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Objectives: Pathogenic mutations in developmental and epileptic encephalopathy (DEE)

are increasingly being discovered. However, little has been known about effective

targeted treatments for this rare disorder. Here, we assessed the efficacy of ketogenic

diet (KD) according to the genes responsible for DEE.

Methods: We retrospectively evaluated the data from 333 patients who underwent a

targeted next-generation sequencing panel for DEE, 155 of whom had tried KD. Patients

showing ≥90% seizure reduction from baseline were considered responders. The KD

efficacy was examined at 3, 6, and 12 months after initiation. Patients were divided into

those with an identified pathogenic mutation (n = 73) and those without (n = 82). The

KD efficacy in patients with each identified pathogenic mutation was compared with that

in patients without identified genetic mutations.

Results: The responder rate to KD in the patients with identified pathogenic mutations

(n = 73) was 52.1, 49.3, and 43.8% at 3, 6, and 12 months after initiation, respectively.

Patients with mutations in SCN1A (n= 18, responder rate= 77.8%, p= 0.001), KCNQ2

(n = 6, responder rate = 83.3%, p = 0.022), STXBP1 (n = 4, responder rate = 100.0%,

p = 0.015), and SCN2A (n = 3, responder rate = 100.0%, p = 0.041) showed

significantly better responses to KD than patients without identified genetic mutations.

Patients with CDKL5 encephalopathy (n = 10, responder rate = 0.0%, p = 0.031)

showed significantly less-favorable responses to KD.

Conclusions: The responder rate to KD remained consistent after KD in DEE patients

with specific pathogenic mutations. KD is effective in patients with DEE with genetic

etiology, especially in patients with SCN1A, KCNQ2, STXBP1, and SCN2A mutations,

but is less effective in patients with CDKL5mutations. Therefore, identifying the causative

gene can help predict the efficacy of KD in patients with DEE.

Keywords: developmental and epileptic encephalopathy, ketogenic diet, next-generation sequencing, mutation,

precision medicine
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INTRODUCTION

Epileptic encephalopathy refers to a group of epileptic disorders
that epileptic activities per se cause adverse impacts to
the patient’s development (1). Developmental and epileptic
encephalopathy (DEE) is a recently introduced concept with
the advances in genetic diagnosis, as genetic etiologies can
cause developmental delay irrespective of epileptic activities (2).
The causes of DEE can be various including structural and
metabolic etiologies. Moreover, owing to advances in genetic
testing technologies, such as next-generation sequencing (NGS),
research has revealed that diverse genetic mutations, especially
de novo monogenic mutations, constitute a significant portion
of the etiologies of DEE (3). The discovery of causative genes
for DEE has amplified the efforts to improve our understanding
of the pathophysiology of each genetic mutation, with the
ultimate objective of precision medicine. For example, ketogenic
diet (KD), mechanistic target of rapamycin (mTOR)-inhibitors,
and retigabine are effective targeted treatments for glucose
transporter type 1 deficiency, mTORopathies, and KCNQ2
encephalopathy, respectively (4–6).

The KD is an effective therapeutic option for various DEE
syndromes (7–10), and may be an alternative to pharmacologic
therapies. However, the effects of KD vary among patients and
implementing KD even as a short-term trial is a great challenge
for both patients and caregivers, owing to the restrictive diet
regimen and potential side effects (11).

Therefore, identifying those patients who are the most likely
to respond to KDwould be beneficial for determining with whom
and when KD should be initiated. In the present study, we aimed
to establish whether the effects of KD differ according to the type
of genetic mutation, as confirmed by the targeted NGS gene panel
for DEE.

MATERIALS AND METHODS

Patients
We retrospectively evaluated the data from patients who were
diagnosed with DEE at Severance Children’s Hospital, Seoul,
South Korea. Inclusion criteria were as follows: (1) patients
with epilepsy and cognitive and behavioral impairments who
were diagnosed with DEE; (2) patients whose seizures or
developmental delays were noticed before the age of 3 years;
(3) patients who underwent a targeted NGS gene panel for
DEE between January 2016 and March 2017; (4) patients who
failed to achieve seizure freedom with adequate trials of two or
more antiepileptic drugs (AEDs); and (5) patients who started
KD therapy between January 2006 and June 2016. Exclusion
criteria were as follows: (1) patients with proven etiologies
other than genetic etiology, such as structural, infectious, or
immune encephalopathies; and (2) patients who underwent
KD therapy for cognitive benefits rather than seizure control,
owing to difficulties in assessing the efficacy of KD by seizure
frequency.

Abbreviations: AED, antiepileptic drug; DEE, developmental and epileptic

encephalopathy; KD, ketogenic diet; NGS, next-generation sequencing.

This study was approved by the Institutional Review Board of
Severance Hospital (IRB No. 4-2017-0699) and written informed
consent was waived.

Assessment of Outcomes
The seizure frequencies before KD (baseline) and at 3, 6, and
12 months after KD were obtained. The seizure frequency 2
months before KD initiation was defined as the “baseline.” When
assessing the seizure frequency, the number of seizures that had
occurred during the previous 2 months was counted. Patients
were considered KD responders if they showed ≥90% seizure
reduction from the baseline seizure frequency, while patients
who showed <90% seizure reduction were considered non-
responders. The long-term treatment response to KDwas defined
as a reduction in seizure frequency at both 6 and 12 months
compared to baseline.

The variables we evaluated with respect to their possible
predictive value for a responder were as follows: age at
seizure onset, sex, number of AEDs being taken at the
time of KD initiation, lead time from seizure onset to
KD initiation, the total duration of KD implementation,
epilepsy syndrome, and pathogenic mutation. Regarding the
epilepsy syndrome, the syndromes of each patient at the
time of KD implementation were selected. To classify the
epilepsy syndrome, we used the classifications outlined by
the International League Against Epilepsy in their revised
terminology and concepts for organization of seizures and
epilepsies (1).

Targeted NGS Panel for DEE
The targeted NGS panel for DEE at Severance Children’s
Hospital comprises 172 genes that are known to be related
to DEE (Table S1). Using whole-blood samples, genomic
DNA was extracted from leukocytes with the QIAamp
Blood DNA mini kit (Qiagen, Hilden, Germany). After
processing, pooled libraries were sequenced using a MiSeq
sequencer (Illumina, San Diego, CA, USA) and the MiSeq
Reagent Kit v2 (300 cycles). The interpretation of variants
followed the 5-tier classification system recommended by
the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (12). Variants
considered pathogenic or likely pathogenic according to the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology classification system were
selected as causative mutations for epileptic encephalopathies
(12).

KD
Patients were instructed to follow either a classic 4:1 or
3:1 KD or modified Atkins diet by the attending pediatric
epileptologists (13). Patients immediately began the diet
regimen without an initial fasting period, and calories
were restricted to 75% of the recommended daily intake.
Screening and follow-up examinations were performed
according to the protocol reported by Kang et al. (11), and
included measurements of serum β-hydroxybutyrate and
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urine ketone bodies to assess ketosis and adjust the ratios if
required.

Statistical Analysis
Values are expressed as the median with the interquartile range
(IQR) or as the number and percentage. Comparisons between
two groups were performed using chi-squared tests or Fisher’s
exact tests for categorical data or using Mann-Whitney U-tests
for non-parametric and continuous data. Statistical significance
was set at p < 0.05. The Statistical Package for the Social Sciences
software (version 23.0; SPSS Inc., Chicago, IL, USA) was used for
all analyses.

RESULTS

Patients and Clinical Characteristics
A total of 333 patients (median age 7 [IQR: 3–18] months, 189
[56.8%] boys) who underwent a targeted NGS gene panel for
DEE were included in this retrospective cohort study. Among the

333 patients, 125 (37.5%) patients received a genetic diagnosis.
Of the 125 patients with a monogenic mutation, 73 had tried
KD, while 82 of the 208 patients without an identified genetic
mutation had tried KD (Figure 1). In total, 155 patients (73 with
an identified genetic mutation and 82 without) were subjected
to the analysis to determine the KD efficacy. Of the 73 patients
with identified genetic mutations, 38 (52.1%) patients responded
to KD at 3 months, 36 (49.3%) responded at 6 months, and
32 (43.8%) responded at 12 months (Figure 1). Patients were
on KD for a median duration of 19 months (IQR: 11.0–
42.5, range: 1–143 months). In the group of 73 patients with
an identified genetic mutation, 50 (68.5%) patients were still
on KD after 12 months. Thirteen patients discontinued KD
due to inefficacy within 3 months, nine patients discontinued
KD between 3 and 6 months (six due to inefficacy, one to
aspiration pneumonia, one to recurrent acidosis, and one due
to noncompliance), and one patient discontinued KD between 6
and 12 months due to noncompliance. Of the 82 patients without
an identified genetic mutation, 27 (32.9%) patients responded

FIGURE 1 | Responses to a ketogenic diet (KD) after 3, 6, and 12 months in patients with and without identified genetic mutations, as determined by a targeted

next-generation sequencing (NGS) gene panel for developmental and epileptic encephalopathy.
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to KD at 3 months, and 24 (29.3%) responded at both 6 and
12 months. Among the patients without an identified genetic
mutation, 48 (58.5%) patients remained on KD after 12 months.
Seventeen patients discontinued the diet within 3 months (eleven
due to inefficacy, one to recurrent acidosis, one to recurrent
hypoglycemia, one to pancreatitis, one to intolerable diarrhea,
and two due to noncompliance). Fourteen patients discontinued
the diet between 3 and 6 months (eight due to inefficacy, three
to noncompliance, two to aspiration pneumonia, and one due to
metabolic encephalopathy), and three patients discontinued the
diet between 6 and 12 months (one due to inefficacy and two to
noncompliance).

The clinical characteristics of the 155 patients who underwent
the NGS gene panel and tried KD are summarized in Table 1.
The median age at seizure onset was 6.0 (IQR: 3.0–15.0) months,
and 65.2% of the patients were boys. The median seizure
frequency was 7.0 (IQR: 2.0–20.0) seizures per day, while the
median number of AEDs patients were taking at the time of
KD initiation was 3 (IQR: 3–4). The median lead time from
seizure onset to KD initiation was 11.0 (IQR: 5.0–30.5) months.
Initially, 24 (15.1%) patients received the 4:1 KD, 65 (41.9%)
received the 3:1 KD and 66 (42.6%) received the modified Atkins
diet. Regarding the syndromic diagnosis at the time of KD
implementation, West syndrome was the most frequent (67/155
patients, 43.2%), followed by Lennox-Gastaut syndrome (31/155
patients, 20.0%), and Dravet syndrome (18/155 patients, 11.6%),
among others. None of the patients underwent epilepsy surgery
or the implantation of a vagus nerve stimulation device during
the first year of KD (Table 1).

Clinical Characteristics of KD Responders
vs. Non-responders Among Patients With
DEE
Among the 155 patients, 65 (41.9%) patients showed ≥90%
seizure reduction from baseline at 3 months after KD initiation
and these patients were considered responders. The other
90 (58.1%) patients who showed <90% seizure reduction
were considered non-responders. No statistically significant
differences in the clinical variables including the age at seizure
onset, sex, baseline seizure frequency, number of AEDs being
taken at the time of KD implementation, lead time from
seizure onset to KD, and KD ratio, were identified between
responders and non-responders (Table 1). However, a significant
difference was found between KD responders and non-
responders regarding the syndromic diagnosis (p = 0.005), and
significantly more patients with identified pathogenic mutations
belonged to the responder group than to the non-responder
group (p = 0.016), i.e., patients with an identified genetic
mutation responded better to KD.

Clinical Variables of Patients With
Identified Mutations vs. Without Identified
Mutations by Gene Panel Analysis
Among the 155 patients, gene panel analysis for DEE
showed identified mutations in 73 (47.1%) patients. Clinical
variables such as age at seizure onset, baseline seizure
frequency before KD, number of AEDs taken before KD,
lead time from seizure onset to KD, and KD ratio were

TABLE 1 | Demographics of patients and comparison between responders and non-responders at 3 months after KD Initiation.

Clinical variables Total (n = 155) Responders*

(n = 65)

Non-responders

(n = 90)

p

Age at seizure onset, months 6.0 (3.0–15.0) 6.0 (3.5–11.5) 6.0 (3.0–30.8) 0.291

Sex, male 101 (65.2%) 38 (58.5%) 62 (68.9%) 0.252

Baseline seizure frequency before KD, number per day 7.0 (2.0–20.0) 6.0 (1.0–25.0) 10.0 (3.0–20.0) 0.435

Number of AEDs before KD 3 (3–4) 3 (2–4) 3 (3-4) 0.093

Lead time from seizure onset to KD, months 11.0 (5.0–30.0) 13.0 (6.0–42.5) 9.5 (5.0–24.0) 0.207

KD ratio 0.113

4:1 24 8 (33.3%) 16 (66.7%)

3:1 65 23 (35.4%) 42 (64.6%)

MAD 66 34 (51.5%) 32 (48.5%)

Syndromic diagnosis 0.005

EMAS 5 1 (20.0%) 4 (80.0%)

Dravet syndrome 18 14 (77.8%) 4 (22.2%)

Unspecified focal epilepsy 8 2 (25.0%) 6 (75.0%)

Unspecified generalized epilepsy 2 1 (50.0%) 1 (50.0%)

West syndrome 67 24 (35.8%) 43 (64.2%)

Lennox-Gastaut syndrome 31 9 (29.0%) 22 (71.0%)

EIMFS 6 2 (33.3%) 4 (66.7%)

Landau-Kleffner syndrome 1 1 (100.0%) 0 (0.0%)

Ohtahara syndrome 17 11 (64.7%) 6 (35.3%)

Identified pathogenic variant 73 (47.1%) 38 (58.5%) 35 (38.9%) 0.016

Data are presented as the median (interquartile range) or as the number (percent).

*Responders to KD represent patients who showed ≥ 90% seizure reduction from baseline.

KD, ketogenic diet; AED, antiepileptic drug; MAD, modified Atkins diet; EMAS, epilepsy with myoclonic atonic seizures; EIMFS, epilepsy of infancy with migrating focal seizures.
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not significantly different between patients with identified
mutations and patients without identified mutations (Table 2).
Proportion of girls was significantly higher in patients with
identified mutations. Also, proportions of patients with
identified mutations were significantly different among
syndromes.

Causative Monogenic Mutations
Twenty-five different causativemonogenicmutations were found
in 73 patients (Table 2). The most common mutations were
in the SCN1A gene (n = 18 [24.7%]; 10 boys and 8 girls;
11 missense mutations, four nonsense mutations, one splicing-
site mutation, one exon 20 deletion, and one whole-gene
deletion). Followed by the CDKL5 (n = 10 [13.7%]; 2 boys
and 8 girls; four missense mutations, three nonsense mutations,
and three splicing-site mutations), KCNQ2 (n = 6 [8.2%];
4 boys and 2 girls; all missense mutations), and STXBP1
(n = 4 [5.5%]; 2 boys and 2 girls; three missense mutations
and one nonsense mutation) genes. Three patients (4.1%)
had pathogenic mutations in CHD2 (2 boys and 1 girl; two
nonsense mutations and one exon 5 deletion), KCNT1 (2
boys and 1 girl; all missense mutations), MECP2 (3 boys; all
duplications), SCN2A (1 boy and 2 girls; all missense mutations),
and SCN8A (2 boys and 1 girl; all missense mutations),
respectively. Other causative monogenic mutations are shown in
Table 3.

KD Efficacy According to Causative
Monogenic Mutation
The responder rates of patients with each pathogenic gene were
compared with the responder rates of patients without identified
genetic mutations at 3, 6, and 12 months after KD initiation
(Table 3). At 3 months after KD implementation, patients with
mutations in KCNQ2 (n= 6, responder rate= 83.3%, p= 0.022),
SCN1A (n = 18, responder rate = 77.8%, p = 0.001), SCN2A
(n= 3, responder rate= 100.0%, p= 0.041), and STXBP1 (n= 4,
responder rate = 100.0%, p = 0.015) exhibited significantly
better responses to KD than did patients without identified
genetic mutations. In contrast, patients withmutations inCDKL5
(n = 10, responder rate = 0.0%, p = 0.031) showed significantly
poorer responses to KD than did patients with DEE without
identified genetic mutations. At both 6 and 12 months after KD
initiation, patients with mutations in KCNQ2 (n = 6, responder
rate = 83.3%, p = 0.014 and p = 0.014), SCN1A (n = 18,
responder rate = 77.8 and 77.8%, p < 0.001 and p = 0.014),
SCN2A (n = 3, responder rate = 100.0 and 100.0%, p = 0.030
and p = 0.030), and STXBP1 (n = 4, responder rate = 100.0
and 100.0%, p = 0.010 and p = 0.010) still showed significantly
better responses to KD compared to patients without identified
genetic mutations. The responder rates to KD remained relatively
consistent at 3, 6, and 12 months in all patients with pathogenic
mutations (52.1, 49.3, and 43.8%) and patients with each genetic
mutation, especially in KCNQ2, SCN1A, SCN2A, and STXBP1
(Figure 2).

TABLE 2 | Demographics of patients and comparison between patient with identified mutations and without identified mutations by gene panel analysis at 3 months after

KD Initiation.

Clinical variables Total (n = 155) Identified mutations

(n = 73)

Without identified mutations

(n = 82)

p

Age at seizure onset, months 6.0 (3.0–15.0) 5.0 (2.0–10.0) 7.0 (3.0–17.3) 0.573

Sex, male 101 (65.2%) 40 (54.8%) 61 (74.4%) 0.012

Baseline seizure frequency before KD, number per day 7.0 (2.0–20.0) 6.0 (1.8–200) 7.0 (2.0–35.0) 0.675

Number of AEDs before KD 3 (3–4) 3 (2–4) 3 (3-4) 0.254

Lead time from seizure onset to KD, months 11.0 (5.0–30.0) 13.0 (5.0–37.0) 10.0 (5.0–24.0) 0.291

KD ratio 0.249

4:1 24 9 (37.5%) 15 (62.5%)

3:1 65 28 (43.1%) 37 (56.9%)

MAD 66 36 (54.5%) 30 (45.5%)

Syndromic diagnosis <0.001

EMAS 5 2 (40.0%) 3 (60.0%)

Dravet syndrome 18 18 (100.0%) 0 (0.0%)

Unspecified focal epilepsy 8 1 (12.5%) 7 (87.5%)

Unspecified generalized epilepsy 2 2 (100.0%) 0 (0.0%)

West syndrome 67 20 (29.9%) 47 (70.1%)

Lennox-Gastaut syndrome 31 12 (38.7%) 19 (61.3%)

EIMFS 6 3 (50.0%) 3 (50.0%)

Landau-Kleffner syndrome 1 0 (0.0%) 1 (100.0%)

Ohtahara syndrome 17 15 (88.2%) 2 (11.8%)

Data are presented as the median (interquartile range) or as the number (percent).

KD, ketogenic diet; AED, antiepileptic drug; MAD, modified Atkins diet; EMAS, epilepsy with myoclonic atonic seizures; EIMFS, epilepsy of infancy with migrating focal seizures.
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TABLE 3 | Responder rates to ketogenic diet according to the identified pathogenic gene, with the P value for the comparison with the responder rate of patients without

identified genetic mutations.

Pathogenic gene (n = 73) At 3 months At 6 months At 12 months

Responders p Responders p Responders p

ARX (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 1/1 (100.0%) 0.301

CACNA1A (1) 1/1 (100.0%) 0.337 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

CDKL5 (10) 0/10 (0.0%) 0.031 0/10 (0.0%) 0.058 0/10 (10.0%) 0.058

CHD2 (3) 1/3 (33.3%) 1.000 0/3 (0.0%) 0.555 0/3 (0.0%) 0.555

CLCN4 (1) 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

COL4A1 (2) 1/2 (50.0%) 1.000 1/2 (50.0%) 0.509 1/2 (50.0%) 0.509

EEF1A2 (2) 0/2 (0.0%) 1.000 0/2 (0.0%) 1.000 0/2 (0.0%) 1.000

GNAO1 (1) 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

IQSEC2 (1) 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

KANSL1 (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 1/1 (100.0%) 0.301

KCNA1 (1) 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

KCNB1 (2) 2/2 (100.0%) 0.116 2/2 (100.0%) 0.093 2/2 (100.0%) 0.093

KCNQ2 (6) 5/6 (83.3%) 0.022 5/6 (83.3%) 0.014 5/6 (83.3%) 0.014

KCNT1 (3) 0/3 (0.0%) 0.548 0/3 (0.0%) 0.555 0/3 (33.3%) 0.555

MECP2 (3) 0/3 (0.0%) 0.548 0/3 (0.0%) 0.555 0/3 (0.0%) 0.555

SCN1A (18) 14/18 (77.8%) 0.001 14/18 (77.8%) <0.001 11/18 (61.1%) 0.014

SCN2A (3) 3/3 (100%) 0.041 3/3 (100.0%) 0.030 3/3 (100.0%) 0.030

SCN3A (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 1/1 (100.0%) 0.301

SCN8A (3) 0/3 (0.0%) 0.548 0/3 (0.0%) 0.555 0/3 (0.0%) 0.555

SLC6A1 (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 1/1 (100.0%) 0.301

SLC9A6 (2) 1/2 (50.0%) 1.000 1/2 (50.0%) 0.509 1/2 (50.0%) 0.509

STXBP1 (4) 4/4 (100%) 0.015 4/4 (100%) 0.010 4/4 (100.0%) 0.010

SYNGAP (1) 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000 0/1 (0.0%) 1.000

WWOX (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 1/1 (100.0%) 0.301

ZEB2 (1) 1/1 (100.0%) 0.337 1/1 (100.0%) 0.301 0/1 (0.0%) 1.000

FIGURE 2 | Responses to a ketogenic diet after 3, 6, and 12 months according to the identified pathogenic genetic mutations found in ≥3 patients. *Responder rates

that are significantly lower (CDKL5) or higher (the others) than the responder rate of patients without an identified genetic mutation.

KD Efficacy According to Causative
Mutations in Epilepsy Syndromes
As mentioned above, when patients were divided by syndromic
diagnoses at the time of KD initiation, West syndrome was the
most frequent, followed by Lennox-Gastaut syndrome, Dravet

syndrome, and Ohtahara syndrome (Table 1). Among 67 West

syndrome patients, pathogenic mutations were found in 20

(29.9%) patients, including 9 patients with CDKL5 mutations.

Mutations in other genes were found in ≤2 patients for

each gene. Responder rate of West syndrome patients with
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CDKL5 mutations was significantly lower than responder rate
of West syndrome patients without CDKL5 mutations (0.0
vs. 41.4%, p = 0.021). Among 31 Lennox-Gastaut syndrome
patients, 12 (38.7%) patients were identified with pathogenic
mutations. Causative genes with mutations in Lennox-Gastaut
syndrome patients were heterogeneous to analyze, with 3
boys with mutations in MECP2 gene and other 9 patients
all identified with different genes from each other. All 18
Dravet syndrome patients were identified with mutations in
SCN1A gene, and 14 (77.8%) patients showed a good response
to KD at 3 months since initiation of KD. Of 17 Ohtahara
syndrome patients, 15 (88.2%) patients were identified with
causative mutations, including 6 KCNQ2 mutations, 3 STXBP1
mutations, and other mutations found in single patient each.
Responder rate of Ohtahara syndrome patients with KCNQ2
or STXBP1 mutations showed a significantly better response
to KD after 3 months compared to Ohtahara syndrome
patients without KCNQ2 or STXBP1 mutations (88.9 vs. 37.5%,
p= 0.043).

DISCUSSION

In our study, among the patients with DEE with various
pathogenic mutations, patients with SCN2A, STXBP1, KCNQ2,
and SCN1A mutations in particular showed better responses
to KD, with responder rates of 100, 100, 83.3, and 77.8%
respectively. However, patients with CDKL5 mutations sho wed
poorer responses to KD (responder rate= 0.0%) at 3months after
implementation. The responder rate to KD remained consistent
at 3, 6, and 12 months after diet initiation when examined
according to genotype.

The monogenic mutations that are responsible for DEE
are increasingly being discovered with the advent of the NGS
technique and targeted NGS or gene panel studies have been
suggested as the most cost-effective genetic testing method for
patients with DEE (14). Of the 333 patients in our study who
underwent a DEE gene panel, 125 (37.5%) patients had an
identified causative monogenic mutation; this incidence rate is
similar to those reported in previous studies (15, 16), and such
findings collectively support the usefulness of NGS panels in
searching for the genetic causes of DEE. Moreover, our data
provide useful insights regarding whom and when to recommend
KD therapy for patients with gene-associated DEE.

To date, few reports on the efficacy of KD in patients with
DEE with specific genotypes have been published (17–19), and
of these, most are anecdotal reports or include short-term
evaluations of the efficacy in only one specific genotype. In the
present study, we assessed the long-term response to KD (over
12 months) in patients with each genotype of DEE. Additionally,
we focused on patients who showed definite improvements
after KD by strictly regarding only those patients who showed
≥90% seizure reduction as responders. Therefore, this study is
significant because it is the first to assess the long-term efficacy of
KD according to the various genetic causes of DEE. Moreover, we
revealed the genotypes that are the most likely to show significant
seizure reductions after KD.

The KD is reportedly effective for patients with DEE
syndromes such as Dravet syndrome, West syndrome, Lennox-
Gastaut syndrome, and epilepsy with myoclonic atonic seizures
(7–10, 20–22). Efforts to identify phenotypes with clinical
variables that can help predict which patients will show a
better response to KD have been made (23). Our study showed
that children with specific syndromes, especially those with an
identified genetic cause, responded better to KD at 3 months
than did those with syndromes without identified genetic causes.
However, none of the other clinical variables we evaluated were
related to a good KD response. In addition to the type of epileptic
syndrome, we compared the efficacy of KD between different
genotypes in order to reveal which genotypes are the most
likely to respond well to KD. Our analysis demonstrated that
patients with SCN2A, STXBP1, KCNQ2, and SCN1A mutations
had more favorable responses to KD than did those without
genetic mutations.

Previous studies have shown that patients with Dravet
syndrome with SCN1A mutations respond well to KD (21, 24),
as did a patient with an SCN2A mutation who was treated
with a modified Atkins diet (19). Here, as well as in several
other studies (25, 26), patients with CDKL5 mutations showed
poor responses to or only short-term efficacy of KD. Therefore,
our findings regarding these genes are consistent with those
of previous studies and confirm that patients with epileptic
encephalopathy with SCN1A and SCN2Amutations respond well
to KD, while patients with CDKL5 mutations respond poorly
to KD. Although prior studies showed that for patients with
STXBP1 encephalopathy, the response to KD was either slight or
none (two case reports, each with one patient) (27, 28), in our
study, all four patients with STXBP1mutations responded well to
KD.

Among patients with West syndrome, patients with CDKL5
mutations showed a significantly poorer response to KD than
otherWest syndrome patients without CDKL5mutation. Among
patients with Ohtahara syndrome, patients with KCNQ2 or
STXBP1 mutations showed a significantly better response to KD
than the others in this study. This is in line with the results from
analysis by causativemutations in all DEE, showing that causative
mutation is the important determining factor of response to KD
as much as syndromic diagnoses in DEE. However, further study
with larger sample size is warranted.

To our knowledge, no reports have evaluated the efficacy
of KD in patients with KCNQ2-related neonatal epileptic
encephalopathy. Here, 83.3% of patients with KCNQ2 (5/6
patients) mutations responded to KD. However, none of our
patients with CHD2 (0/3), KCNT1 (0/3), SCN8A (0/3), and
MECP2 (0/3, all boys) mutations showed a response to KD.
Unfortunately, in patients with these genetic mutations, the KD
efficacy was not statistically significant than was that in patients
without identified genetic mutations owing to the small number
of patients with each genetic mutation.

We understand the limitations of using an observational
approach in this study and acknowledge that prospective or
randomized controlled studies can provide stronger evidence
regarding the efficacy of KD in patients with DEE with each
pathogenic variant. We also acknowledge the very small sample
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size of this study, due to rare nature of DEE with identified
pathogenic mutations. This study should therefore be regarded as
elementary results demonstrating that specific genetic mutations
show different response to KD. Due to the retrospective study
design, the effects of KD on the developmental outcomes of
these children were not evaluated. For patients without identified
genetic mutations, some proportion of them is suspected to have
a genetic origin owing to unknown pathogenic genes or genes
that were not included in our NGS panel. Despite its limitations,
the present study provides the first overview of the efficacy of KD
in patients with DEE according to genotype and may serve as a
basis for administering precision medicine.

CONCLUSIONS

The KD was particularly effective in patients with DEE caused
by SCN2A, STXBP1, KCNQ2, and SCN1Amutations and was not
effective in patients withDEE caused byCDKL5mutations. These
results will provide a rational basis for considering early, targeted
KD treatment rather than the traditional trial and error approach
to epilepsy therapy in this group of patients. Furthermore, our

data may help avoid overtreatment with KD in patients with DEE
with CDKL5mutations.
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