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Background and Purpose: Cerebral hemorrhage is a serious potential complication

of stroke revascularization, especially in patients receiving intra-arterial tissue-type

plasminogen activator (tPA) therapy. We investigated the optimal pre-intervention delay

time (DT) of computed tomography perfusion (CTP) measurement to predict cerebral

parenchymal hematoma (PH) in acute ischemic stroke (AIS) patients after intra-arterial

tissue plasminogen activator (tPA) treatment.

Methods: The study population consisted of a series of patients with AIS who received

intra-arterial tPA treatment and had CTP and follow-up computed tomography/magnetic

resonance imaging (CT/MRI) to identify hemorrhagic transformation. The association of

increasing DT thresholds (>2, >4, >6, >8, and >10 s) with PH was examined using

receiver operating characteristic (ROC) analysis and logistic regression.

Results: Of 94 patients, 23 developed PH on follow-up imaging. Receiver operating

characteristic analysis revealed that the greatest area under the curve for predicting PH

occurred at DT > 4 s (area under the curve, 0.66). At this threshold of > 4 s, DT lesion

volume ≥ 30.85mL optimally predicted PH with 70% sensitivity and 59% specificity. DT

> 4 s volume was independently predictive of PH in a multivariate logistic regression

model (P < 0.05).

Conclusions: DT > 4 s was the parameter most strongly associated with PH. The

volume of moderate, not severe, hypo-perfusion on DT is more strongly associated and

may allow better prediction of PH after intra-arterial tPA thrombolysis.
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INTRODUCTION

While significant advances have been made regarding emergent
treatment of acute ischemic stroke (AIS), the different
therapeutic revascularization options remain associated with
an increased risk of hemorrhage. While intravenous tissue-type
plasminogen activator (tPA) is effective at reanalyzing more
distal thrombi (1, 2), endovascular reperfusion therapy in a
6 or 12 h time window, can be effective for those patients
with more proximal intracranial artery occlusion (3–6).
The revascularization increases the risk of Hemorrhagic
transformation (HT) (7–9), and HT is nearly 5 times more
common for patients receiving intravenous thrombolysis
compared to controls, and evenmore for patients receiving intra-
arterial thrombolysis (10). Symptomatic intracranial hemorrhage
(sICH) transformation or cerebral parenchymal hematoma (PH)
is the most serious complication after revascularization therapy.
The identification and possible exclusion of patients at high risk
for sICH or PH will significantly reduce the complication rate
(11).

Several clinical risk factors, such as age, diabetes mellitus,
infarct volume, and anticoagulant or antiplatelet therapy are
associated with HT. Computed tomography (CT) and magnetic
resonance imaging (MRI), including perfusion imaging, provide
detailed assessment of acute stroke pathophysiology, and has led
to the establishment of imaging predictive parameters for HT
after thrombolysis. Relative cerebral blood flow (rCBF), relative
mean transit time, cerebral blood volume (CBV), Tmax, delay
time (DT), and permeability parameters have been found to be
associated with hemorrhagic transformation (12–16). A prior
study by Yassi et al (15) showed that extremely long Tmax was
independently predictive of PH for the patient with or without
thrombolysis. However, these studies focused on patients who
received intravenous tPA, rather than on patients who received
intra-arterial tPA treatment.

In this study, we sought to identify the optimal pre-
intervention DT parameter for prediction of PH after AIS intra-
arterial tPA therapy.

METHODS

Patients
In this study, the clinical and imaging data were obtained from
3 participating institutions: the PLA Army General Hospital,
Beijing; Changhai Hospital, Shanghai; and Southwest Hospital,
Chongqing. All data contributed to the study were completely
anonymized. The institutional review boards of the three
institutions approved the study. Consecutive patients with signs
and symptoms suggesting hemispheric stroke from January 2011
to January 2014 were retrospectively identified. Inclusion criteria
were as follows: (1) AIS with occlusion of the M1 segment
of the middle cerebral artery, the internal carotid, or both;
(2) an admission National Institutes of Health Stroke Scale
(NIHSS) score between 4 and 22; (3) with CT imaging indicating
stroke, including non-contrast-CT, CT angilgraphy (CTA), and
CT perfusion (CTP), upon admission; (4) intra-arterial tPA
thrombolysis with <12 h from onset; (5) availability of MRIs or

CT scans taken within 7 days after therapy to assess HT. The
patients who received IV-tPA were not included in the study,
considering data consistency. A flow chart delineating patient
selection is shown in Figure 1. The demographic and clinical
variables were recorded as follows: age, sex, medical history,
vascular risk factors, routine blood tests, time from onset to
imaging, time from symptom onset to treatment, NIHSS score
upon admission, and modified Rankin Score (mRS) at 90 days.
The mRS was assessed in the outpatient clinic or by the telephone
and the death was coded as 6. Stroke mechanisms were subtyped
using the TOAST (Trial of Org 10172 in Acute Stroke Treatment)
classification and were diagnosed by 2 stroke neurologists (N.L.
and H.C.) in consensus.

Imaging Protocol
CTP studies were all obtained on 64-slice CT scanners. Each
CTP study involved successive gantry rotations performed in
cine mode with 45 time-points acquired each 1.33 s (total
acquisition, 60 s), with intravenous administration of 40–50mL
of iodinated contrast material (Ultravist 370; Bayer HealthCare;
Berlin, Germany) at an injection rate of 4–5 mL/s followed by a
40-mL saline push. Total CTP coverage was 40mm. Acquisition
parameters were 80 kVp and 100 mAs.

Digital subtraction angiography (DSA) was performed using
a biplane cerebral angiographic system. Images were acquired
during injection of the internal and external carotid arteries and
≥1 vertebral artery. Imaging was performed through the entire
arterial and venous phases to evaluate the collateral circulation.
All patients underwent intra-arterial tPA thrombolysis without
mechanical embolectomy at the discretion of the attending
neurologist (Y.Z, J.H., and G.Z.).

Imaging Processing
All perfusion CT data were analyzed with the commercial
software (MiStar, Apollo Medical Imaging Technology) (17, 18).
Perfusion data were processed using a single value deconvolution
algorithm with delay and dispersion correction. The actual
delay time (DT) was calculated by a modified singular value
deconvolution approach by looping through a series of DT values
(19). The cerebral blood flow and cerebral blood volume were
determined by the peak height and area under the curve of
the input residue function. Arterial input function and venous
outflow function were automatically selected by the software
from the non-stroke middle cerebral artery/anterior cerebral
artery and superior sagittal sinus, respectively. The volume of
increasing DT thresholds (2, >4, >6, >8, and >10 s), the relative
cerebral blood flow<40% within the DT >3 s, and cerebral blood
volume< 2 mL/100 g within the DT >3 s, were automatically
calculated (17).

Receiver operating characteristic (ROC) analysis was
performed using PH as the outcome variable, and the lesion
volume was defined using a particular DT, CBV, or rCBF
threshold in each individual patient. These thresholds were
iterated across the range of values present in the data to
determine the threshold for each parameter that generated the
highest area under the curve (AUC). This optimal threshold
was taken forward in the analysis to compare the sensitivity
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FIGURE 1 | Flow chart outlining patient selection and exclusion criteria. AIS indicates acute ischemic stroke; DSA, digital subtraction angiography; IA, intra-arterial; IV

tPA, intravenous tissue-type plasminogen activator; NCT, noncontrast-CT; NIHSS, National Institutes of Health Stroke Scale; CTP, computed tomography perfusion;

and Tr, treatment.

and specificity of each perfusion parameter. The Youden
Index (sensitivity+specificity−1) was then calculated for this
optimized threshold to determine the optimal volume of rCBF,
CBV, and DT to predict the development of PH.

It has previously been demonstrated that poor baseline
collaterals and successful therapeutic recanalization may result
in clinically significant hemorrhagic complications (20). The
angiographic collateral was scaled as follows: grade 0 (no
collaterals visible to the ischemic site), 1 (slow collaterals to
the periphery of the ischemic site with persistence of some of
the defects), 2 (rapid collaterals to the periphery of ischemic
site with persistence of some of the defects and to only a
portion of the ischemic territory), 3 (collaterals with slow but
complete angiographic blood flow of the ischemic bed by the
late venous phase), and 4 (complete and rapid collateral blood
flow to the vascular bed in the entire ischemic territory by
retrograde perfusion). Vascular reperfusion was graded based
on the Thrombolysis in Cerebral Infarction (TICI) classification:
0 (no perfusion), 1 (penetration with minimal perfusion), 2a
(less than 67% perfusion); 2b (more than 67% perfusion),
and 3 (complete perfusion of the affected vascular territory).
Reperfusion status was classified as ER+ (positive for early
reperfusion; TICI score 2b to 3 within 12 h of symptom onset)

or ER–. The angiographic collateral and TICI scores were rated
by consensus of a neurologist (G.Z.) and a neuroradiologist
(B.W.). The influence of collaterals and recanalization on PH was
analyzed in distinct case scenarios relative to baseline collateral
grade at angiography (0–1 vs. 2–4) and recanalization (TICI scale,
ER+ vs. ER–): (1) good collaterals and no recanalization, (2)
poor collaterals and no recanalization, (3) good collaterals and
successful recanalization, and (4) poor collaterals with successful
recanalization.

Outcome Measurement
All patients received follow-up CT or MRI as part of the routine.
However the time interval depended on the patient’s condition.
Follow-up imaging (MRI or CTwithin 7 days) was independently
assessed for hemorrhagic transformation by 2 stroke neurologists
(N.L. and H.C.), who then reached consensus using the European
Cooperative Acute Stroke Study (ECASS) scoring system (21).
This classifies hemorrhagic infarction 1 (HI1) as small petechiae
along the periphery of the infarct region, hemorrhagic infarction
2 (HI2) as confluent petechiae within the infarct, without space-
occupying effect, parenchymal hemorrhage 1 (PH1) as bleeding
≤30% of the infarcted area, with mild space-occupying effect,
and parenchymal hemorrhage 2 (PH2) as bleeding >30% of the
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infarcted area, with space-occupying effect. PH included both
PH1 and PH2. The readers of neuroradiological imaging were
blinded to all clinical data.

Statistical Analyses
Statistical analysis was performed using commercially available
IBM SPSS Statistics (version 22.0.0.0; IBM Corp, Armonk,
NY). The Mann–Whitney U–test was used to determine
the association between baseline clinical characteristics or
imaging parameters with parenchymal hemorrhage outcome.
ROC analysis was performed to determine the optimal CTP
parameter for prediction of PH. Sensitivity, specificity, positive
predictive value, negative predictive value, and likelihood ratios
were determined for each parameter at different volumetric
thresholds. The best performing CTP parameters in ROC analysis
were subsequently tested in a multivariate logistic regression
model including age, baseline NIHSS score, and poor collaterals
and recanalization. The other variables were tested in a univariate
model logistic regression. The variable would be added to
the multivariate model when it was statistically significant in
univariate model. For perfusion lesions, we divided the lesion
volumes into 4 groups according to interquartile cutoff points
of the distribution of volumes of perfusion delay. Correlation
between DT >2 s, >4 s, >6 s, >8 s, and >10 s were also analyzed
with the correlation coefficient matrix. P < 0.05 was considered
statistically significant.

RESULTS

Of 111 consecutive ischemic stroke patients imaged with multi-
modal CT and intra-arterial thrombolysis treatment, 94 were
included in the analysis. The reasons for exclusion were severely
motion-degraded perfusion data (n = 9), incomplete DSA
imaging (n = 6), and 2 patients could not be contacted during
follow-up. Follow-up MRI and CT were performed in 75 and 19
patients, respectively. PH occurred in 23 patients overall (24.5%).
Table 1 shows baseline clinical characteristics, stroke risk factors,
and time to imaging for the study patients.

Male percent, atrial fibrillation, hyperlipidemia, ASPECTS on
NCT, collateral flow score, and volume of CBV<2 mL/100 g were
significantly different among types of HT, but not associated with
PH, as shown in Table 1. The volume of DT>4 s was significantly
associated with PH.

The ROC analysis for association of PH across the range of
values in each CTP parameter identified DT>4 s as the optimal
threshold for further analysis (area under the curve = 0.657;
P = 0.024), followed by rCBF <40% (area under the
curve=0.587; P = 0.212), and CBV <2 mL/100 g (area under
the curve=0.523; P = 0.742). Mean DT>4 s volume was 27.7mL
(interquartile range [IQR], 17.0–40.0) in the no-PH group and
36.6mL (IQR, 25.3–51.7) in the PH group (P = 0.024; Mann–
Whitney U test) (Table 2).

Based on the ROC analysis and Youden Index, the optimal
volume of DT>4 s for the association with PH was ≥30.4mL.
There were 49 of 94 (52%) patients with DT>4 s volumes of
<30.4mL, of whom 7 (14.3%) patients developed PH compared
with the overall rate of 24.5%. This indicated a low risk of

TABLE 1 | Demographic parameters and other relevant information (n = 94).

Clinical and imaging

characteristics

No PH PH P-value

N = 71 N = 23

Male,% 40 (56.3) 14 (60.9) 0.8101

Age, years 68.0 (53.0–77.0) 68.0 (55.0–73.0) 0.8156

NIHSS score at admission 16.0 (11.0–19.0) 17.0 (13.0–19.0) 0.2254

Hypertension,% 44 (62.0) 14 (60.9) 0.9247

Diabetes mellitus,% 10 (14.1) 4 (17.4) 0.7398

Hyperlipidemia,% 24 (33.8) 3 (13.0) 0.0666

Atrial fibrillation,% 19 (27.1) 3 (13.0) 0.2581

CAD,% 15 (22.1) 3 (13.0) 0.5456

Current statin

administration,%

19 (26.8) 3 (13.0) 0.2587

Stroke mechanism

Cardioembolic stroke,% 23 (32.4) 5 (21.7) 0.1644

Large artery disease,% 20 (28.2) 12 (52.2)

Other type of stroke,% 10 (14.1) 1 (4.4)

Undetermined

Categories,%

18 (25.4) 5 (21.7)

Time from onset to CT

imaging, hours

5.5 (3.5–7.8) 6.0 (4.8–11.5) 0.3011

ASPECTS score on NCT 8.0 (7.0–9.0) 7.0 (6.0–9.0) 0.1003

HMCAS on NCT, % 35 (55.6) 17 (73.9) 0.1425

Collateral Flow Scores 2.0 (1.0–3.0) 2.0 (2.0–3.0) 0.3106

DT>2 s, mL 55.7 (47.0–70.7) 59.8 (46.2–70.2) 0.4442

DT>4 s, mL 27.7 (17.0–40.0) 36.6 (25.3–51.7) 0.0243*

DT>6 s, mL 11.1 (2.2–21.3) 17.6 (8.1–34.2) 0.054

DT>8 s, mL 5.1 (0.3–10.1) 6.7 (2.5–19.9) 0.0854

DT>10 s, mL 1.6 (0.0–4.6) 2.2 (0.3–10.6) 0.1157

rCBF<40%, mL 16.2 (4.3–23.4) 16.9 (6.1–30.5) 0.2132

CBV<2, mL 17.2 (3.5–32.3) 21.9 (5.1–32.5) 0.7447

Site of occlusion

ICA, % 5 (7.0) 3 (13.0) 0.2687

M1, % 53 (74.7) 13 (56.5)

ICA &M1, % 13 (18.3) 7 (30.4)

Successful recanalization

(TIMI:2-3)

57 (80.3) 19 (82.6) 0.8053

ASPECTS indicates Alberta Stroke Program Early CT Score; CAD, coronary artery

disease; CT, computed tomography; HMCAS, hyperdense middle cerebral artery sign;

NCT, noncontrast-CT; NIHSS, National Institutes of Health Stroke Scale; DT, delay time;

PH, parenchymal hematoma; rCBF, relative cerebral bold flow, CBV, cerebral blood

volume; ICA, internal carotid artery; M1, middle cerebral artery; TIMI, thrombolysis in

myocardial infarct.*P < 0.05.

PH in this group, with a negative predictive value of 0.86
(95% confidence interval, 0.73–0.94) and a negative likelihood
ratio of 0.51(0.27–0.98). For DT >4 s volumes ≥30.4mL, the
sensitivity for PH was 0.70 (0.49–0.84), the specificity was
0.59 (0.48–0.70), and the positive likelihood ratio was 1.70
(1.15–2.51).

A large area of moderate, not severe, perfusion delay
(DT >4 s) on the pretreatment CTP were independently
associated with PH; compared with patients with the lowest
DT >4 s volume quartile, those with second, third, and fourth
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TABLE 2 | Receiver operating characteristic analysis.

PH

AUC 95% CI P-value

DT>2 s 0.554 0.415 0.692 0.442

DT>4 s 0.657 0.525 0.789 0.024*

DT>6 s 0.634 0.498 0.77 0.054

DT>8 s 0.620 0.484 0.755 0.086

DT>10 s 0.608 0.47 0.747 0.120

rCBF<40% 0.587 0.446 0.728 0.212

CBV<2 0.523 0.392 0.654 0.742

DT indicates delay time; AUC, area under the curve; CI, confidence interval; rCBF, relative

cerebral bold flow, CBV, cerebral blood volume; *P < 0.05.

quartile were approximately 1.3, 3.3, and 3.6 times more likely to
develop PH, respectively.

We also found significant correlations between DT >2 s, >4 s,
>6 s, >8 s, and >10 s, with correlation coefficients ranging from
0.906 to 0.992.

In backward stepwise elimination logistic regression,
including age, baseline NIHSS score, poor collaterals and
recanalization, and DT >4 s, only the volume of DT >4 s was
independently associated with PH (odds ratio (OR) 1.04 per
1mL increase in DT >4 s volume [95% confidence interval (CI),
1.01–1.06]; P = 0.011). Table 3 shows the results of the logistic
regression models and the ORs for PH.

Two illustrative cases with areas of DTs, with subsequent
PH after intra-arterial thrombolysis corresponding to the site of
abnormal DT are shown in Figure 2.

Based on ECASS hemorrhagic transformation classification,
the Supplementary Table 1 shows baseline clinical
characteristics, stroke risk factors, and time to imaging for the
study patients. The died cases (rate) post-procedure of No HT,
HI1, HI2, PH1, and PH2 were 12(26%), 3(33%), 3(19%), 2(14%),
and 4(44%), respectively. The ROC analysis for association of any
HT across the range of values in each CTP parameter identified
rCBF <40% (area under the curve= 0.632; P = 0.027), and CBV
<2mL /100 g (area under the curve = 0.650; P = 0.012). It has
previously been demonstrated that rCBF <40% or CBV<2mL
/100 g on CTP corresponds closely to ischemic core (as shown in
Supplementary Table 2). Although rCBF <40% or CBV<2mL
/100 g could not be significantly associated with the PH in ROC
analysis, they were significantly associated with any HT.

DISCUSSION

Our study has three main findings. Firstly, moderate hypo-
perfusion (DT >4 s) predicted PH in patients with endovascular
thrombolysis better than other DT values. Secondly, DT>4 s was
better than rCBF< 40% or CBV< 2mL /100 g for PH prediction
after IA tPA thrombolysis. Thirdly, the volume of DT>4 s was
an independent factor to predict PH, which was more significant
than collateral grading and recanalization status.

Although clinical factors are useful in the decision making
process before IA tPA thrombolysis administration, in practice,

TABLE 3 | Logistic regression analysis for PH.

Variable Multivariate Model

Odds ratio (CI) P-value

NIHSS 1.09 (0.98–1.21) 0.110

Age 0.99 (0.95–1.03) 0.597

DT >4 s, mLa 1.04 (1.01–1.06) 0.011*

Poor collaterals and recanalization 1.04 (0.59–1.82) 0.901

CTP**

DT > 4 s

Q2 1.33 (0.26–6.74) 0.728

Q3 3.33 (0.76–14.66) 0.111

Q4 3.56 (0.80–15.72) 0.094

DT > 6 s

Q2 3.50 (0.63–19.54) 0.153

Q3 4.32 (0.79–23.59) 0.091

Q4 5.60 (1.04–30.20) 0.045*

DT > 8 s

Q2 2.75 (0.61–12.29) 0.187

Q3 1.75 (0.37–8.37) 0.481

Q4 3.56 (0.80–15.72) 0.094

DT > 10 s

Q2 3.50 (0.63–19.54) 0.153

Q3 4.32 (0.79–23.59) 0.091

Q4 5.60 (1.04–30.20) 0.045*

CI indicates 95% confidence interval; CTP, CT perfusion imaging; DT, delay time; and

NIHSS, National Institutes of Health Stroke Scale.
a Odds ratio (OR) given for each 1mL increase in DT >4 s volume.

*P < 0.05.

**Compared with Q1.

most of these are insufficient in isolation to predict PH. The
non-contrast CT before treatment is useful to exclude patients
with more than 1/3 of the MCA territory infarct, but of
limited value to detect patients at risk of PH in the remaining
patients who go on to receive treatment. Although MRI is not
routinely available in the acute setting, MRI-based parameters
for prediction of post-thrombolysis HT were found in many
previous studies, including diffusion-weighted imaging–based
lesion volume, severe hypoperfusion measured by high Tmax
(22), regional very low CBV (23), and increased permeability
(24–26).

CTP is widely available and rapidly accessible in most stroke
centers, and thus lends itself to the clinical decision-making
process. In this study, the reason we chose DT, instead of Tmax,
was that the Tmax value could be dependent on various factors
including arterial delay and dispersion and tissue transit time
and dispersion. To compensate for arterial delay and dispersion
effects, a vascular transport model involving an arterial transport
function with a delay time and a relative dispersion has been
proposed (19). Thus, there is marked variability in lesion volume
prediction among various deconvolution techniques (19, 27).

This study demonstrated that moderate hypo-perfusion (DT
>4 s) predicted PH in patients with endovascular thrombolysis
better than other DT values. A prior study by Yassi et al. (15),
correlating Tmax and PH, showed that extreme hypo-perfusion
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FIGURE 2 | (A,B) two cases with hemorrhagic transformation. (A) Pretreatment CTP images show a marked large area with perfusion delay. The day after

recanalization with intravenous and endovascular treatment, CT findings revealed a PH. The PH was located within the mildly and severely hypoperfused regions.

(B) Pretreatment CTP images show small areas with large mild perfusion delay and small severe perfusion delay. After recanalization with endovascular treatment, CT

and GRE findings revealed a large area of PH. The PH was located within the mildly hypoperfused regions. (C,D) The volume in the regions with baseline mild and

severe perfusion delay (DT >4 s and DT >10 s) correlated with the PH. Q1 represents the patients with the lowest quartile volume, whereas Q4 indicates patients with

the highest quartile volume.

lesion (Tmax >14 s volumes of >5mL) and thrombolysis were
both independently predictive of PH for the patient with or
without thrombolysis. OR values of the Tmax >14 s volumes
and the thrombolysis were 4.3 and 10.1, respectively. Thus,
thrombolysis hadmuchmore influence on the PH than Tmax. IA
treatment was more likely to be performed in patients with severe
neurological deficits and perfusion delay, and PH might reflect
increasing stroke severity and more aggressive treatment (22).
When all cases were treated with endovascular thrombolysis,
the influence of aggressive treatment disappeared, and this may
explain the discrepancy in findings between Yassi’s study and
our study. Secondly, the correlations between DT >2 s, >4 s,
>6 s, >8 s, and >10 s were statistically high from 0.906 to 0.992;
therefore, the results might also be much dependent on different
study populations. Moreover, although the thresholds at more
extreme reductions in CBF, CBV, Tmax, and regional very low
CBV have been previously shown to be useful in MRI, they
were to be of limited utility using CTP, mainly because of a
lack of sensitivity to very low levels of contrast in the severely
hypo-perfused region, which produces a relatively large region of
undetectable CBF and CBV.

Reperfusion of the ischemic core is an important cofactor in
the pathogenesis of hemorrhage (10, 28). The CBV <2 mL/100 g,
and CBF <40% could be equal to the ischemic core in previous
studies(17, 29). Howvere, in this study, CBF<40% and CBV
<2 mL/100 g could not be able to predict PH statistically in
ROC analysis. Poor collaterals and recanalization were also
found to correlate with HT (20), but in this study, we were
unable to conclude that the poor collateral circulation and
therapeutic recanalization had more PH. This study found
that DT >4 s may be a better predictor of PH after IA tPA
thrombolysis therapy. Therefore DT >4 s reflect perhaps both
collaterals and reperfusion, and indicate that there is still some
blood reaching the tissue, independent of the source of these
collaterals or reperfusion. Additionally, instead of having to
consider collaterals, reperfusion, and severe ischemia, now a
single parameter can be assessed: DT >4 s.

The ECASS III trial used the following definition for
symptomatic HT: any blood in the brain or intracranially
associated with a clinical deterioration 4 NIHSS points that was
identified as the predominant cause of neurological deterioration
(30). However, it is often difficult to differentiate the predominant
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cause of neurological deterioration in clinical practice (22).
The different clinical outcomes after different subtypes of HT
illustrates the difficulty in defining symptomatic HT precisely
and clearly (11, 31). Also, patients with HI often showed no
symptoms. Thus, in this study, we used the PH as the outcome
of symptomatic HT.

Limitations include the modest numbers of patients in the
cohort. Due to the retrospective nature, PH was measured
in different time intervals. There was a significantly increased
mortality rate of our cohort, especially in those patients with PH2.
It might be related to the prolonged treatment window time and
more severe state of illness as the mean NIHSS was greater than
15. Its small sample size hampers proper multivariate analysis.
Second, the patient cohort was collected from three different
hospitals retrospectively, so inconsistency on imaging parameters
may exist, although the CT scanners were all 64-slice scanners
and used the same cinemode, and the iodinated contrast material
was the same brand with similar injection methods. Also, the
whole brain was not covered in the CTP studies, as 64-slice CT
scanners were used in this study (32). And dual-energy CT was
not used in this study. Third, quantitative analysis of other values
of perfusion maps (CBF, MTT, CBV) with a range of thresholds
was not included in our study. We chose to focus on DT on
the basis of previously published data indicating its value as a
predictor of PH (15).

In conclusion, the results of this study indicate that
the moderate perfusion delay rather than severe delay
was independently associated with PH after endo-vascular
thrombolysis. Although the ischemic core on CTP is useful in the
pretreatment prediction of HT, the moderate hypo-perfusion on
DT is more strongly associated and may allow better prediction
of PH after endovascular thrombolysis. Perfusion imaging may
be significant not only for the fate of cerebral tissues, but also
for the prevention of PH. Further studies are needed for a better
understanding of the pathogenesis of PH.
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