 2 | Brain areas with differences in voxel-mirrored homotopic connectivity 
between OSAHS patients and controls.

brain area ba Mni t Value Voxels

Precuneus 7 ±9, −78, 42 4.023 63
Calcarine 18 ±6, −69, 18 3.545 198

BA, Brodmann area; MNI, Montreal Neurological Institute coordinates; OSAHS, 
obstructive sleep apnea–hypopnea syndrome.
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between patients with moderate-to-severe OSAHS and normal 
controls, so an increased VMHC was not attributed to structural 
differences, but possibly to strengthened neural activity (43). Our 
findings are consistent with a previous report of an abnormal 
overactivation in the precuneus of OSAHS patients. That report 
suggested that the overactivation represents an adaptive compen-
satory response (44).

The precuneus is part of the posterior DMN, which plays an 
important role in fundamental cognitive functioning, including 
episodic memory retrieval, visuo-spatial imagery, self-processing, 
and consciousness (45, 46). The DMN involves a set of brain 
regions that are more active during rest than during goal-directed 
tasks and is involved in a wide range of higher-order cognitive 
functions (47). Several systematic meta-analytic studies have 
highlighted the importance of the DMN in cognition and clinical 
symptoms (6, 48). It has been reported that abnormal activity 
in the DMN, such as abnormal resting-state FC among its sub 
regions, significant regional deficits in spontaneous activity, and 
a decrease of blood-oxygenation-dependent fluctuations in its 

main nodes, correlate with sleep parameters and delay memory 
(49–51). These findings imply the presence of cognitive deficits in 
OSAHS patients. Similarly, the altered VMHC in the precuneus 
demonstrated here implies a dysfunction of the DMN, which 
might suggest the presence of cognitive impairments in the 
OSAHS patients of our study.

Apart from any cognitive deficits that can arise from these 
abnormalities, these changes imply problems in sustained and 
divided attention that arguably contribute to the well-recognized 
driving difficulties of patients with OSAHS (52) and may also lead 
to dysfunctional sleep rhythms (53). Moreover, we also found a 
positive correlation between enhanced VMHC and the AHI in 
patients with OSAHS. It has long been speculated that repeated 
hypopnea leads to aberrant properties in the DMN and precu-
neus, resulting from an adaptive compensatory response tending 
to maintain the normal activities of the brain.

The calcarine cortex is a main core of the visual recognition 
network (54), and has been associated with attentional shifts to 
an expected visual goal and with modulation of visual input by 
attention, especially when visual information is used to guide 
saccades or reaching (55). Previous neuroimaging studies have 
shown that patients with OSAHS have impairment in several 
cognitive domains, including executive control function, epi-
sodic memory, coordination of movement, and attention (3–5). 
However, only a few studies have reported visual dysfunction 
in patients with OSAHS. Giora and coworkers found that in 
a visual task, patients with OSAHS had a significantly longer 
reaction times than controls, indicating the presence in these 
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FigUre 3 | Shown is a significant positive correlation between the voxel-mirrored homotopic connectivity (VMHC) values in the precuneus and calcarine cortex, and 
the apnea–hypopnea index (AHI). X represents the AHI and Y represents the intensity of the VMHC.

FigUre 4 | Shown is a significant positive correlation between the voxel-mirrored homotopic connectivity (VMHC) values in the precuneus and calcarine cortex, and 
the apnea–hypopnea index (AHI). X represents the AHI and Y represents the intensity of the VMHC.
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(VMHC) in bilateral precuneus and calcarine cortex in patients 
with OSAHS. Moreover, we found positive correlations between 
enhanced VMHC in precuneus and calcarine cortex and the 
AHI. These results indicate that abnormal VMHC may provide 
an early biomarker for the detection of cognitive impairments in 
patients with OSAHS, advantageously using a noninvasive imag-
ing technology. However, several limitations of this study should 
be noted. First, the study should be repeated with a larger sample 
size to eliminate any possible instability in the results. Second, 
some participants were unable to accommodate an encephalo-
gram examination, so the encephalogram data in our study is 
incomplete. In the future, we will endeavor to obtain complete 
encephalogram data and examine the rapid-eye-movement-
specific features of OSAHS. Third, we focused here on cognitive 
changes occurring in mixed-severity patients with OSAHS.  
A study specific to the mild-to-severe group should be conducted, 
which would offer powerful insights into neurophysiological 
mechanisms in patients with a distinct level of OSAHS. Finally, 
longitudinal studies are needed to provide imaging markers for 
clinical treatment.
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patients of an impairment involving basic mechanisms of 
visual processing (56). Another study demonstrated that reti-
nal nerve-fiber thickness is reduced in patients with OSAHS 
(57). It has also been reported that OSAHS leads to a high 
prevalence of open-angle glaucoma and visual-field defects  
(58, 59). In this study, the aberrant VMHC found in the calcar-
ine cortex in the patients with OSAHS may indicate visual dys-
function. Furthermore, Chan and coworkers found impaired 
attention and visual–fine-motor coordination in children with 
OSAHS (60). Other research found an increased risk for traffic 
accidents in patients with OSAHS (61). We thus speculate that 
disorders of coordination of vision and motion might result 
in patients with OSAHS having an extra risk of positioning 
dislocations and accidents. In addition, since VMHC in the 
calcarine cortex here had a positive correlation with AHI, we 
suggest that AHI might be a key factor in visual dysfunction 
and that the calcarine area is sensitive to the effects of apnea 
and hypopnea.

Recently, a systematic meta-analysis of patients with OSAHS 
demonstrated co-activations in several bilateral brain regions 
including amygdala, hippocampus, thalamus, precuneus, and 
posterior cingulate cortex. This suggested a significant associa-
tion of the disorder with affective and emotional processing, as 
well as with memory-related processes (62). Similarly, our results 
are largely in agreement with the above-mentioned findings, and 
it also follows that the dysfunctions of memory, attention, and 
executive control reported in patients with OSAHS might be 
partly explained by increased interhemispheric functional inter-
actions in precuneus and calcarine cortex. Moreover, patients 
with OSAHS have an increased prevalence of several psychiatric 
disorders including major depressive disorder and anxiety 
(63). Studies have also found aberrant interhemispheric FC in 
patients with depression (64, 65). We speculate that malfunctions 
within interhemispheric FC could conceivably contribute to the 
genesis of the neuropsychiatric deficits previously reported to be 
prevalent in OSAHS, such as depression, emotional lability, and 
anxiety.

cOnclUsiOn

Interhemispheric functional interactions are at the foundation 
of the integration of executive control and attentional process-
ing (61). Our study found increased homotopic connectivity 
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