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The investigation of the human oculomotor system by eye movement recordings pro-
vides an approach to behavior and its alterations in disease. The neurodegenerative 
process underlying parkinsonian syndromes, including Parkinson’s disease (PD), pro-
gressive supranuclear palsy (PSP), and multisystem atrophy (MSA) changes structural 
and functional brain organization, and thus affects eye movement control in a charac-
teristic manner. Video-oculography has been established as a non-invasive recording 
device for eye movements, and systematic investigations of eye movement control in 
a clinical framework have emerged as a functional diagnostic tool in neurodegenerative 
parkinsonism. Disease-specific brain atrophy in parkinsonian syndromes has been 
reported for decades, these findings were refined by studies utilizing diffusion tensor 
imaging (DTI) and task-based/task-free functional MRI—both MRI techniques revealed 
disease- specific patterns of altered structural and functional brain organization. Here, 
characteristic disturbances of eye movement control in parkinsonian syndromes and 
their correlations with the structural and functional brain network alterations are reviewed. 
On this basis, we discuss the growing field of graph-based network analysis of the 
structural and functional connectome as a promising candidate for explaining abnormal 
phenotypes of eye movement control at the network level, both in health and in disease.

Keywords: magnetic resonance imaging, diffusion tensor imaging, “resting-state” functional magnetic 
resonance imaging, neurodegenerative movement disorder, video-oculography, Parkinson’s disease, progressive 
supranuclear palsy, multisystem atrophy

iNTRODUCTiON

More than half a century ago, Carl F. List concluded in his essay that abnormal oculomotor func-
tion frequently gives valuable information of both the localization and the pathoanatomy of an 
underlying disease process (1). Although eye movements in the diseased brain have been extensively 
studied since then, it has been only recently that several multimodal studies support an increasingly 
coherent understanding of the structural and functional brain organization correlates. Characteristic 
disturbances of eye movement control accompany ongoing pathology (2) and include saccade dis-
turbances, e.g., gaze palsy (3), saccadized smooth pursuit (4), or executive oculomotor dysfunctions, 
e.g., increased anti-saccade errors (5).

This narrative review links current experimental evidence of human behavior as observed 
from eye movement recordings in parkinsonian syndromes, including Parkinson’s disease (PD), 
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FiGURe 1 | Brain networks associated with eye movement control. (A) Schematic illustration of cortical and subcortical brain regions that are critically involved in 
eye movement control. Arrows indicated the propagation of information. (B) Dorsal attention and (C) brainstem connectivity network reveal functionally coupled 
regions that are part of the oculomotor system. (B,C) “Resting-state” functional magnetic resonance imaging connectivity data from 12 healthy controls are shown 
as representative orthogonal brain section heat maps in the MNI stereotaxic space (19). The z(r) values indicate the strength of correlation that indicated functional 
coupling within the brain maps. Abbreviations: SEF, supplemental eye field; PEF, parietal eye field; CEF, cingulate eye field; IPL, interparietal sulcus; DLPFC, 
dorsolateral prefrontal cortex; CN, caudate nucleus; SMG, supramarginal gyrus; PCC, posterior cingulate cortex.
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progressive supranuclear palsy (PSP), and multisystem atrophy 
(MSA) to what is known from neuroimaging studies in struc-
tural and functional brain architecture. Moreover, we discuss 
how the growing field of graph theory-based investigations of 
the structural and functional connectome might provide a more 
elaborated approach to the principles of functional architecture 
underlying human behavior.

THe OCULOMOTOR SYSTeM AND iTS 
ReLATiON TO HiGHeR COGNiTive 
PROCeSSeS

Human cognition is related to sensorimotor activation includ-
ing oculomotion—a position that nowadays makes many 
researchers term eye movements as a window to complex forms 
of human behavior (6) and cognitive processes (7, 8). Subjects 
facing a choice between multiple stimuli tend to repeatedly look 
at them and more toward the option they are going to choose 
(8), presumably implementing a comparison process between 
different items (9). Brain structures and neural pathways which 
are involved in the control of eye movements have been reported 
in a multitude of studies (6, 10), as depicted in Figure 1. Brain 
mapping of eye movement control has been extensively studied 
in healthy human subjects including evidence from structural 
imaging (11), diffusion tensor imaging (DTI) (12), “task-evoked” 

(13), and “task-free” functional magnetic resonance imaging 
(fMRI) (14). These studies revealed that the control of eye move-
ments involves multiple networks spanning the brainstem to the 
neocortex (15, 16). It is well known that parkinsonian syndromes 
present with progressive impairment of structural and functional 
brain networks (17), and it is a growing field of neuroimaging 
research how these brain alterations are linked with the respective 
oculomotor phenotype. In this context, getting subtle clues from 
abnormal eye movement control often requires standardized eye 
movement recordings with dedicated techniques, e.g., by means 
of video-oculography (18).

BRAiN MAPPiNG OF OCULOMOTOR 
PHeNOTYPeS iN NeURODeGeNeRATive 
PARKiNSONiSM

video-Oculographic Recordings of eye 
Movements
Tracking eye movements with state-of-the-art video-based 
techniques is non-invasive and allows for precise and quantifi-
able measures of horizontal and vertical movements of the eye 
(20). Video-oculographic recordings have emerged as a tool in 
the diagnostic framework of vertigo (21) and especially of neu-
rodegenerative movement disorders (22). Video-oculographic 
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measurements are usually performed in a dedicated laboratory 
environment which is darkened, optically and acoustically 
shielded and provides a standardized experimental setup. The 
subject is comfortably placed in front of a screen with the head 
stabilized by a chin rest (18, 23). Infrared based light-weighted 
miniature cameras are mounted on a head band or helmet-like 
aperture and allow either binocular or monocular eye movement 
imaging (20). These recorded images are then automatically 
processed online or offline by a preconfigured computer that is 
usually an integral component of the eye tracking device (24). 
The computer provides orthogonal (i.e., horizontal and verti-
cal) eye movement traces that can be analyzed in consideration 
of the presented stimuli. The stimulus design can incorporate 
smooth pursuit testing [e.g., by trapezoidal (25) or sinusoidal 
target motion (26)], reactive saccade testing (e.g., “jumping” 
target) (27), and executive function tests [e.g., anti-saccades 
(28)]. Smooth pursuit eye movement traces are analyzed for sac-
cades that interrupt smooth pursuit. Recordings from reactive 
saccades, i.e., the performance of tracking a “jumping” target, 
are analyzed with respect to the primary saccades [with an eye 
amplitude of about 90–95% of the target amplitude (29)] and 
the reaction times, saccadic gain (i.e., saccade distance divided 
by target distance), and peak eye velocity. Executive functions 
testing such as anti-saccades address erroneous response (rela-
tive to number of elicited anti-saccades), i.e., pro-saccades toward 
the target are counted as an error because the subject is asked 
to immediately shift the gaze into the opposite direction with 
respect to the eccentric presentation of a visual target (28). Taken 
together, phenotyping of eye movement control allows for quan-
tification of most useful parameters (such as peak eye velocity 
or smooth pursuit gain) which can potentially give clues to the 
clinician early in the course of a disease even when characteristic 
disease-defining symptoms are not overt (30).

Characteristic but Non-Specific eye 
Movement Patterns
Figure  2 illustrates a possible concept of mapping patterns of 
eye movement disturbances to brain structure and function. 
Oculomotor control examination is ideally performed at the 
time of MRI investigations in a dedicated oculomotor laboratory 
which allows a detailed investigation of eye movement control 
using state-of-the-art video-oculographically based tracing of eye 
movements in an acoustically shielded atmosphere (31) Deficits 
in eye movement control are generally present in parkinsonian 
syndromes (32). The patterns are characteristic for the phenotype 
but not disease-specific (22); under this prerequisite, quanti-
fication of eye movements is increasingly used as a functional 
investigation tool in the differential diagnostic framework (18).

Brain Structural Correlates of eye 
Movement Control
A multitude of widely distributed brain regions, including the 
brainstem (33), basal ganglia (34), and higher centers covering 
almost the entire neocortex (35, 36) exerts ultimate control over 
both voluntary and involuntary eye movements (Figure  1A). 
Using a bimodal or multimodal approach of video-oculography 

and neuroimaging, morphological alterations in association with 
deficits in oculomotor control can be addressed in order to see 
whether distinct brain regions are attributable to eye movement 
performance (11). Formerly, the voxel-based morphometry 
approach, a well-known technique to detect region-specific gray 
matter atrophy (37), was often used for voxel-based lesion symptom 
mapping (38). Absolute quantification by volumetric techniques 
such as atlas-based volumetry (ABV) of high-resolution three-
dimensional MRI (39) provides a valuable alternative approach. 
ABV is a dedicated unbiased computer-based technique for 
absolute regional brain volume quantification at the individual 
level (39) that allows for fully automated classification of patients 
with parkinsonian syndromes (40). Using a bimodal analysis 
of ABV and video-oculographically recorded eye movements 
allows to identify the relationship between impaired eye move-
ment control and regional brain atrophy in neurodegenerative 
parkinsonism (41). As a different methodological approach, DTI 
allows for the in vivo investigation of the brain’s microstructure 
within cerebral networks (42) and provides a more subtle meas-
ure on microstructural alterations as compared to morphometric 
or volumetric analysis (43). Disruption of microstructural tissue 
integrity has been reported in many studies in neurodegenera-
tive Parkinson syndromes and may prove valuable in supporting 
the diagnosis of PD, PSP, and MSA (44). In association with eye 
movement control, DTI allows to determine axonal bundles that 
propagate information on eye movement control (45).

Brain Functional Correlates of eye 
Movement Control
Functional magnetic resonance imaging has enabled researchers 
to investigate functionally activated regions when performing 
a task as compared to a baseline (“rest”) condition (46). The 
fMRI signals during the performance of saccadic eye movement 
experiments exhibit a consistent spatial pattern of co-activated 
brain regions, including fronto-subcortical-parietal regions, 
thalamus, striatum, and intraparietal cortex (13). Smooth pursuit 
eye movement performance activated the common oculomotor 
network (47) including dorsal cortical eye fields and cerebellum 
(48). “Task-based” fMRI studies have supported the notion 
that cognitive functions and sensorimotor eye movements are 
closely interacting with each other and have helped to develop 
a better understanding of network-level brain abnormalities in 
neurodegenerative disorders (49). The “classic” “task-evoked” 
fMRI concept, i.e., simultaneous eye movement recordings and 
visual stimulus presentation in the MRI scanner, have limitations 
including the restriction of MRI-dedicated eye movement record-
ing devices and the “noisy” and uncomfortable environment. 
Some concepts have emerged that to overcome these limitations 
of eye movement recordings in the scanner by running the fMRI 
scan afterward or before performing extensive eye movement 
assessment in a dedicated oculomotor lab (50, 51). The observed 
activation patterns in these studies revealed regions that are on 
the one hand part of the well-known oculomotor network and 
on the other hand regions that are known to be functionally 
disrupted in PD (50, 52). The activation patterns in association 
with saccades impairment in PSP demonstrated that not only in 
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FiGURe 2 | Concept of the bimodal study design. Structural and functional brain mapping of eye movement control by combining video-oculographically eye 
movements recordings (left upper panel) with structural and functional MR imaging data (right) in order to define disease-specific patterns.
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the brainstem, but also cortical neuronal networks contributed to 
impaired saccadic eye movements in PSP (51).

Functionally involved brain regions in eye movement control 
can be accurately captured by “task-free” or “resting-state” fMRI 
experiments, where subjects quietly “rest” in the scanner (53, 54).  
Resting-state (rs)-fMRI has gained substantial insights into the 
organization of intrinsic activity patterns of the human brain 
(54–56), after the discovery of temporally coherent patterns of 
ongoing low-frequency BOLD fluctuations under “resting” con-
ditions (53). These patterns, i.e., intrinsic functional connectivity 
networks, remarkably resemble the maps of task-evoked coac-
tive brain regions (57) and reveal a more general picture of the 
functional brain organization (58). Some substantial advances 
in understanding brain architecture have emerged from the 
observation of spontaneous “ongoing” brain activity as measured 
indirectly via the rs-fMRI signal while subjects lying quietly in the 

scanner (56). Understanding eye movement control on the basis 
of functionally interacting brain regions topologically organized 
as functional connectivity networks put forward the understand-
ing of underlying pathology of impaired eye movement control 
and behavioral interpretations of these intrinsic connectivity 
networks (59).

BRAiN NeTwORKS AND OCULOMOTOR 
DiSTURBANCeS iN PARKiNSONiAN 
SYNDROMeS

Parkinson’s Disease
Parkinson’s disease is now recognized as an age-related multisys-
tem disorder with cardinal motor symptoms that manifest years 
after the initial onset of pathogenesis—a process that is virtually 
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FiGURe 3 | Hypothetical model of functional connectivity alterations in association with executive eye movement control in Parkinson’s disease (PD). The model 
results from correlations between functional connectivity data and eye movement impairment in early and advanced patients with PD (63). Neural damage due to 
the ongoing PD-associated pathological process from (A) healthy or premotor to (B) clinically manifest disease status paradoxically results in increased functionally 
connectivity early in the course of the disease upon a critical cell loss is reached. During this phase, executive oculomotor function gradually worsens as evidenced 
from visually guided reactive saccade performance (lower row)—remarkably, neuropsychological assessment in these patients revealed cognitively unimpaired 
“normal” performance (67). (C) In the final stages of PD, patients most patients met the criteria of PD-associated dementia and have developed a function 
disconnection syndrome (decreased functional connectivity) that is associated with a pattern of severely impaired eye movement control (right lower panel).
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self-promoting in a well predictable distribution pattern and not 
subject to remission (60, 61). A broad spectrum of oculomotor 
disturbances comprising impaired smooth pursuit, hypometric 
saccades, prolonged latencies, increased anti-saccade errors that 
accompany the cardinal motor symptoms (2, 62, 63). In particular, 
PD-associated oculomotor deficits (2, 64, 65) were shown to be 
predominantly attributable to executive impairment, because PD 
patients present substantial difficulties in suppressing unwanted 
gaze shifts by frequently moving their eyes away from the target in 
the absence of any distractor, but almost instantaneously correct 
these involuntary eye movements by re-foveating the target (63). 
This behavior is typically observed during visually guided reactive 
saccade performance and can be quantified as the rate of sac-
cadic intrusions (63). Correlation analysis indicated a significant 
relationship between an increased rate of saccadic intrusions and 
overall cerebral brain atrophy but not with specific brain regions 
(41). This result at the structural level is supported by DTI-based 
investigations which were utilized in order to delineate the axonal 
organization of the brain at the microstructural level (42). In PD, 
however, the whole-brain-based analysis of diffusion patterns did 
not reveal significant correlations between eye movement param-
eters, e.g., between the rate of saccadic intrusions as a measure for 
executive control, and regional microstructural damage (41). The 
correlation analysis between brain structure and eye movement 
control in PD thus suggested that the executive dysfunctions are 
more likely attributed to a cortical network disorder (63, 66), rather 
than to regional brain atrophy or regional microstructural damage.

These findings raised the question whether functional connec-
tivity between interconnected gray matter regions is correlated 
with oculomotor deficits. In a network-based rs-fMRI study in 
PD, a pronounced pattern of increased functional connectivity in 
cognitively unimpaired patients and a pattern of decreased func-
tional connectivity in demented patients could be demonstrated 
(67). The pattern of abnormal functional connectivity is, in addi-
tion, related to abnormal oculomotor performance as revealed by 
a study of rs-fMRI and video-oculography in PD patients ranging 
from mild cognitive impairment to dementia (63). In particular, 
impaired executive oculomotor functions are correlated with 
a functional connectivity loss in the cognition-related default 
mode functional network. Taken together, these results allow for 
the development of a hypothetical model that links oculomotor 
performance and macro- and microstructural brain changes. 
Here, oculomotor performance markedly declined in the course 
of PD and functional connectivity appears to decrease after a 
critical cell loss has been reached; Figure 3 illustrates a hypotheti-
cal model of PD-associated alterations of functional connectivity 
together with executive eye movement control changes. The sug-
gested course of functional connectivity is somewhat speculative, 
but many studies in the field of functional brain mapping try to 
establish a connection between neurodegeneration and adaptive 
mechanisms in relation to clinical phenotypes (68). We did not 
find any correlation between oculomotor parameters and volu-
metric, structural, and functional measures in ponto-cerebellar 
structures, midbrain or brainstem in PD—this may indicate that 
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oculomotor deficits are not associated with disturbed ponto-
cerebellar circuits or impaired oculomotor brainstem nuclei.

Previous studies supported the notion of a possible cerebellar 
involvement in PD (69) which has been recently strengthened 
by reports of α-synuclein aggregation in precerebellar structures 
(70). Connectivity studies in macaques (71) and DTI studies in 
humans (72) indicated that the cerebellum is part of a cerebello-
cortico-basal ganglia network that is affected in PD. However, the 
role of this network and its alterations due to possibly impaired 
connectivity with respect to oculomotor function has not been 
systematically disentangled yet. Our oculomotor experience 
revealed a tendency toward a pattern of a “pontocerebellar type” 
of smooth pursuit disturbance in PD patients in an advanced 
disease state, most frequently accompanied by dementia. This 
observation leads to the speculative conclusion that the cerebel-
lum, if ever, becomes involved later in the course of the disease as 
proposed by Braak and Del Tredici (60).

Given that, in PD, pathology progresses in different disease 
stages (60, 73) and eye movement performance worsen over 
time (30), various MRI techniques, i.e., volumetry, DTI, and 
task-based and rs-fMRI, allow to map cerebral correlates of ocu-
lomotor disturbances. This is specifically important to address 
the underlying disease-specific pathology both at a structural 
and functional level. According to the promotion of molecular 
pathology as suggested for PD (74), raises the question what 
has happened to the brain when oculomotor deficits manifest. 
Are these deficits driven by functional decline or structural 
damage or both? And which diseased brain regions are suspect 
to be associated with a particular pattern of eye movement 
disturbances? These questions cannot be fully addressed yet, 
but systematic studies investigating eye movement control and 
brain connectivity (75, 76) may indicate that network-based 
functional connectivity alterations are associated with worsened 
executive oculomotor function and that functional abnormali-
ties may precede microstructural and macrostructural changes. 
Although the primary visual cortex in PD appears to be spared 
by the pathological process (60), a broad spectrum of visuo-
oculomotor dysfunctions including color vision (77) and diplo-
pia have been reported (78). Impaired color vision seems to be 
predictive to developing cognitive problems in PD (79) which 
could be most likely due to a network dysfunction involving 
vison-associated structures. Diplopia is frequently reported by 
PD patients and has been investigated in non-demented PD 
patients (78). From a clinical perspective, one might speculate 
that reporting diplopia in association with PD might be pre-
dictive for cognitive decline, but diplopia in association with 
the risk of developing cognitive dysfunctions remains to be 
investigated on a systematic basis.

Antiparkinsonian treatment including deep brain stimulation 
of the subthalamic nucleus was reported to improve oculomo-
tor inhibition control and to facilitate saccade initiation (80), 
most likely due to compensatory mechanisms (81), whereas 
other groups reported no significantly improved oculomotor 
performance (62). Apparently, improvement of oculomotor 
performance due to antiparkinsonian treatment depends on the 
disease state, i.e., patients early in the course are more likely to 
improve eye movement performance (18). Future prospective 

studies are required to unravel the effect of treatment on eye 
movement performance in association with brain connectivity.

Other Neurodegenerative Parkinsonism
Progressive supranuclear palsy and MSA are other parkinsonian 
syndromes (82–85) which comprise a characteristic spectrum of 
oculomotor dysfunctions (65). In contrast to PD patients who 
predominantly show oculomotor dysfunctions that are attribut-
able to executive dysfunctions, PSP and MSA patients were 
shown to present predominantly “genuine” oculomotor dysfunc-
tions (31). Impaired “genuine” oculomotor function comprised 
reduced peak eye velocity feature in PSP (3) which is used for 
diagnostic differentiation between PSP and both PD and MSA 
(30). Reduced peak eye velocity is the hallmark oculomotor fea-
ture in PSP patients (86) which is present at different levels from 
normal saccade velocity toward gaze palsy which has become 
increasingly relevant in the diagnostic guidelines for PSP (85). 
Earlier studies suggested that deficient generation of the motor 
command by midbrain burst neurons is most likely the cause of 
slowed vertical saccades in PSP (87).

Progressive supranuclear palsy is considered a neuropatho-
logically defined disease presenting with a broad spectrum of 
clinical phenotypes besides the “classical” phenotype Richardson 
syndrome [PSP-RS (88)], including the Parkinsonian subtype 
(PSP-P), corticobasal syndrome subtype, and frontotemporal 
dementia subtypes (89) besides further variants which are of 
limited importance for oculomotor control. Slowed saccades in 
all subtypes of PSP are due to the paucity in burst generation at 
the excitatory burst (90). The PSP-RS and PSP-P subtypes show 
an almost identical oculomotor phenotype, hence, eye movement 
recordings do not allow to distinguish between PSP-PS and PSP-P 
(91). There are no systematic data for eye movement alterations 
associated with the other variants yet. It might be of note in that 
context that, in patients with frontal lobe degeneration, saccadic 
and smooth pursuit eye movements are impaired (92), and mul-
timodal morphological studies revealed a link between atrophy 
in frontal brain regions and executive oculomotor performance 
(93). In the search of an imaging correlate of slowed saccades 
in PSP (including both PSP-RS and PSP-P patients), it could be 
demonstrated that the characteristic deficits in eye movement 
control were associated with regional macrostructural (41) 
and microstructural white matter alterations (94) (Figure  4, 
left). In particular, the hallmark oculomotor feature in PSP, a 
pathologically reduced peak eye velocity in both horizontal and 
(predominantly) vertical direction is associated with midbrain 
and brainstem pathology including the oculomotor nuclei 
responsible to “drive” the extra-ocular eye muscles. In addition, 
a recent “resting-state” fMRI study in both PSP-RS and PSP-P 
could also demonstrate correlations between midbrain functional 
connectivity and brainstem gaze centers (95). This finding is in 
agreement with the fact that on the one hand degeneration of 
neurons in the midbrain gaze centers in PSP-RS leads to progres-
sive slowing of saccades (3) but that on the other hand slowed 
vertical saccades are not necessarily present in an early state of 
each subtype of PSP. In the tauopathy corticobasal degenera-
tion as defined by Armstrong and coworkers in 2013 (96), it is 
mentioned that eye movement abnormalities may be present in 
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FiGURe 4 | Disease-specific correlations of eye movement alterations 
in progressive supranuclear palsy (PSP) and multisystem atrophy (MSA). 
Specific correlations (red area) between microstructural impairment and gaze 
palsy in patients with PSP showing midbrain and brainstem regions typically 
associated with eye velocity (left). Specific correlations (red area) between 
microstructural impairment in ponto-cerebellar structures and the shape 
of saccadized smooth pursuit in patients with MSA (right).
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about 60% of corticobasal degeneration cases, but data are sparse 
and heterogeneous, partly describing increased saccadic latency 
and abnormal antisaccade performance. However, studies on 
neuroimaging correlates are lacking. Taken together, this group of 
neurodegenerative disorders often overlaps clinically, and future 
studies have to investigate well-defined samples.

Multisystem atrophy can be distinguished in a cerebellar 
subtype (MSA-C) and a MSA-P. The oculomotor phenotype in 
MSA-C and MSA-P is almost identical (4) and does not allow to 
separate both subtypes—a finding that is supported by a recent 
bimodal MRI and VOG study that investigated functional con-
nectivity and smooth pursuit performance in MSA-C and MSA-P 
patients (97).

Smooth pursuit eye movement is the ability to perfectly 
stabilizing the image of a continuously moving object onto the 
fovea (36). In MSA, smooth pursuit eye movement is disturbed 
throughout a reduced gain (i.e., eye velocity/target velocity <1), 
resulting in an offset between target and eye position, i.e., the 
target continuously slips away from the center of the fovea (18). 
This offset is almost instantaneously corrected by a “catch-up” 
saccade that centers the fovea back onto the target—an adaptive 
process that results in a staircase pattern without episodes of 
perfect smooth pursuit (4). The presence of catch-up saccades 
interrupting smooth pursuit is a common oculomotor feature in 
patients with ponto-cerebellar impairment like in MSA (4) and 
contributes to the differential diagnosis (18).

Lesion studies in animals that targeted vital elements of the 
smooth pursuit pathways including the cerebellar vermis and 
precerebellar nuclei, indicate that these structures are responsible 
for catch-up saccades (36). Consistent with this finding, severe 
macro- and microstructural damage in the bilateral middle cer-
ebellar peduncles in MSA patients is correlated with smooth pur-
suit impairment (Figure 4, right). In particular, pontine volume 
loss is strongly related to the shape of saccadized smooth pursuit 
as demonstrated in a study of video-oculographically recorded 
eye movements and ABV-based volumetry (41). These findings 
are further strengthened by correlating performance measures 

of smooth pursuit with DTI-based measures of microstructural 
impairment. The degree of microstructural impairment in the 
middle cerebellar peduncle was strongly correlated with the 
shape of “catch-up” saccades during smooth pursuit in MSA (94). 
Moreover, abnormal functional connectivity within the ponto-
cerebellar network is also strongly correlated with the shape of 
characteristically impaired smooth pursuit as revealed in rs-fMRI 
study in MSA patients compared to controls (97).

These findings, at a broader scope, may allow to generally 
speculate about brain structure and function in association with 
oculomotor phenotyping in parkinsonian syndromes. Disease-
characteristic patterns of impaired oculomotor control gradually 
worsen over time and are apparently closely related with ongoing 
region-specific macrostructural and microstructural damage. 
The pattern of network-dependent functional connectivity altera-
tions is more complex. As suggested, the pattern of functional 
connectivity increases and then gradually declines toward a 
disconnection syndrome. The development of functional con-
nectivity in the course of the disease is well explained by the 
concept of adaptive changes (i.e., hyperconnectivity) that aims to 
compensate for ongoing cell loss in the sense of cortical network 
reorganization up to a point in time where a critical cell loss is 
reached (68, 98). From this point in time, compensation is no 
longer possible and the cognitive reserve is exhausted (99, 100). 
A  limitation of the suggested model is the lack of information 
from longitudinal studies.

A PeRSPeCTive ON CONNeCTOMiCS 
AND eYe MOveMeNT CONTROL

The brain is an efficient representation of a complex system 
(101, 102) which consists of spatially distributed and functionally 
specialized regions that continuously share information with each 
other (103). Graph-theoretical approaches for the analysis of both 
structural and functional networks enable to quantify properties 
of the brain’s functional system together with the underlying wir-
ing (104). A network is defined in graph-theory as a set of nodes, 
i.e., anatomically segregated brain regions, and edges, i.e., a con-
nectivity measure, between two nodes (105). Many measures of 
useful properties that characterize the network organization can 
be computed, including basic concepts, measures of segregation, 
integration, motifs, resilience, and other concepts such as “net-
work small-worldness” (106). These measures are to be correlated 
with behavioral parameters including quantitative measures of 
eye movement control. For instance, the saccadic reaction times 
are prolonged in parkinsonian syndromes, but there is no report 
about any specific regions of the brain which are structurally or 
functionally correlated with reaction times (41, 63, 94). It appears 
that there is no single “region” associated with latency; rather, 
reaction time could be hypothesized to reflect network efficiency 
computable in a graph-based framework. Thus, modeling the 
brain connectivity as a graph, with nodes being segregated 
brain modules and edges being “region-to-region” connectivity 
strengths, opens a new avenue for investigating brain organiza-
tion in association with the respective oculomotor phenotype 
in parkinsonian syndromes. Recent evidence strongly suggests 
that the anatomical connections determine whether they are 
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vulnerable to degeneration in neurodegenerative parkinsonism 
(107). It remains to be investigated whether eye movements 
provide a window into the status of neurodegeneration (disease 
stage) or even allow to serve as a prognostic marker.

CONCLUDiNG ReMARKS

The oculomotor analysis of a patient using gaze-tracking 
technology might help clinicians to gain insights into the brain 
function and disease status. In addition, the reviewed studies 
pave the way toward the development of a standardized protocol 
for video-oculographic assessment in the differential diagnostic 
frame aiming at establishing a technical surrogate marker. In 
neurodegenerative parkinsonism, worse oculomotor perfor-
mance in the disease-specific domain was shown to be associated 
with more severely impaired regional macro- and microstructure 
and altered regional functional connectivity in disease-specific 
brain structures. These findings increase our pathophysiological 
knowledge of the underlying parkinsonism-associated network 

pathology. Finally, brain mapping of impaired eye movement 
control as shown for parkinsonian syndromes should be inves-
tigated in a broader context of brain diseases in order to find 
out whether the demonstrated findings could be generalized to 
neurodegenerative diseases beyond parkinsonism.
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