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Hypocretin as a Hub for Arousal and
Motivation
Susan M. Tyree †, Jeremy C. Borniger † and Luis de Lecea*

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States

The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve

to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated

behavior. Within these populations, the hypocretin/orexin neurons are among the most

well studied. Here, we provide an overview on how these neurons act as a central hub

integrating sensory and physiological information to tune arousal and motivated behavior

accordingly. We give special attention to their role in sleep-wake states and conditions of

hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in

feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational

state of the animal. We further emphasize the application of powerful techniques, such as

optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons

play in lateral hypothalamic functions.
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INTRODUCTION

Through decades of neuroanatomical and behavioral work, the lateral hypothalamic area (LHA)
has been delineated as a key region for the integration and regulation of sleep, feeding, stress,
energy balance, reward, and motivated behavior. Further in-depth analyses of molecular, cellular,
and circuit-level functions of the LHA have made progress in gaining a holistic understanding
of how the LHA integrates sensory information to influence arousal and behavior. The lateral
hypothalamic cell population that has been the most intensely studied thus far is a group of
neurons expressing the neurotransmitters hypocretin-1 and -2 (also known as orexin-A and -B).
Cells expressing these peptides span the lateral and perifornical/medial hypothalamus (throughout
the tuberal hypothalamus). These cells were identified by two groups at essentially the same time.
The first approach used directional tag PCR subtraction, a technique adapted to enrichmRNAs that
were specifically expressed in the hypothalamus (1). They observed a hypothalamic-specific mRNA
(prepro-hypocretin), which encoded two putative protein products (Hcrt-1 and -2). This group
named the newly identified neurotransmitters hypocretins after the name was voted on at an annual
Society for Neurosciencemeeting, the rationale being their restricted hypothalamic localization and
their similarities to the gut peptide secretin. They found that these peptides were present in synaptic
vesicles, and one of these peptides could stimulate hypothalamic neurons in vitro, suggesting it
acted as a neurotransmitter. Another group identified the same peptides via ligand screening of
multiple orphan G-protein coupled receptors (GPCRs) using a cell-based reporter system, and,
because they promoted feeding, named them “orexins” (2). Over the last 20 years, it has become
apparent that the essential purpose of the hypocretins/orexins seems to be for wake maintenance
(hypocretin deficiency results in the sleep disorder narcolepsy, discussed below) and not feeding.
Therefore, we refer to them as the hypocretins throughout this manuscript.
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It is unsurprising that hypocretin neurons are fundamental
stabilizers of wakefulness as well as powerful modulators
of motivated behavior. The hypocretins were found to be
expressed exclusively in an LHA population of glutamatergic
cells, and project to most nuclei that regulate sleep/wake behavior
(3). Hypocretin (Hcrt) neurons are extremely heterogeneous
(Figure 1), this heterogeneity has recently been explored using
single cell sequencing to show the large number of genes
that are co-expressed within Hcrt cells (4). Hcrt neurons are
transcriptionally and electrophysiologically distinct from co-
mingled neurons expressing melanin concentrating hormone
[MCH; (5, 6)], and they are most strongly active during active
wakefulness, decrease activity during quiet wakefulness, and are
silent during NREM and REM sleep (7, 8). This is essentially the
opposite firing pattern displayed by neurons expressing MCH,
which innervate many of the same targets as Hcrt neurons
(9, 10). Indeed, evidence suggests inhibitory signaling from
Hcrt to MCH neurons prevents simultaneous activation of both
neural populations (11). Hcrt and MCH neural populations
can be further discriminated based on their expression of key
transcription factors [Lhx9; 100% of Hcrt neurons, 3.4% of MCH
neurons; and Nkx2.1: 60.1% of MCH neurons and 0% of Hcrt
neurons; (4)]. Afferent inputs to Hcrt neurons were mapped
using a combination of tract tracing methods, uncovering major
projections from the lateral septal nucleus, bed nucleus of the
stria terminalis, preoptic area, multiple hypothalamic nuclei,
substantia nigra, and ventral tegmental area (VTA), as well
as the dorsal raphe (12). Genetic tracing studies revealed cell-
type specific inputs arriving from cholinergic neurons in the
laterodorsal tegmentum, preoptic GABAergic neurons, as well
as 5-HT neurons in the median/paramedian raphe, suggesting
a major role for these neurons in functions ranging from
neuroendocrine control to arousal and metabolic processes (13).

Highlighting its essential role in vigilance state stability is the
conservation of the Hcrt peptides throughout the phylogenetic
tree. For example, hypothalamic Hcrt expression can be detected
in the zebrafish embryo 22 h post-fertilization (14), and Hcrt
overexpression causes an insomnia-like phenotype in adult
zebrafish (15). Further studies have demonstrated that Hcrt
neurons send widespread projections throughout the zebrafish
brain that participate in the consolidation of wakefulness, as
they do in mammals (16, 17). Indeed, genetic destruction of
Hcrt neurons fragments vigilance states in zebrafish (18, 19). In
cavefish, Hcrt signaling seems to play a role in the evolution
of sleep loss. Hcrt is expressed 3-fold more in cave vs. surface
fish, and these fish sleep much less than their surface-dwelling
counterparts. Indeed, manipulations that promote sleep inhibit
Hcrt expression in cave, but not closely related surface fish
(20). Hcrts are also expressed in the avian brain, where they
are localized to a single population of neurons spanning the
paraventricular and lateral hypothalamus (21, 22).

AROUSAL TRANSITIONS

During World War I, Viennese neurologist Baron Constantin
von Economo meticulously analyzed and documented the

symptoms of a novel condition he termed “encephalitis
lethargica” (23). The causative agent for the condition (presumed
viral or autoimmune) remains unknown, but patients showed
prolonged states of sleep (>20 h/day) and they could only
be awakened with strong and sufficient stimulation (24). He
noted that many of these patients had significant damage
to the posterior hypothalamus (containing the LHA) and
rostral midbrain, while patients showing the opposite problem
(prolonged insomnia) had damage to the basal forebrain and
preoptic area (25). Based on these observations, he predicted
that neurons in the anterior hypothalamus promote sleep while
those in the posterior region promote wakefulness. During the
following years, his predictions were largely substantiated in a
number of species including monkeys (26), rats (27), and cats
(28). With the application of the electroencephalogram (EEG;
discussed below) to sleep/wake analyses (29), as well as significant
advancements in molecular biology, different cell groups within
the hypothalamus have been implicated in controlling arousal.

In all mammals (and many non-mammalian vertebrates),
sleep stages and structure can be objectively determined via
comparative analysis of the electroencephalogram (EEG) and
electromyogram (EMG) signals. The EEG reflects large scale
changes in electrical activity in the cerebral cortex, as the
firing rate of cortical neurons steadily declines during non-
rapid eye movement (NREM) sleep in comparison to rapid eye
movement (REM) sleep and wakefulness (30–32). Aggregate
firing rates of cortical ensembles (reflected in the EEG) can be
parsed into conventional bandwidths at approximate frequencies:
alpha (9–12Hz), beta (12–30Hz), delta (i.e., slow-waves;
0.5–4Hz), low (30–60Hz), and high (60–100Hz) gamma, and
theta (5–9Hz). Synchronization (reflected in high-voltage, low
frequency oscillations) of the cortical EEG during NREM sleep
depends on a corticothalamocortical loop, which is modulated by
local oscillators and is distally controlled by subcortical systems
[including those located in the LHA; (33, 34)]. During NREM
sleep, delta waves dominate the EEG, and EMG activity (postural
tone) is low or absent. During wakefulness, EMG activity is high
reflecting muscle activity, and the EEG shows task dependent
spectral properties, with low theta frequencies building over time
indicating growing sleep propensity (35). REM sleep, also known
as paradoxical sleep, is characterized by a wake-like (high theta)
EEG spectra composition, but (paradoxically) low or absent EMG
activity.

The sleep disorder narcolepsy [characterized by daytime
sleepiness, aberrant transitions fromwakefulness into REM sleep,
and spontaneous loss of muscle tone, referred to as cataplexy;
(36)] highlights the essential role of Hcrt in arousal regulation.
Loss of Hcrt or Hcrt receptors causes a narcolepsy-like phenotype
in mice, including cataplexy and altered sleep/wake cycles (37,
38). Additional canine data identified a genetic defect in Hcrt
receptor 2 (HcrtR2) linked to the development of narcolepsy in
dogs (36), and several studies have confirmed that degenerative
loss of Hcrt neurons is responsible for human narcolepsy (39–41).
Degenerative cell loss, rather than reduced Hcrt gene expression
is the likely cause because other markers that co-localize within
Hcrt neurons are reduced in narcoleptic patients as well (42).
Hcrt is a primary stabilizer of wakefulness, as narcoleptics
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FIGURE 1 | The hypocretin system: inputs and outputs. Hypocretin neurons receive information regarding nutritional state, emotional state, and environmental cues

regarding temperature, time of day, and recent sleep history, the weight that these inputs have is very likely variable and interrelated. Hypocretin-expressing neurons are

very heterogeneous, they are known to co-express numerous other genes. Additionally, hypocretin-expressing neurons are modulated by the activity of surrounding

neuron populations present in the lateral hypothalamus, including melanin-concentrating hormone, leptin receptor-expressing neurons, and corticotropin releasing

factor neurons. Hypocretin neurons project to many neuron populations throughout the brain, including norepinephrine, dopaminergic, and cholinergic neurons. It is

via these pathways that the hypocretin system modulates the wide range of outputs related to arousal and motivated behavior. In turn, the consequences of these

behaviors go on to inform the hypocretin system as to the newly updated status of the animal, and thus determine the next hypocretin-driven behavioral output.

or transgenic mouse models of the disorder display normal
amounts of sleep, but with inappropriate transitions between
each vigilance state (43, 44). This suggests that Hcrt neurons
serve a surprisingly non-redundant role in the regulation of
wakefulness, as their loss creates such a marked effect on the
stability of arousal.

Initial microdialysis (45) and cFos immunoreactivity
(46) studies demonstrated a circadian modulation of Hcrt
neural activity, where Fos expression within Hcrt neurons
peaked during the active (dark) phase in rodents. Subsequent
juxtacellular recordings in head-fixed or freely moving animals
demonstrated that Hcrt activity is largely phasic and firing
rates peak prior to sleep-to-wake transitions by approximately
10–20 s (7, 8). Building on these studies, the development
of optogenetic technologies for manipulating brain circuits
has contributed significantly to the investigation of arousal
circuits (47). Indeed, the first primary functional evidence for
Hcrt’s role in wakefulness was presented in 2007, where the
first in vivo use of optogenetics revealed that light-evoked
stimulation of Hcrt neurons powerfully promoted wakefulness
in mice, an effect dependent on Hcrt (and not other co-
released neurotransmitters) signaling (48). The effect was
frequency-dependent, as stimulations below 5Hz failed to
alter the probability of sleep-to-wake transitions. Further

studies demonstrated that long-term optogenetic silencing of
Hcrt neurons promotes slow-wave sleep in mice, although
only during the light (inactive) phase (49). These optogenetic
findings were recapitulated via chemogenetic experiments
where designer receptors exclusively activated by designer
drugs (DREADDs) were expressed in Hcrt neurons. Engaging
excitatory Gq signaling in Hcrt neurons increased cFos
immunoreactivity and promoted wakefulness while inhibitory
Gi signaling promoted sleep (50). More recent work has
investigated exactly which components of wakefulness for
which Hcrt is necessary. For example, Vassali & Franken
observed that Hcrt-deficient mice had marked reductions in
theta-dominated wakefulness during baseline recordings, an
oscillatory pattern associated with goal-driven and exploratory
behavior (51). Upon forced wakefulness however, normal
amounts of theta-dominated wakefulness persisted. These data
suggest that Hcrt is necessary for spontaneous, but not enforced
wakefulness, which may rely on other neuromodulators. This
avenue of research has led to the development of novel drugs
for insomnia. As insomnia is thought to be the result of
overactive wake-promoting neural systems (52), Hcrt receptor
antagonists have been developed as a targeted therapeutic
approach. Suvorexant (Belsomra) is the first dual Hcrt receptor
antagonist approved for use by the USDA (in 2014) and
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is now prescribed for insomnia throughout the USA and
Japan.

Efferents Involved in Cortical Arousal
How do these cells in the subcortical hypothalamus promote
activation and desynchronization of the cortex? One possibility
is that diffuse projections from Hcrt neurons generally promote
arousal across the brain. Alternatively, specific projections may
be essential for their arousal-promoting properties. Direct actions
of the Hcrts on arousal-promoting nuclei has been demonstrated
for locus coeruleus (LC) noradrenergic neurons, 5-HT neurons
in the dorsal raphe, dopaminergic (DA) neurons within the
VTA, histamine neurons in the tuberomammillary nucleus, and
cholinergic neurons in the brainstem and basal forebrain (53).
Below, we discuss the varying degrees of evidence supporting the
role of Hcrt in regulating the arousal-promoting effects of each of
these areas.

Locus Coeruleus (LC)
The noradrenergic LC has long been recognized to promote
wakefulness and arousal (54, 55), and it receives the densest
input from Hcrt neurons (3). Direct administration of Hcrt to
the LC depolarizes neurons in this region and increases LC firing
rates, which is associated with arousal (56–59). Further studies
involving Hcrt stimulation with optogenetic silencing of the LC
revealed that it is a critical hub for relaying the signal from
the LHA to promote wakefulness (57, 60), as activation of Hcrt
neurons with simultaneous inhibition of LC prevented sleep-to-
wake transitions. Additionally, increasing the excitability of LC
neurons using step function opsins (SFOs) was shown to facilitate
Hcrt-mediated wakefulness.

Basal Forebrain (BF)
The basal forebrain is a heterogenous structure composed of
cholinergic and non-cholinergic (mostly GABAergic) neurons
with differential effects on arousal, spanning the substantia
innominata, the vertical and horizontal limbs of the diagonal
band, the extended amygdala, ventral pallidum, and the medial
septum (61). These areas receive moderate to heavy input
from Hcrt neurons (3). The arousal promoting effects of basal
forebrain stimulation has been extensively characterized using
pharmacological, electrical, and chemical ablation methods (62–
65). Using cell-type specific optogenetic tools, stimulation of
cholinergic neurons within the basal forebrain was shown
to be sufficient for cortical activation and transitions out of
NREM sleep (66, 67). Additional targeting of BF GABAergic
neurons demonstrated their role in cortical activation and
wakefulness (68). BF cholinergic neurons were demonstrated to
fire predominantly during cortical activation rather than slow-
wave activity and are activated by Hcrt (69). Injection of Hcrt into
the basal forebrain stimulates cortical activation and wakefulness
(70). Hcrt-1 is released in the BF during wakefulness (71), where
it has differential actions on cholinergic and non-cholinergic
neurons (72, 73), leading to cortical release of acetylcholine and
arousal [for review, see (74)].

Tuberomammillary Nucleus (TMN)
The TMN contains histaminergic neurons that are silent during
sleep and begin to fire after wake onset, where histamine
release promotes arousal (75–77). Acute silencing of TMN
histamine neurons inhibits wakefulness and rapidly induces
NREM sleep (78). This area receives moderate to dense input
from Hcrt neurons (3). Hcrt was shown to directly activate
histaminergic neurons in the TMN (79, 80), and furthermodulate
GABAergic inputs to this region (81). Additional optogenetic
studies provided evidence that Hcrt neurons are capable of fast
glutamatergic control of histaminergic neurons in the TMN (82).
However, Hcrt inputs to TMN histaminergic neurons, in contrast
to the LC, do not seem to be important for regulating sleep-
to-wake transitions, as stimulation of Hcrt neurons is sufficient
to promote awakening in mice lacking histidine decarboxylase
[the rate limiting enzyme in histamine synthesis; (83)]. Further
optogenetic manipulation of Hcrt fibers in the TMN is necessary
to effectively delineate the role this circuit plays in sleep/wake
regulation.

Dorsal Raphe Nucleus (DRN)
The DRN has long been implicated in arousal, showing
vigilance state-specific changes in firing rates (84). Composed
of primarily serotonergic (5-HT) neurons, they are excited by
multiple arousal-related peptides, including Hcrt (85–88). Hcrt
neurons receive reciprocal input from 5-HT neurons, which
directly inhibit them via the 5HT1A receptor, and indirectly via
enhancement of GABAergic inputs (89). Direct stimulation of 5-
HT-expressing DRN neurons demonstrated that ChR2-mediated
excitation of these cells caused an immediate transition from
NREM sleep to wakefulness (90), and an additional population
of DA neurons in this region was recently implicated in arousal
regulation (91). Similar to the TMN, direct (i.e., cell-type and
circuit specific) investigation of Hcrt’s actions on DRN 5-HT or
DA neurons in arousal regulation has yet to be completed.

Laterodorsal Tegmental Nucleus (LDT)
The laterodorsal tegmental nucleus (LDT) is a key pontine
site in the regulation of wakefulness (92), primarily composed
of cholinergic and non-cholinergic neurons (93). Optogenetic
activation of LDT cholinergic neurons increases REM sleep
episodes (but not duration) when stimulations were done during
NREM sleep (94). Hcrt-1 injections into the LDT promote
wakefulness in cats, suggesting that an arousal circuit from
Hcrt to the LDT exists (95). Further studies revealed that Hcrt
acts on LDT neurons at both pre- and post-synaptic sites.
Pre-synaptically, Hcrt increases the amplitude and frequency
of spontaneous excitatory post-synaptic currents (EPSCs) via
triggering action potentials and enhancing synaptic transmission
in glutamatergic nerve terminals (96). Post-synaptically, Hcrt
promotes an inward current in tandemwith enhancedmembrane
current noise in both cholinergic and non-cholinergic LDT
neurons (96). Similar to other areas studied, application of
optogenetic tools to Hcrt projections to LDT neurons has not
been described, which would directly integrate the LDT into the
Hcrt arousal network.
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Ventral Tegmental Area (VTA)
The VTA is composed primarily of DA and GABAergic neurons
and has long been recognized as a node regulating arousal and
motivation (97, 98). Early electrophysiological studies suggested
that VTA and substantia nigra pars compacta neurons do not
show behavioral-state dependent alterations in firing rate (97, 99–
101). However, subsequent studies challenged this view, where
both DA and GABA neurons within the VTA show vigilance-
state dependent changes in activity (102, 103). It was only
recently that causal evidence was presented demonstrating the
role of VTA-DA neurons in vigilance state switching, where DA
neurons strongly promote wakefulness and are primarily active
during wakefulness and REM sleep (104–106). Hcrt neurons
send moderate to dense projections to the VTA, where they
activate both DA and non-DA neurons (107, 108). Additionally,
Hcrt infusion into the lateral ventricles or directly into the VTA
increases DA efflux in the pre-frontal cortex, suggesting that
activation of VTA-DA neurons contributes to the vigilance-state
modulatory properties of Hcrt (109).Whether a circuit fromHcrt
to VTA-DA or GABAergic neurons causally promotes vigilance
state switching remains to be determined.

Distributed and Indirect Actions
Hcrt peptides can also have direct effects on cortical neurons.
These neurons innervate deep layers of the cerebral cortex (3),
and more recent studies suggest that layer VIb cortical neurons
directly respond to Hcrt peptides (110, 111). nNOS/NK1R
expressing cortical interneurons [which play a putative role
in sleep homeostasis (112)] express HcrtR1 mRNA (113). A
subpopulation of these interneurons is responsive to Hcrt-1, but
lack of Hcrt input to these cells does not influence their ability to
detect sleep pressure (114). Indeed, further research is required
to gain an understanding of direct Hcrt effects on cortical neural
populations.

Recently, brain interstitial ion concentrations have been
shown to directly influence sleep and wakefulness, providing
an indirect pathway by which Hcrt-ergic signaling may
influence arousal (115). Neuromodulators (e.g., dopamine,
norepinephrine, hypocretin) all alter membrane potentials
to influence spiking properties and intracellular signaling
components. In doing so, network-wide changes in ionic
concentrations must occur, which in turn may further influence
vigilance states to ensure concerted brain activity. Nedergaard
and colleagues discovered that independent of synaptic activity,
altering the concentrations of extracellular K+, Ca2+, Mg2+, and
H+ was able to cause a reversible switch between sleep and
wakefulness. This suggests that downstream of neuromodulator
actions (e.g., Hcrt), the build-up of certain ionic concentrations
in the brain may independently drive sleep pressure and alter the
wakefulness threshold.

Regulation of Hypocretin Neural Activity
Hcrt neurons respond to a wide variety of neurotransmitters
and hormones (116), including NE, 5-HT, NPY, CCK, ghrelin,
acetylcholine, and glutamate (117). These factors contribute to
the ability of Hcrt neurons to respond to arousal and metabolic
signals to adjust vigilance states accordingly. Hcrt neurons are

further activated by corticotropin-releasing factor [CRF; (118)]
and thyrotropin-releasing hormone [TRH; (119)], while they
are generally inhibited by GABA (120) and adenosine (121).
Noradrenergic, serotonergic, and DA inputs negatively regulate
Hcrt activity, while histaminergic inputs have little effect (122–
125). Other metabolic factors (e.g., ghrelin, leptin, glucose) that
regulate their activity are discussed in section Feeding Behaviors
and Metabolism.

Do Hcrt receptors (HcrtR1 and HcrtR2) share redundant
functions in the regulation of arousal? HcrtR1 binds Hcrt-1
preferentially over Hcrt-2, while HcrtR2 binds both peptides at
high affinity (2). These receptors show differential expression
patterns across the mammalian brain, with HcrtR1 most
abundant in the ventromedial hypothalamus, tenia tecta,
hippocampus, dorsal raphe, and LC. HcrtR2mRNAwas localized
to the paraventricular hypothalamus, cerebral cortex, nucleus
accumbens, paraventricular thalamus, and anterior pretectal
nucleus (126). HcrtR2-deficient mice show a phenotype similar
to narcolepsy, including fragmented wakefulness, while those
deficient in HcrtR1 show only mild sleep alterations (127, 128).
Double receptor-knockout mice, however, show an even stronger
phenotype than the HcrtR2 knockouts alone, including cataplexy
and REM sleep intrusion into wakefulness, suggesting some
redundancy in receptor function (37, 129). However, an fMRI
study demonstrated that antagonism of HcrtR2 but not HcrtR1
increased REM and NREM sleep time, suggesting distinct roles
of the receptors (130). The picture is not so clear though, as
HcrtR1 blockade can influence the effects of HcrtR2 antagonism,
suggesting complex interactions among Hcrt receptors (131).

Circadian Rhythmicity and Hypocretin
How do Hcrt neurons integrate time-of-day information
to appropriately promote arousal and motivated behavior?
The circuitry discussed above largely controls vigilance state
switching on short to medium (1–30 s) timescales, so there must
be some intervening population of cells that conveys longer term
(i.e., hours to days) information to Hcrt neurons to regulate
their activity. No direct synaptic connections between the master
clock located in the suprachiasmatic nuclei (SCN) and Hcrt
neurons has been demonstrated (132). However, in dark pulse
experiments, where a 6 h pulse is given during the subjective
day (a stimulus that promotes arousal and phase advances
behavioral rhythms inmice), a pulse of dark is sufficient to release
Hcrt neurons from SCN-mediated inhibition (133), providing
evidence for light-dependent suppression of Hcrt signaling via
the SCN. Because Hcrt neurons receive synaptic input from
the dorsomedial and paraventricular hypothalamus (13, 134),
which are primary outputs of the SCN (135), polysynaptic
communication between the core clock and lateral hypothalamic
Hcrt neurons is a likely mediator of this effect.

Hcrt neurons themselves seem to show a circadian rhythm
in structural plasticity. In zebrafish, two-photon imaging of
Hcrt axons revealed day/night differences in synapse numbers,
which was driven by changes in nptx2b, a gene implicated
in AMPA receptor clustering (136). Overexpression of this
gene in Hcrt neurons further rendered fish resistant to the
sleep-promoting effects of melatonin, providing evidence for
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a behavioral effect of circadian structural plasticity within the
Hcrt system. Reciprocally, Hcrt neurons send inputs to the
SCN to modulate clock function. SCN neurons express Hcrt
receptors (137), suggesting there may be interplay between the
two neural populations to coordinate phase coherent output
of the SCN coinciding with behavioral arousal. This poses a
problem, though, as Hcrt signaling is generally excitable, but
SCN neural activity is low during the circadian night when
Hcrt activity is high (in nocturnal rodents). A few years ago,
it was discovered that unlike other connections, projections
from Hcrt to the SCN were suppressive, and the mechanisms
mediating this effect varied in a circadian fashion (138). By
examining calcium activity in SCN neurons, both spontaneous
and in response to Hcrt administration, it was demonstrated that
a subset showed reduced (69%) or increased (31% cytosolic Ca2+

levels in response to Hcrt during the day, and 97% reduced Ca2+

activity in response to Hcrt at night. This response depended
on HcrtR1 activation, as treatment with the HcrtR1 antagonist
(SB334867) prevented this response but did not interfere with
NMDA-induced Ca2+ increase. The suppressive effects of Hcrt
seems to further depend onGABAergic signaling within the SCN,
as the inhibitory effect is blocked when Hcrt is applied in the
presence of gabazine and CGP55845 (antagonists of GABAA and
GABAB receptors). These observations provide evidence for a
reciprocal relationship between the SCN and Hcrt neurons in
the lateral hypothalamus, demonstrating suppressive and phase-
modulatory actions (through Ca2+) of Hcrt on the circadian
clock.

Hyper Arousal in Response to Stressors
The term arousal covers more than mere wakefulness, indeed, it
can be considered an umbrella term for multiple waking states,
such as restful waking, active waking, and stressed states. Due
to the well-studied role for Hcrt initiating arousal from sleep,
researchers have also investigated the possibility of a role for
Hcrt in the transition from arousal into hyper-arousal associated
with stressed states. Supporting evidence for this role has been
found in patients suffering from panic symptoms who have
elevated levels of Hcrt in their cerebrospinal fluid in comparison
to control subjects without substantial panic symptoms (139).
Additionally, in animal studies it has been shown that multiple
different stressors can trigger changes in Hcrt levels, including
restraint stress, cold stress (140), and chronic social stress (141).
In line with this finding, studies observing neural activation of
Hcrt neurons have shown that stressors such as the forced swim
test or indeed, direct infusion of corticotropin-releasing factor
result in increased Hcrt activity (118, 142), showing a direct effect
of physiological stress responses on Hcrt activity.

In order to further investigate the role of Hcrt in stress
researchers have also investigated how manipulation of
Hcrt function affects an animal’s response to stress. Central
administration of Hcrt-1 results in an increase in anxious
behaviors as measured in multiple standard laboratory tests
of anxiety such as the elevated plus maze, the light-dark box
exploration test (143), the open-field test, and novel object
exploration (144). Pharmacological administration of Hcrt

has also been shown to stimulate hypothalamic-pituitary-
adrenal (HPA) axis, resulting in increased concentrations of
adrenocorticotropic hormone and corticosterone in plasma
(118, 142, 145, 146). In line with these findings, impairing Hcrt
function appears to reduce behavioral markers of anxiety and
stress responses. Hcrt-deficient mice show a reduction in the
exhibition of stress responses, such as changes in blood pressure,
heart rate, respiratory changes (147, 148), as well as behavioral
responses to resident intruders (147). These results suggest an
important role for Hcrt in normal physiological and behavioral
stress responses and confirm that these responses are impaired
when animals do not have a fully functioning Hcrt system.

Following the development of optogenetic technologies and
chemogenetics researchers have been able to genetically target
specific neurons populations. Bonnavion et al. (149) used
optogenetics to further investigate the role of Hcrt as a
potential trigger for HPA axis activation, and showed that
optogenetic stimulation of Hcrt neurons is sufficient to induce
HPA axis activation which resulted in physiological stress
responses including significantly elevated plasma corticosterone
secretion and elevated heart rate, suggesting that increased Hcrt
activity is a physiologically significant stressor. Bonnavion et al.
also observed that this Hcrt-induced stress response could be
mediated by nutritional status of the mouse, with food restricted
mice showing a significantly higher Hcrt-induced stress response
compared to ad libitum-fed controls. Further investigation of
interactions between Hcrt, feeding, and stress showed that satiety
hormone leptin, which, itself has been shown to be behaviorally
anxiolytic (150, 151), modulates HPA axis activation generally, as
well as Hcrt-induced HPA axis activation specifically (149). Food
interactions with Hcrt activity will be discussed in more depth in
section Feeding Behaviors and Metabolism. The development of
chemogenetic technologies has also allowed the investigation of
the role of Hcrt in resiliency to repeated social stress (152). After
discovering that socially resilient rats (as tested in a social defeat
assay) showed significantly lower levels of prepro-hypocretin
mRNA, (152) went on to chemogenetically inhibit Hcrt neurons
during the same social defeat paradigm, and found that reducing
Hcrt activity during the social defeat paradigm caused rats
to express fewer depressive-like behaviors and increased social
interaction, both markers of a socially resilient phenotype. Taken
together, these studies have used genetically targeted methods to
show that inhibitingHcrt can reduce stress-related behaviors, and
that activation of Hcrt neurons can produce physiological stress
responses, suggesting an important role for Hcrt in driving stress
responses.

Hypocretin and Immune Stress
The Hcrt system is also influenced by immune stress. Indeed, it
has been suggested that narcolepsy may have an autoimmune
origin [for review, see (153)]. Specific genotypes in the antigen
presentation complex HLA-DQB1 (HLA DQB1∗06:02) are
strongly associated with narcolepsy (154). Five epitopes from
the Hcrt precursors are predicted to bind HLA DQB1∗06:02,
however, a recent study failed to find evidence of autoreactive
CD4+ T-cells targeting Hcrt precursors (155), and a prior
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study claiming CD4+ T-cell autoimmunity to Hcrt and cross-
reactivity to an epitope present in the 2009 H1N1 influenza virus
was retracted when the authors failed to replicate their own
findings (156). During the H1N1 (aka “Swine flu”) pandemic
in 2009, cases of childhood narcolepsy rose dramatically in
relation to administration of the vaccine (157). This effect
was linked to the adjuvant (AS03, a squalene-based adjuvant
from GlaxoSmithKline) co-administered with the vaccine (158,
159), although one study did not find an association (160).
Additionally, in a mouse model of H1N1 infection, the virus
was shown to enter sleep-wake regulatory regions and promote
a narcolepsy-like phenotype (161). Despite this and other
associative evidence, neither the essential targets nor a specific
molecular mechanism have been identified linking narcolepsy to
autoimmunity.

Less well studied is how Hcrt neurons sense the
inflammatory milieu to regulate arousal/motivation. Peripheral
lipopolysaccharide (LPS) challenge reduces cFos expression in
Hcrt neurons as well as Hcrt concentrations in cerebrospinal fluid
in rats (162). This is associated with reduced physical activity
characteristic of “lethargy.” This, along with the finding that
administration (intracerebroventricular) of Hcrt-1 counteracts
LPS-induced reductions in locomotor activity, suggests that
these neurons sense the inflammatory environment. However,
this paper (162) found little evidence for direct targeting of Hcrt
neurons by inflammatory cytokines. Instead, LPS seemed to
activate upstream neurotensin neurons, which send inhibitory
(GABAergic) projections to Hcrt cells to regulate their activity.
Another study found that cytotoxic chemotherapy-induced
fatigue was associated with reduced Hcrt cFos expression in
conjunction with neuroinflammation, and treatment with Hcrt-1
rescued chemotherapy-induced reductions in locomotor activity
(163). Inhibition of Hcrt activity by inflammatory mediators
seems to be adaptive, as mice lacking Hcrt neurons (ataxin-3
transgenic) show enhanced recovery (NREM sleep) following
LPS challenge (164). However, a more recent study demonstrated
that peripheral administration of Hcrt-1 improves survival in
mice given a lethal dose of LPS (165). An early study suggested
that Hcrt-1, but not Hcrt-2, crossed the blood-brain-barrier
[BBB; (166)], however, subsequent research has suggested that
Hcrt-1 cannot normally cross the BBB except in high-dose
administrations (167). Alternatively, systemic inflammation in
response to LPS can disrupt BBB function and permit entry
of this peptide into the brain. ICV-infusion of Hcrt-1 peptide
recapitulates the enhanced survival phenotype shown in mice
that received peripheral Hcrt-1. Because Hcrt neurons send
projections to sympathetic output nuclei (3), and noradrenergic
signaling potently alters peripheral immune function (168), a
feedback loop between central and peripheral immune factors
may be modulated by Hcrt to gauge arousal/motivation based on
inflammatory status.

MOTIVATION

There are a number of VTA-projecting neuron types in the
lateral hypothalamus that are considered to play a role in

reward processing. Excitotoxic lesions of the LHA produce
similar pathologies to that of dopamine depletion, including
aphagia (169, 170), suggesting that LHA input to the VTA
is critical for modulating motivated behavior. Indeed, both
VTA DA and GABAergic neurons receive robust input from
diverse LHA cell groups (171, 172). With cell-type specific
tools (e.g., Cre-dependent viral vectors carrying optogenetic
payloads), the role specific LHA cell types play in VTA-elicited
behavior is becoming clearer. For example, by using real time
place preference (RTPP) and intracranial self-stimulation (ICSS)
experiments, Tye and colleagues were able to demonstrate
that LHA-GABAergic and LHA-glutamatergic projections to the
VTA promote approach and avoidance behaviors, respectively
(173). Furthermore, inhibiting the LHA-GABA projections to
the VTA while mice were in a motivated state (i.e., food
restricted) reduced feeding time suggesting a reduction in
the motivation to eat. These responses were observed to
be related to elicited dopamine release in the downstream
nucleus accumbens (NAc), as LHA-GABA stimulation enhanced
while LHA-glutamatergic stimulation suppressed dopamine
release in this brain region [for review, see Tyree et al.
(174)].

Feeding Behaviors and Metabolism
Hcrt is known to play a role in feeding behaviors. Indeed, studies
have shown that Hcrt administration results in increased food
intake [Hcrt-1 and Hcrt-2 i.c.v., (2); Hcrt-1 into NAc shell, (175)]
and can increasemotivation for food reward in a progressive ratio
schedule task (176, 177). Furthermore, temporary antagonism of
HcrtR1 (via SB334867) reduces food intake (178), reduces both
motivation for (176, 179, 180)and consumption of (177, 180)
food reward in a progressive ratio schedule task, and is sufficient
to attenuate the effect of Hcrt-1-induced increase in feeding
behaviors (181). Taken together, these findings suggest that Hcrt
plays a role in driving food-intake and motivating food-seeking
behaviors. However, there is some evidence that the nutritional
status of the subject, and the type of food reward being presented
can both mediate the effectiveness of Hcrt in driving these
behaviors, interestingly, a study showed that blocking HcrtR1
significantly reduced the motivation to work for the delivery of
cocaine as well as a highly palatable high fat diet, but had no
effect on the motivation to work for regular chow food pellets
(180).

It is clear that temporary changes in Hcrt activity can
modulate feeding and food seeking behaviors, however more
chronic manipulation of Hcrt suggests a more complex role
for Hcrt in modulating food intake. While it is apparent that
Hcrt knockout mice do show a reduction in the intake of food
(38, 182) it appears that they still go on to develop obesity later on
Hara et al. (38), suggesting that it may not only be food-seeking
and food-consumption that is being driven by Hcrt activity, but
additional processes underlying food-metabolism as well. This
would be in line with previous findings that both gastric acid
secretion (183) and metabolic rate (184) are stimulated following
Hcrt administration. Additionally, in two obese mouse models
(ob/ob and db/db) both strains of mice showed a significant
downregulation of the prepro-hypocretin gene (185). These
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findings could signify that Hcrt may not only be important for
driving metabolic processes important for weight maintenance,
such as metabolic rate, but that their activity is also affected when
metabolic state is altered, for instance inmousemodels of obesity.

Hcrt neurons are specially situated to receive and integrate
information on peripheral signals such as dietary content,
metabolic status, and immune challenge due to their location
in the LHA and there is evidence that altering food-intake
also alters Hcrt activity. Hcrt neurons sense energy balance by
monitoring glucose concentrations in the extracellular space
through the use of a specialized ’tandem-pore’ potassium (K+)
channel (K2P) (186). Forty-eight hours of fasting can result
in the upregulation of hypothalamic prepro-hypocretin mRNA
(2, 187), this is consistent with the finding that insulin-induced
hypoglycemia also increases the amount of prepro-hypocretin
observed in the LHA (188). Conversely, glucodeprivation
(induced by i.p. administration of 2-deoxy-D-glucose) decreased
prepro-hypocretin (189), or had no effects (187, 190). The
evidence of downregulation of prepro-hypocretin in obesemouse
models (185) suggests that Hcrt activity is also being driven
by dietary signals that are impaired in obesity. Both ob/ob
and db/db mouse models are based on a deficiency of, or
reduced responsiveness to leptin (191–195) a hormone that is
released in response to dietary fat intake (196) and is commonly
referred to as a satiety hormone. Hcrt neurons express receptors
for leptin (197) and are inhibited by administration of leptin
(198). Local GABAergic neurons that express the leptin receptor
(LepRb) are additional negative regulators of Hcrt activity (149).
Recent experiments using fiber photometry to monitor Hcrt
neural activity during feeding behavior revealed that these
cells rapidly reduce activity upon eating [even when the ’food’
eaten is calorie free; (134)]. These findings suggest that the
release of dietary hormones following food intake inhibits Hcrt
neuron activation, which has been shown to drive food intake
and food seeking. Then, the satiety response resulting from
leptin and insulin release following food intake is mediated
via the inhibitory effect these hormones have on the Hcrt
system.

Hcrt activity is closely linked to not only leptin and
insulin, both of which are associated with reducing food
intake, but also to the hunger-associated hormone ghrelin
which promotes feeding (199–205). Hcrt levels are directly
modulated by these food-related hormones—as leptin and
glucose levels increase and ghrelin levels decrease (as would
occur following food consumption) Hcrt activity increases (117,
186, 206, 207). Additionally, ghrelin-induced feeding can be
attenuated via inhibition of Hcrt signaling (208), suggesting
that the ghrelin-release driven food-seeking behaviors are
mediated via the Hcrt system. Taken together, this evidence
suggests that dietary hormone release affects the Hcrt system,
and that dietary hormone modulation of feeding behaviors
is mediated via the Hcrt system. It is clear that motivation
for seeking out food sources should be modulated based
on the current nutritional status of the animal, and these
inhibitory effects of insulin and leptin, paired with the
stimulatory effects of ghrelin on the Hcrt system appear to
be informing the Hcrt system as to whether or not the

animal requires motivation for food-seeking or food-intake
behaviors.

Driving Drug Seeking Behaviors
Given the role Hcrt plays in arousal and motivated states,
it is unsurprising that manipulation of Hcrt activity alters
many aspects of drug seeking and reward. DiLeone et al.
(209) first suggested that Hcrt could be involved in drug
abuse, noting that the anatomical projections demonstrated in
Peyron et al. (3) implied that these peptides “may also be
important in addiction.” Subsequent studies determined that
this was indeed the case. For example, chemical activation of
LHA Hcrt neurons causes a reinstatement of an extinguished
drug-seeking behavior and direct administration of Hcrt to
the VTA (a primary reward center in the brain) recapitulates
this phenotype (210). It is important to note that Hcrt itself
does not drive drug intake intrinsically, but rather drives
the motivation to perform behaviors that are associated with
drug seeking. Indeed, stress-induced reinstatement of cocaine-
seeking behavior is potentiated by Hcrt-1 infusions into
the lateral ventricles, an effect dependent on noradrenergic
and corticotropin-releasing factor systems (211). Additionally,
HcrtR1 antagonism blocks stress-induced reinstatement of
previously extinguished drug-seeking behavior, suggesting that
the observed effects are due to Hcrt (and not other co-
released neurotransmitters) signaling. Supporting this, recent
experiments in Hcrt deficient mice demonstrate that they
have decreased motivation to perform behaviors required
to obtain cocaine rewards (212). Hcrt signaling on VTA
DA neurons potentiates neurotransmission via PLC/PKC-
dependent insertion of NMDA receptors in VTA DA synapses
(213). Additionally, Borgland and colleagues demonstrated that
inhibition of HcrtR1 signaling blocks locomotor sensitization to
cocaine and attenuates cocaine-induced excitatory currents in
VTA DA neurons.

These initial studies have led to a blossoming of research
on Hcrt in the context of drug-abuse and addiction, and
particularly in relation to the VTA DA system [for review,
see Baimel et al. (214)]. Using microdialysis and in vivo
voltammetry to directly measure dopamine release, España
and colleagues demonstrated that Hcrt-1 increases the effects
of cocaine on tonic and phasic dopamine signaling, leading
to enhanced motivation to self-administer cocaine (215).
Others have shown that HcrtR1 blockade reduces work for
cocaine self-administration, and Hcrt-1 strengthens presynaptic
glutamatergic inputs to the VTA only in rats that have self-
administered cocaine or a high fat diet [but not other highly
salient cues like aversive stimuli; (180)]. These data suggest that
Hcrt selectively potentiates the motivational drive for stimuli
providing positive reinforcement (i.e., cocaine, highly palatable
diet).

Using an ICSS paradigm in rats, Hollander and colleagues
were able to demonstrate that blockade of HcrtR1 decreased
nicotine-self administration and motivation to obtain the drug
(but not food). Furthermore, they showed that Hcrt fibers
innervate the insular cortex, and local blockade of Hcrt signaling
in this brain region, but not the adjacent somatosensory cortex,
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decreased nicotine self-administration (216). This effect seems
to be selective to nicotine (or may be species dependent),
as Riday and colleagues were unable to demonstrate that
HcrtR1 blockade attenuated cocaine self-administration in Swiss-
Webster mice (217). More recently, focus has turned to
neurotransmitters co-released by Hcrt neurons, including the
kappa-opioid receptor (KOR) agonist dynorphin. Muschamp
and colleagues demonstrated that Hcrt and dynorphin have
opposite effects on the excitability of VTA DA neurons, are
contained within the same pre-synaptic vesicles, and Hcrt
co-released in the VTA attenuates the dysphoric effects of
dynorphin (218). Alongside this evidence, there has additionally
been anecdotal evidence that patients with narcolepsy show
very low rates of substance abuse, this has recently been
observed in Hcrt deficient mice in an experimental paradigm
which showed that Hcrt knock out mice have decreased
motivation to obtain cocaine as a reward (212). Taken together,
these studies suggest a role for Hcrt in modulating drug-
seeking behaviors, as well as drug-rewards, there is also a
possibility that these neurons are involved in driving motivation
for reward-seeking in general, and not just drug-seeking in
particular.

Sexual Behavior
While studies investigating the function of Hcrt have focused in
on a variety of types of arousal such as arousal from sleeping,
hyper-arousal in stress-states, arousal from illicit drug-use, etc.
there is also a role for Hcrt in behaviors associated with sexual
arousal. While the lateral hypothalamus in general has also
been associated with inducing [via electrical stimulation of the
LHA, (219)] or impairing [via lesioning of the LH, (220)]
male sexual behavior, there is some evidence that LHA Hcrt
neurons may be modulating these sex-behaviors. Studies looking
at neural activation of Hcrt neurons via Fos expression showed
increased Fos-expressing Hcrt neurons after mating (221, 222),
and more generally Hcrt neurons also appeared to respond
following exposure to either receptive or non-receptive females
(222) as well as contextual cues that they have previously learned
to associate with sex via conditioned place preference training
(223).

Sexual behavior itself can also be modulated via manipulation
of Hcrt neurons specifically, by injecting Hcrt-1 into the medial
preoptic area significantly improved male sexual behavior by
increasing the speed with which males mount females and
ejaculate, as well as increasing the frequency with which they
mount and ejaculate (224). Conversely, administration of a
HcrtR1 antagonist has been shown to impair male sexual
behavior across many standard measures such as increasing
the mounting and ejaculation latencies, and reducing the
frequency of ejaculation, however mounting frequency did not
appear to be affected (221). In contrast to the antagonism
of HcrtR1, research looking into the targeted lesioning of
Hcrt-2 neurons (via Hcrt-2 saporin) has produced mixed
results, rats with Hcrt-2 neuron lesions did not appear to
show any consistent impairments to the usual measures of
male sexual behavior (222, 223). Additionally, the existence
of a line of a Hcrt knockout mice (37) would suggest that

Hcrts are not required for successful procreation, but may
instead be involved in the motivation or initiation of sexual
behaviors.

INTEGRATION OF MOTIVATION AND
AROUSAL BY Hcrt

Hcrt has been shown to play important roles in a wide variety
of complex behaviors. The LHA Hcrt system integrates sensory
information on stress, metabolic, immune, and motivational
states to adjust behavioral responses accordingly. Motivation
of behaviors is a two-part process, first comes the energizing
component which gives the animal the drive necessary to
complete a task, followed by a directional component which
determines the type of behavior this burst of energy should
be focused toward. The earliest electrophysiological studies in
which researchers stimulated neural activity in the LHA showed
that activity in this brain region could result in numerous
different rewarding behaviors (225–227), which turned out
to be more dependent on previous experiences in the same
setting (228, 229), rather than topographical placement of the
electrodes (230). Considering these findings in the scope of
the two sub-processes of motivation, it could be that Hcrt
neurons in the LHA are important for the energizing or
driving of motivation, and the downstream targets activated
by the Hcrt neurons play the role of directing the energy
toward context-specific behaviors. Considering that arousal
is synonymous with energizing, it could be said that the
role of Hcrt in motivated behavior is simply another facet
of its numerous functions under the umbrella of arousal.
However, further research is required to better understand
how the Hcrt circuit modulates different facets of arousal
states.

CONCLUSION

Research on the Hcrt peptides has been unusually productive.
Within just 15 years of their discovery, they were causally
implicated in the etiology of narcolepsy, specific receptor
antagonists were developed, and a dual-receptor antagonist
formulation was FDA-approved for the treatment of insomnia.
Using cutting edge tools like CRISPR/Cas9 in tandem with
cre-dependent adeno-associated viral vectors to manipulate
specific genes within Hcrt neurons or their projection sites
will undoubtedly provide further classification of their actions
and potential for modulation. While a lot of previous work
has focused on the role of Hcrt in mediating arousal
specifically, the actual operations and computations of the
Hcrt network are still unknown. These computations could
be achieved by studying projection-selective subsets of Hcrt
neurons. It is still unknown whether individual cells perform
the same computations, or whether projection specific subsets
perform different computations. In order to develop a better
understanding of the intricacies of the Hcrt network it will
be important for researchers to investigate this neural circuit
with all of these systems in mind. While this can appear
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complicated—it is very likely that the motivated behaviors and
the environmental inputs that drive them are all interconnected
and can modulate other relevant behaviors to the Hcrt system.
Up until this point the heterogeneity of Hcrt neurons specifically,
and lateral hypothalamic neurons in general, have slowed the
progress of research in this region. With recent developments in
research technologies such as optogenetic stimulation, calcium
recordings, single cell RNA sequencing, chemogenetic neuron
manipulation, and advances in computational modeling, a
better understanding of the Hcrt system is within reach.
These methods hold much promise for the next 20 years of
hypocretin research to continue to be as fruitful as the first
twenty.
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