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Inflammation is a major pathological event following ischemic stroke that contributes

to secondary brain tissue damage leading to poor functional recovery. Following the

initial ischemic insult, post-stroke inflammatory damage is driven by initiation of a

central and peripheral innate immune response and disruption of the blood-brain barrier

(BBB), both of which are triggered by the release of pro-inflammatory cytokines and

infiltration of circulating immune cells. Stroke therapies are limited to early cerebral

blood flow reperfusion, and whilst current strategies aim at targeting neurodegeneration

and/or neuroinflammation, innovative research in the field of regenerative medicine aims

at developing effective treatments that target both the acute and chronic phase of

inflammation. Anti-inflammatory regenerative strategies include the use of nanoparticles

and hydrogels, proposed as therapeutic agents and as a delivery vehicle for encapsulated

therapeutic biological factors, anti-inflammatory drugs, stem cells, and gene therapies.

Biomaterial strategies—through nanoparticles and hydrogels—enable the administration

of treatments that can more effectively cross the BBB when injected systemically,

can be injected directly into the brain, and can be 3D-bioprinted to create bespoke

implants within the site of ischemic injury. In this review, these emerging regenerative

and anti-inflammatory approaches will be discussed in relation to ischemic stroke, with

a perspective on the future of stroke therapies.
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INTRODUCTION

Stroke is the second leading cause of death worldwide, causing 6.2 million deaths each year
accounting for 12 percent of all deaths, with stroke-related illness, disability and early death set
to double by 2035 (1–3). A stroke occurs due to the disruption of blood flow to the brain by a bleed
(hemorrhagic stroke) (4) or a blockage (ischemic stroke), accounting for 15 and 85% of all strokes
respectively. While brain tissue ischemia occurs in ischemic stroke, it remains unclear whether
cerebral ischemia plays an important role during hemorrhagic stroke. In both cases however,
acute insult to the brain leads to the formation of a cavity, or necrotic infarct and a cavity (5).
Current therapy for ischemic stroke is limited to thrombolysis by intravenous (i.v.) administration
of recombinant tissue plasminogen activator (rt-PA) given within 4.5 h of symptom onset, but
is associated with unwanted effects (6), or endovascular thrombectomy to physically remove the
blood clot (7). An endovascular thrombectomy can be performed as a complement to rt-PA,
but like thrombolysis, it has to be carried out within hours of stroke onset and can be given to
only a limited number of patients (7). Ultimately, long-term rehabilitation therapy is available to
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most stroke patients receiving daily sessions of motor functions,
cognitive, and speech language therapies, which has proven
beneficial to regain functional recovery to some extent (8).

The past decades has seen a large number of promising
therapeutic approaches in pre-clinical settings, however most
have failed to translate into clinical application. The reasons for
these failures remain largely unknown, and the Stroke Therapy
Academic Industry Roundtable (STAIR) (9) followed by STAIR
meetings (10) formulated several recommendations with the
hope that ongoing preclinical strategies could translate into
successful therapies. One main hypothesis behind the failure
of clinical trials in stroke is that current animal models are
inadequate and simply do not replicate the human pathology.
As a result, current therapies remain exclusively limited to
thrombolysis and thrombectomy, and with an aging population
and access of developing countries to western lifestyle, the
clinical and socioeconomic impact of stroke and stroke-related
complications is on the rise, which is further potentiated by
decreased post-stroke mortality rate and patient care costs due
to better rehabilitation and clinical management procedures.

Despite the aforementioned interventions, no effective
treatment to promote brain tissue repair and restore brain
functions after stroke exist. Regenerative medicine is an
emerging paradigm in the field of stroke therapy that offers
the potential to promote recovery and regeneration of damaged
neurovascular tissue at previously unattainable levels. This builds
on previous research into neuroinflammation intertwined with
the multidisciplinary research field of regenerative medicine,
utilizing biomaterials science andmechanical engineering, as well
as cell and gene therapies. This review focusses on the use and
limitations of anti-inflammatory regenerative medicine therapies
for stroke, with specific focus on the use of nanoparticles (NPs),
hydrogels, stem cells and gene-editing technologies to repair the
damaged brain tissue after stroke. The use of NPs and hydrogels
in particular has the potential to improve the administration
of drug and cell-based therapies through a controlled release
of therapeutics at appropriate doses, and therefore may enable
the repurposing or revised investigation of previously ineffective
therapeutics.

INFLAMMATION IN STROKE

Shortly after vessel occlusion, post-ischemic inflammation
begins in the vascular compartment, peaking during the first
days after stroke onset (11). Post-stroke inflammation response
is characterized by blood-brain barrier (BBB) disruption,
infiltration of peripheral leukocytes, activation of glial cells
and the release of molecules known as damage-associated
molecular patterns (DAMPs) by injured and dying cells
(Figure 1). Activated immune cells, triggered by DAMPs,
produce inflammatory cytokines, chemokines, and other
cytotoxic mediators, leading to exacerbation of cerebral
ischemic injury (12). During the sub-acute phase of stroke
(weeks to months after stroke onset) chronic inflammation
and tissue remodeling (neurogenesis and angiogenesis)
take place, although ultimately repair is limited and a fluid

filled cavity develops, preventing full functional recovery
(13, 14).

Early Mechanisms of Neuroinflammation
Under normal conditions, microglia, the main resident immune
cells in the brain, are primarily involved in monitoring
(surveying) the brain parenchyma, and are known to play
an important homeostatic role (15). In response to cerebral
ischemia, microglia are rapidly activated, switching from a resting
state to an activated state (16). The inflammatory phenotype of
early activated microglia is characterized by the production of a
variety of pro-inflammatory cytokines including interleukin (IL)-
1, IL-6, tumor necrosis factor (TNF)-α, chemokines CCL2, and
CXCL10, reactive oxygen species (ROS), nitric oxide (NO), and
proteolytic enzymes such as matrix metalloproteinase (MMP)-
9 and MMP-3 (17). The release of cytokines and chemokines
by activated microglia/macrophage promotes recruitment of
circulating immune cells to damaged brain tissue that plays a
critical role in pathophysiological events following very acute
stroke onset (18). Such events are associated with BBB disruption
and degradation of the associated extracellular matrix (ECM),
alongside activation of perivascular astrocytes. After the onset of
stroke, the BBB is rapidly disrupted allowing uncontrolled entry
of circulating molecules into the brain parenchyma, and this
disruption persists for days through the acute and early subacute
phases of stroke (19). Clinically, BBB disruption leads to the
development of hemorrhagic transformation that is associated
with worse stroke outcome (20), and MMPs have been identified
to play a key role in this process, degrading all components
of the ECM including laminin, collagen and fibronectin, and
the endothelial junction proteins claudin-5, occluding, and zona
occludens (ZO)-1 (21). Opening of the BBB allows penetration
of plasma-derived factors (plasma fibronectin, fibrinogen) and
inflammatory cells into the brain tissue, causing edema and cell
death (22). Astrocytic death is a critical contributing step of BBB
dysfunction in stroke by decreasing expression of tight junction
proteins (23). Perivascular astrocytes express the passive water
channel aquaporin 4 (AQP4) at astrocytic end-feet localized
adjacent to the brain endothelium that contributes to post-
stroke edema (24). In addition, astrocytes secrete chemokines
such as monocyte chemoattractant protein-1 (MCP-1), a critical
mediator involved in opening of the BBB after stroke (25).
Astrocytes also synthesize a large array of cytokines (i.e., IL-
1α, IL-1β, TNF-α) (26) that can directly trigger endothelial cell
activation that contributes directly to BBB disruption (27).

Delayed Mechanisms of
Neuroinflammation and Brain Repair
Cerebral ischemia also activates important delayed endogenous
repair processes such as BBB repair, neurogenesis, and
angiogenesis that are important for functional recovery and
patient rehabilitation in clinical settings, and evidence suggests
that the sub-acute phase of inflammation plays a key role in
this process. The anti-inflammatory phenotype of microglia
exhibits neuroprotective and anti-inflammatory effects during
the delayed phase of post-stroke inflammation, producing anti-
inflammatory cytokines such as IL-10, transforming growth
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FIGURE 1 | The general mechanisms of neuroinflammation post-stroke. (A) Early mechanisms of neuroinflammation are initiated by acute neuronal injury producing

DAMPS, leading to microglial and endothelial cell activation and disruption of the BBB, through release of pro-inflammatory cytokines, chemokines, reactive oxygen

species (ROS) and matrix-metalloproteinases (MMPs). Degradation of the extracellular matrix (ECM)—in both the parenchyma and basement membrane induces

astrocyte endfeet and pericytes lifting from the endothelium. Damage of the BBB enables infiltration of circulatory cells with transmigration of neutrophils and immune

cells. This damage can lead to brain oedema and hemorrhage, causing further neuroinflammation and tissue damage. (B) During the subacute phase of injury,

microglial switch from cytotoxic to phagocytic phenotype occurs, leading to tissue clearance, and expression of anti-inflammatory mediators and neurotrophic factors

that leads to the formation of the glial scar, and initiation of brain repair mechanisms, including neurogenesis, angiogenesis and BBB repair.

factor (TGF)-β, IL-4, and IL-13, as well as scavenge receptors,
contributing to inhibiting inflammation and promoting tissue
repair mechanisms (28). Of those, neurogenesis—known to
take place in the sub granular zone of the dentate gyrus of the
hippocampus and in the sub ventricular zone adjacent to the
third ventricle (29)—is increased following experimental stroke
(30), and is regulated by inflammatory mediators expressed
during the acute phase of stroke (31). However, neurogenesis
in the adult mammalian brain has been debated, with Sorrells
and colleagues, reporting that human hippocampal neurogenesis
declines rapidly during early childhood and is rarely detected in
adult humans (32), and the role of neurogenesis on functional

recovery in human remains unclear. In parallel, reactive
astrocytes form a glial scar around the ischemic infarct by
14 days (33). Astrocytes initially proliferate and then migrate
toward the site of ischemic injury that becomes surrounded by
multiple layers of reactive astrocytes interspersed with activated
microglia and a dense network of ECM proteins such as laminin,
fibronectin, and chondroitin sulfate proteoglycans, resulting
in the formation of a very tight glial scar (34). Angiogenesis is
also a mechanism of recovery induced by inflammation after an
ischemic stroke (35) that is essential for the reoxygenation of
post-ischemic brain tissue, and is also an essential step for BBB
repair, neurogenesis, and neuronal synaptic plasticity (11).
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Although there is clinical evidence to support that
inflammation plays a key role in stroke (36–39), the failure
of anti-inflammatory strategies have raised hypotheses
that inflammation might not play a significant role in
stroke pathophysiology. This alterative hypothesis should
be investigated more extensively, and future anti-inflammatory
therapies may prove to be successful in the treatment of human
stroke, providing more convincing evidence for the role of
inflammation in stroke pathophysiology.

ANTI-INFLAMMATORY STRATEGIES IN
REGENERATIVE MEDICINE

Several strategies to prevent neuroinflammation and modulate
the immune response post-stroke have been studied in
experimental models and explored in clinical trials (Table 1). For
instance, minocycline is a semi-synthetic tetracycline derivative
(51). In animal models of cerebral ischemia, minocycline
administration correlates with the reduction of several pro-
inflammatory cytokines, as well as ROS and NO (52). A
recent comprehensive systematic review and meta-analysis by
Malhotra and colleagues showed that minocycline is safe in
ischemic stroke patients and demonstrated efficacy and a
neuroprotective role, particularly in the acute ischemic stroke
(53). Furthermore, several approaches aimed at preventing
neutrophil infiltration, trafficking and/or activation have been
explored; experimental models using pharmacological agents to
block leukocyte adhesion and migration into the ischemic brain
have shown promising results (54, 55). In particular, Fingolimod
(FTY720) a sphingosine 1-phosphate receptor (S1PR) modulator
that prevents the egress of lymphocytes from lymph nodes,
has shown promise in preclinical models of stroke (56). This
is evident in a systematic review and meta-analysis which
reports that fingolimod reduced brain injury in eight out of
nine studies (57). There is an ongoing Phase 2 randomized,
open-label trial of patients receiving fingolimod within 72 h of
ischemic stroke or spontaneous intracerebral hemorrhage. Main
outcome measures include NIHSS, BI, mRS, GCS at d7, d14,
d30, d90, brain MRI, and immune markers (58). In patients
with small- to moderate-sized deep primary supratentorial
ICH, administration of fingolimod reduced perihematomal
edema, attenuated neurologic deficits, and promoted recovery.
The results for ischemic stroke patients have not yet been
reported. However, clinical trials testing antibodies against
adhesion molecules such as intercellular cell adhesion molecule
(ICAM)-1 or by administering neutrophil inhibiting factor have
been inconclusive (59, 60). A recent phase 2 clinical trial,
involving subcutaneous administration of interleukin-1 receptor
antagonist (IL-1Ra) in ischemic stroke has shown promising
results (61). IL-1Ra is known to block actions of the pro-
inflammatory cytokine IL-1, which has a deleterious role in
cerebral ischemia. IL-1Ra reduced plasma inflammatorymarkers,
which are known to be associated with worse clinical outcome
in ischemic stroke. Previous to this phase 2 clinical trial,
recombinant human IL-1Ra (anakinra) was administered as an
i.v. formulation, although it is no longer manufactured in this

way (58). Anakinra was evaluated in a UK Phase 2 randomized
controlled trial (RCT) in patients presenting within 6 h of acute
stroke onset (39). The drug was administered intravenously and
there were no significant safety concerns. Patients that received
anakinra showed better clinical outcome overall and had reduced
neutrophil leukocytosis, plasma C-reactive protein and plasma
IL-6 levels during the 72 h infusion. Statins inhibit the enzyme
3-hydroxy-3-methylglutaryl coenzyme A reductase, lowering the
level of low-density lipoprotein (LDL) cholesterol in the blood
(38). In a Phase 2 RCT, patients were treated with simvastatin
(40 mg/day) within 24 h after the onset of acute ischemic stroke
(62). Serum TNF-α levels were marginally lower at day 3 in the
simvastatin-treated group, however no clinical outcomes were
reported. The safety and efficacy of simvastatin, in combination
with rt-PA, is currently being evaluated in the STARS07 trial
(58). Edaravone (MCI-186) is an antioxidant and free radical
scavenger evaluated in a Phase 2 clinical trial for the treatment
of patients with acute ischemic stroke within 24 h from the onset
of symptoms (63). MCI-186 was shown to be well-tolerated and
safe. However, there were no differences in clinical outcome
measures after 1 year. The calcineurin inhibitor cyclosporin A
has shown efficacy in preclinical stroke models. Studies reported
a reduction of infarct size and inflammation as a result of
the drugs suppression of cytokines, T cell activation, and ROS
production (51, 64). A Phase 2 clinical study investigating the
effect of cyclosporin A (single i.v. dose of cyclosporin A after i.v.
thrombolysis within 4.5 h of stroke onset) on MR infarct volume
at day 30 has been completed, and the results of this study has yet
to be published (65).

Past and current anti-inflammatory therapies have not
translated into a successful clinical treatment for ischemic stroke.
Regenerative medicine therapies for stroke may alleviate some
of these challenges by providing a structural support, localizing
therapy to the site of action, and/or modulating endogenous
regenerative cues to brain cells. The multidisciplinary nature
of the regenerative medicine approach improves the likelihood
of the development of an effective therapy for ischemic stroke.
When considering the aforementioned therapies, cyclosporin
A, edaravone, and IL-1Ra are the best candidate drugs
for combination with NP delivery as they are administered
intravenously, thus encapsulation into NPs would potentially
improve blood circulation half-life and allow for a more targeted
and controlled drug delivery. NPs could be used for the
targeted therapeutic delivery of rt-PA, and Tadayon; colleagues
have studied the potential of silica-coated magnetic NPs as
nanocarriers for rtPA, showing promising results (66). The CTX
stem cell therapy developed by ReNeuron could be encapsulated
into a hydrogel, for injection into the ischemic brain, enabling
controlled delivery over time and better cell survival.

Demonstrating the efficacy of emerging regenerative medicine
therapies for ischemic stroke is important and challenging.
Magnetic resonance imaging (MRI) can be used to visualize
and quantify the infarct volume at multiple time points after
stroke (67). This method can be applied to both animal models
and stroke patients, and is arguably far more accurate than the
determination of infarct volume by immunohistostaining such as
NeuN immunostaining or cresyl violet staining (68, 69), which
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TABLE 1 | Regenerative medicine therapies for ischemic stroke.

Therapeutic Preclinical or clinical Outcome References

Polyethylene glycol-melanin nanoparticles

(PEG-MeNPs)

Preclinical; rat model with

middle cerebral artery

occlusion (MCAO)

Pre-injection of PEG-MeNPs significantly reduced infarct volume and

decreased superoxide levels in brain tissues; in vitro, NPs decreased

expression of pro-inflammatory cytokines

(40)

Carbon NPs (hydrophilic carbon clusters

conjugated to PEG) termed PEG-HCCs

Preclinical; transient MCAO

in acutely hyperglycemic

rats

Reduction in infarct size, hemisphere swelling, hemorrhage score, and

improvement in Bederson score

(41)

Perflutren lipid microspheres trademarked

as Definity (Lantheus Medical Imaging)

Clinical; FDA approved

(2001) ultrasound contrast

agent

Safety/efficacy study for use as an ultrasound enhancer for acute ischemic

stroke

(42)

Microporous Annealing Particle (MAP)

hydrogels

Preclinical; mouse model

with MCAO

Injection of MAP hydrogels in the stroke cavity reduces gliosis and

inflammation and promotes neural progenitor cell migration to the lesion

(43)

Hyaluronic acid hydrogel mixed with

poly(lactic-co-glycolic acid) microspheres

(HA–PLGA) containing vascular endothelial

growth factor (VEGF) and angiopoietin-1

(Ang1)

Preclinical; mouse model

with MCAO

Inhibition of brain inflammation and gliosis after implantation in brain,

behavior improvement recorded by cylinder testing and enhanced

angiogenesis

(44)

HA gel + heparin nanoparticles (nH) with

VEGF binding

Preclinical; mouse model

with distal MCAO

HA gel + nH injection into the stroke cavity reduced inflammation (activated

microglia and reactive astrocytes) and significantly increased vascularization

within the stroke cavity and the peri-infarct area

(45)

Hydrophobic (HP) carbon nanotubes

(CNTs) impregnated with subventricular

zone neural progenitor cells (SVZ NPCs)

Preclinical; rat model of

transient MCAO

HP CNT-SVZ NPC transplants reduced infarct cyst volume and infarct cyst

area. Improved rat behavior and stem cell differentiation. Reduced

inflammation (activated microglia)

(46)

Amine-modified single-walled carbon

nanotubes (a-SWNTs)

Preclinical; rat model of

MCAO

Injection of the right lateral ventricles 1 week before induction of ischemic

stroke reduced stroke infarct volume, apoptotic, angiogenic and

inflammation markers. Behavioral recovery evaluated by the Rota-Rod

treadmill test

(47)

Multipotent adult progenitor cells (MAPCs)

trademarked as MultiStem

Clinical: MultiStem phase II

clinical trial; treatment of

patients with acute ischemic

stroke

Intravenous MultiStem treatment was safe and well tolerated. Lower rates of

life-threatening adverse events or death and of secondary infections.

Reduced biomarkers of post-stroke inflammation

(48)

CTX stem cell therapy (neural stem cell

line)

Clinical; phase II clinical trial

(PISCES II) for patients with

motor disability as a result of

ischemic stroke

Treatment was well tolerated and patients showed clinically relevant

improvements in the Action Research Arm Test (ARAT) scores, Modified

Rankin Scale and Barthel Index

(49)

Gene therapy; Interleukin-1 receptor

antagonist (IL-1Ra)-producing bone

marrow (BM) cells

Preclinical; mouse model of

permanent or transient

MCAO

Therapeutic injection of IL-1Ra-producing BM cells post-stroke amplified

microglial production of IL-1Ra and reduced brain levels of IL-1β, collectively

leading to smaller infarcts and improved functional outcome

(50)

cannot be achieved in humans. Stroke cavity size can also be
determined in order to evaluate whether a therapy is promoting
repair after stroke injury. For example, Wang and colleagues
used cresyl violet staining to quantify the cavity size in a mouse
model of stroke (70). As demonstrated by Zhang and colleagues,
the effect of scaffold implantation on the integrity of brain
shape can be simply shown by haematoxylin and eosin staining
of rat brain sections or by extracting and visually observing
the whole brain (71). Regenerative medicine therapies may
increase post-stroke neurogenesis (72), which can be assessed
by doublecortin and NeuN/BrdU immunohistochemistry (73).
Induction of post-stroke angiogenesis is considered to be
beneficial and can be imaged by laminin immunohistochemistry
(44). Immunohistochemical staining for reactive astrocytes and
activated microglia is commonly used to determine whether a
regenerative medicine therapy is attenuating the inflammatory
response after experimental stroke (72). The translocator 18 kDa
protein (TSPO) has been used in PET imaging studies to image

glial activation and neuroinflammation (74). Recently, improved
radioligands for this protein have been developed and approved
for human imaging including (11C)PBR28, (18F)DPA-714, and
(18F)FEPPA (75). Ultra-small superparamagnetic particles of
iron oxide (USPIO) can be used for human imaging of
monocyte/macrophage tracking, and have been used successfully
to study neuroinflammation in stroke patients (76). The PET
ligand 11C-flumazenil (FMZ), which targets GABA-A receptors,
has been used for imaging neuronal integrity in human stroke,
with patients showing reduced FMZ binding potential in
ischemic brain regions (77). Tracking of transplanted stem
cells is essential to monitor safety and efficiency of cell-
based therapies. Citrate-coated superparamagnetic iron oxide
NPs have been used for in vivo stem cell tracking by MRI
(78). Zhu and colleagues reported a case of labeling human
neural stem cells (NSC) with superparamagnetic iron oxide NPs
and tracking their survival, migration, and distribution in a
patient with brain trauma by MRI (79). Additional promising
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imaging modalities for tracking stem cells include nuclear
imaging [Positron emission tomography (PET) and Single-
photon emission computed tomography (SPECT)] and optical
imaging (80). To evaluate changes in neurological function,
animals can be subjected to a variety of somatosensory, motor,
learning, andmemory tests before and after surgery. For example,
the rotarod test is widely used for evaluating motor function and
balance in rats and mice (81). In addition, the pole test and wire
hanging test can be used to assess motor dysfunction after stroke
(82). Cognitive deficits including memory problems occur in
human stroke survivors thus memory tests have been developed
for use in animals such as water maze and passive avoidance
task (83). Tests that assess anxiety-like behavior in rodent models
have been developed, in order to address post-stroke anxiety that
affects up to 40% of stroke survivors (84). Popular tests for this
include dark-light box, Vogel conflict test, Geller- Seifter conflict
test, elevated plus maze, and open field (81).

Anti-inflammatory Properties of
Nanoparticles (NPs)
Nanoparticles (NPs) are colloidal carriers that can be of natural
or synthetic origin and can vary in size from 1 to 1,000 nm
(85). Natural NPs are primarily composed of molecules such
as proteins (albumin), polysaccharides, or chitosan for instance
(86). Synthetic NPs are made from common polymers such as
poly(lactic-co-glycolic acid) (PLGA), poly(ethylenimine) (PEI),
polyesters poly(lactic acid) (PLA), or from inorganic agents such
as gold, silica or alumina (87). NPs can be spherical, cubic and
rod-like in shape, and they can have negative, zwitterionic, or
positive charge, affecting interactions with biological substrates
and the BBB (85). NPs can be coated and functionalized with
different types of ligands; some are capable of mediating protein
adsorption, others are able to interact directly with the BBB,
increase hydrophobicity, or are able to improve blood circulation
(88). NPs are versatile drug delivery systems that can be used
for the targeted delivery of therapeutic agents into normally
inaccessible organs like the brain, and can also be used for the
delivery of lyophobic drugs (89).

Recently, it has been suggested that NPs could exert potent
anti-inflammatory effects by acting on ROS production, a
key process in stroke pathogenesis, since oxidative stress
contributes to the initiation of the post-ischemic inflammatory
response (90). Recent work from Liu et al. (40) has shown
that polyethylene glycol-melanin NPs (PEG-MeNPs) exhibit
broad anti-oxidative properties against multiple toxic reactive
oxygen and nitrogen species (RONS) including superoxide
ions (O2•−), hydrogen peroxide (H2O2), hydroxyl radical
(•OH), peroxinitrite (ONOO–), and NO, highlighting their
potential as a robust RONS scavenger (40). Using a rat model
of ischemic stroke, they showed that pre-injection of PEG-
MeNPs can significantly decrease ischemic brain injury. In vitro,
the NPs were shown to be anti-inflammatory, decreasing the
expression of cyclo-oxygenase 2 (COX-2), inducible nitric oxide
synthase (iNOS), TNF-α, and IL-1β in lipopolysaccharides(LPS)-
stimulated macrophages. Biocompatibility was assessed in vitro
and in vivo, withNPs demonstrating no obvious toxicity. Another

type of NPs, retinoic acid-loaded polymeric NPs (RA-NP) have
been developed to modulate microglial response toward an anti-
inflammatory and somehow neuroprotective phenotype (28).
RA-NP were internalized by murine N9 microglial cell line and
inhibited LPS-induced iNOS expression and NO release, whilst
promoting arginase-1 and IL-4 production. Additionally, RA-
NP effects on microglial phenotype, promoted tissue viability
and neuronal survival in organotypic hippocampal slice cultures
exposed to an inflammatory stimulus. A new class of antioxidant
NPs composed with hydrophilic carbon clusters conjugated to
poly(ethylene glycol), named PEG-HCCs, have been recently
developed (41). They are effective at scavenging hydroxyl radical
and have been found to reduce infarct size when administered
during the reperfusion period after experimentally-induced
stroke in rat (41).

Over the last decade, a variety of NPs (metal-based, carbon-
based, polymer-based, biological-based, and lipid-based) have
been investigated for their use in biomedical imaging (91). In
particular, the potential uses of iron oxide NPs as MRI contrast
agents has been an area of intense interest, and several types
of these particles, such as ferumoxytol, have been approved
by the Food and Drug Administration (USA) for their use in
clinical diagnosis (92). Europium-doped very small iron oxide
NPs have been used to visualize neuroinflammation with MRI
combined with fluorescence microscopy (93). In addition, there
have been recent developments in molecular imaging techniques
using organic NPs and quantum dot applications for visualizing
in vivo molecular pathways (94, 95). Clinically approved NPs
are currently limited to SPECT imaging of peripheral organs
such as gastrointestinal tract, liver, and spleen (96). Although
nanotechnology has relieved many problems in biomedical
imaging, the clinical translation of many types of NPs is impeded
by fundamental limitations of human physiology (i.e., vessel
pore size, renal, and hepatic clearance), potential toxicity, and/or
interference with other medical tests. Hence, a refined NP
design and extensive toxicity studies will help facilitate the
clinical translation of new NPs that have unique advantages over
conventional imaging agents.

Anti-inflammatory Properties of Hydrogels
Hydrogels are acellular polymeric networks that replicate the
intrinsic properties of the native ECM of the neurovascular unit
(NVU) (97, 98), and are therefore used commonly for in vitro
cell culture and as an in vivo therapeutic tool. The polymeric
constituents of hydrogels are termed as biopolymers, which are of
natural or synthetic origin (97–99). Natural hydrogels are formed
of protein and polysaccharide biopolymers that are either native
constituents of the ECM, i.e., collagen, laminin or hyaluronic
acid, or can be structurally similar to the native ECM, like alginate
and gellan gum. Synthetic hydrogels are chemically synthesized
biopolymers—commonly peptide based—that can be designed
to assemble into an ECM-like conformation (also known as
self-assembling peptides). Hydrogels provide a supportive 3D
microenvironment that is similar to the native ECM. This enables
the encapsulation of cells, drugs or growth factors for injection or
implantation into the brain.
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The primary aim of using hydrogels in stroke recovery
is to provide an exogenous ECM-based network that allows
structural support within the cerebrospinal fluid-filled cavity and
promotes endogenous brain tissue repair around the ischemic
lesion. To this end, hydrogels must have appropriate properties
for the brain tissue, with the neurovascular environment
having different ECM properties compared to other peripheral
organs. Furthermore, hydrogels must be biocompatible, without
activating an immune response from the native tissue, whilst
promoting anti-inflammatory activity and recovery. Key physical
parameters for hydrogel biocompatibility include porosity,
stiffness, and preferentially the physico-chemical presence of cell
adhesion peptide (CAP) domains (72, 97, 100, 101). Hydrogel
porosity enables the diffusion of nutrients throughout the 3D
structure. If the pore size of a hydrogel is too low then
nutrients and oxygen within media may not efficiently permeate
through the entire structure, or could cause a concentration
gradient; potentially leading to necrotic regions (102, 103). The
stiffness of a hydrogel regulates the phenotype of cells, with
mechanical interactions between cells of the NVU and the ECM
through hydrostatic pressures (104) and CAP binding (105,
106), even directing the differentiation of stem cells (105–108).
Crosslinking is the mechanism by which a pre-gelation hydrogel
becomes solid, with the initiation of inter-molecular physical
or chemical bonds maintaining a 3D structure. Therefore,
crosslinking dictates the administration technique used for
delivering hydrogel to the site of injury, with injectable hydrogels
requiring crosslinking (gelation) to occur under physiological
conditions [Figure 2; (109, 110)], whereas implanted hydrogels
can be crosslinked in a controlled in vitro situation. Hydrogel
injection has been achieved with both synthetic (43, 111, 112) and
natural biopolymer hydrogels (109, 113–115) for stroke and other
CNS applications.

The interactions between implanted hydrogel and
endogenous brain cells have the potential to induce many
different reparative and anti-inflammatory cellular pathways,
through binding of CAPs (including RGD, IKVAV, and
YISGR motifs) to specific cell surface receptors (101). Anti-
inflammatory targets of CAPs include; cell adhesion molecules
(CAMs), which are involved in the recruitment and trafficking
of leukocytes (51, 116); integrin receptors, which in addition
to having anti-inflammatory effects can have proangiogenic
properties (115, 117, 118), reduce reactive gliosis (43, 119)
and promote the infiltration of neural progenitor cells to the
site of injury (43, 111); and growth factor receptors that can
initiate similar anti-inflammatory effects (120). CAPs can also
be used to mimic growth factors and initiate preferential cellular
pathways. For example a peptide (QK) which binds to the
vascular endothelial growth factor (VEGF) receptor has been
incorporated into a hydrogel to promote angiogenesis and may
also have an anti-inflammatory effect similar to that observed
after recombinant VEGF administration (120). Hydrogels like
this VEGF-mimetic structure could aid recovery and promote
anti-inflammatory processes following stroke, and the technique
used here could be implemented for a number of growth factor
mimetic peptides to promote the desired anti-inflammatory
actions.

FIGURE 2 | Regenerative medicine applications for treating post-stroke

inflammation. New emerging regenerative medicine approaches include

central injection of cell therapy and/or encapsulated factor loaded hydrogels,

graphene and ECM scaffolds, 3D-bioprinting of cell therapy and/or

encapsulated factor loaded bioink, gene therapy which can be implanted

directly into the site of injury. Systemic injection of nanoparticles with

encapsulated anti-inflammatory factor, nanoparticles or cell therapy can either

elicit an effect at the blood-brain barrier (BBB) or enter the parenchyma to elicit

an effect at the site of injury. Exogenous administration of new regenerative

medicine therapies could lead to the recruitment and infiltration of endogenous

stem cells to stroke site.

Tissues can be decellularised to isolate the native ECM,
which has been used to create hydrogels with anti-inflammatory
effects, whilst also aiding clearance of necrotic debris and
providing a platform for regeneration through infiltration of
endogenous cells to the stroke site (100, 121). Isolation of
single ECM components for hydrogels enables the determination
of the positive or negative effects of different biopolymers
on brain tissue, with some native ECM biopolymers inducing
an anti-inflammatory response on their own; Hyaluronic
acid (HA) hydrogels in particular have been used frequently
in stroke studies (43, 115, 122–126), owing to their anti-
inflammatory effects through CAPs binding to CD44, which
inhibits inflammation (127) as well as leukocyte rolling and
extravasation through the BBB to the brain parenchyma (128).
Similarly, gelatin has been shown to exhibit native anti-
inflammatory effects in the brain following injury through
repairing the BBB, reducing circulatory molecules and cells
from entering the brain parenchyma and shifting the microglial
response from neurotoxic to a neuroreparative phenotype (129).

Implantation of hydrogels into the brain would require
invasive surgery and therefore is a higher risk regenerative
strategy than hydrogel injection and other therapeutic
techniques, but does offer certain advantages. Through use
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of 3D-bioprinting, a printable hydrogel (bioink) and brain scans,
an implantable structure can be created with patient specific
dimensions (Figure 2). Anti-inflammatory and patient specific
bioinks can be created with use of a patient platelet-rich plasma
(PRP)—a platelet rich fraction of blood that contains a number
of growth factors—allowing for printed 3D-anti-inflammatory
structures to be implanted (130). Certain hydrogels and bioinks
require potentially toxic reagents or ultraviolet-light to initiate
crosslinking through the creation of ROS, potentially damaging
the cellular contents or initiating downstream pro-inflammatory
pathways (131). This further highlights the need for appropriate
selection of hydrogel to ensure that anti-inflammatory effects are
not negated by the production procedure.

Hydrogels for Delivery of
Anti-inflammatory Therapeutic Agents
Hydrogels can also be used as a vehicle for the delivery of
drugs, growth factors, stem cells, and NPs, to control delivery
of therapeutics over time in conjunction with the rate of
hydrogel degradation. Hydrogel degradation and gradual release
of therapeutics can be tuned to the release profile desired by
modifying the physical properties of the biopolymer, or by simply
selecting a hydrogel with the appropriate physical profile. Whilst
there has been a level of success with anti-inflammatory drugs
for post-stroke recovery, the therapeutic window and dosing
strategies of these drugs could be enhanced by encapsulation and
controlled release from a hydrogel or NP structure (Figure 2).
The half-life of drugs injected without a controlled release system
is limited, whereas when administered within a hydrogel or NP,
the drug can be present at the site of stroke damage for days or
even weeks (70, 72, 125, 132). This is a concept which can be
applied to various neurodegenerative diseases and to repairing
the nervous system, justifying the re-investigation of previously
promising drugs and drug targets in a hydrogel- or NP-based
administration system (133, 134). Controlled release has also
been used in regenerative cardiology, where the use of a hydrogel-
based oxygen release system provided a sustained release of
oxygen to cardiac tissue in a model of heart failure for up to 4
weeks, significantly reducing inflammation, ROS production and
promoting functional recovery of the damaged tissue (135). This
system could be applied to treating ischemic regions following
stroke and could allow sustained release of oxygen to promote
tissue recovery and regeneration. Hydrogels also allow for the
controlled release of NPs into the surrounding stroked tissue, for
the controlled release of anti-inflammatory NPs (45) delivering
encapsulated anti-inflammatory drugs to the site of injury (44,
125).

Conditioned media are commonly produced in in vitro
research, with astrocyte-derived conditioned media known to
improve the survival and function of other cells of theNVU (136–
138). The potential benefit of using cell-derived conditioned
media (without cells) is to implant cell secretomes without
inducing an immunogenic response from the host tissue. This
also presents the opportunity to prime cells to secrete beneficial
factors that can reduce inflammation and promote neurorepair
in the post-stroke brain (139). Recent research has shown

alterations in the secretome of mesenchymal (stromal) stem
cells (MSCs) following priming with IL-1, which promotes the
secretion of anti-inflammatory and proangiogenic growth factors
that could aid recovery (140, 141). Similarly, encapsulation
of pro-angiogenic fibroblast growth factor (FGF)-2 within a
collagen-alginate hydrogel controlled release system has been
shown to be beneficial to ischemic tissues in zebrafish models
(142). By using hydrogel controlled release systems, it is possible
to therapeutically release anti-inflammatory secretomes to aid
regeneration of damaged brain tissue.

Carbon Based Substrates
The integration of carbon-based substrates to the brain and
in hydrogels has been investigated previously for neural tissue
engineering. Two of the most commonly investigated carbon
substrates for potential stroke therapy are carbon nanotubes
(CNTs) and graphene, which have conductive properties that
promote neurons and NSC activity and survival. CNTs have been
used previously for neural tissue engineering due to their strong
conductive properties, which can promote the differentiation
and function of neurons (143, 144). CNTs, used as a substrate
within hydrogels, have been used to promote both the expression
of neural phenotypes and to secrete neurotrophic factors that
could reduce inflammation (145). The transplantation of CNTs
directly into the post-stroke brain has been shown to reduce
microglial activation in the weeks following stroke, as well as
promoting neural progenitor cell differentiation to functioning
neurons (46). The administration of CNTs before stroke also
exhibited enhanced recovery following stroke, with a reduced
level of inflammatory markers (47).

Graphene is a biomaterial consisting of carbon in a 2D plane,
like the 3D structure of graphite, but with only a single-atom
thickness. For biomedical applications, graphene is commonly
oxidized (graphene oxide, GO) to make the material hydrophilic
and to improve biocompatibility (146, 147). The structural
advantage of using GO over the 3D counterpart (graphite oxide
for instance) is the enhanced surface area and hydrophilicity
that is gained from having atom-thick layers (146). GO can be
integrated into hydrogels—as a substrate or graphene foams—
for implantation after stroke, due to its mechanical, physical, and
electrical properties (148–150). GO has been shown to have ROS
scavenging and immune modulating properties when conjugated
with a synthetic hydrogel and injected into the post-myocardial
infarction heart (151), as well as reducing neuroinflammation
in a poly-ε-caprolactone scaffold through inhibition of reactive
gliosis and subsequent reduction in glial scarring (148). This
positive immunomodulatory response shows promise for the use
of GO in hydrogel systems for stroke. More research in graphene
derivatives is needed to determine toxicity and immunogenic
responses when introduced into living systems—especially for
prolonged periods of time—before translation to humans can be
considered (152).

Stem Cell Therapies
Stem cell therapy is a promising therapeutic approach in stroke
and is a research priority (153). Stem cells can differentiate
into many cell types including neuronal and endothelial lineage,
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and it has been widely assumed that once implanted they
may promote recovery by repopulating the necrotic cavity
present within the area of ischemic damage (154). Indeed,
several studies have tested the effect of embryonic-derived NSC,
induced pluripotent stem cells (iPSCs), embryonic stem cells
(ESCs), MSCs, and bone marrow stem cells (BMSCs) in pre-
clinical stroke models (155). Further, the world’s first fully-
regulated open-label clinical trial of neural stem cell (NSC)
therapy in stroke (Pilot Investigation of Stem Cells in Stroke,
PISCES I, ReNeuron, UK), followed by the current Phase II
trial (PISCES-II) appeared safe with suggestion of functional
improvement (49), whilst autologous transplantations of MSCs
in stroke patients appear safe and are associated with clinical
improvement (156). Although it has been long assumed that cell
replacement is the primary mechanism of action of implanted
stem cells, a new paradigm of stem cell actions has recently
focused on their paracrine actions. It is known that MSCs
for instance exert unique therapeutic effects by secreting anti-
inflammatory and trophic factors that can transform the local
inflammatory environment when implanted locally (157), and
the anti-inflammatory theory has been established for other types
of stem cell (158). To induce anti-inflammatory mechanisms,
stem cells can be manipulated or genetically edited to express
certain proteins that are neuroprotective and anti-inflammatory.

A type of anti-inflammatory cell therapy is the transplantation
of stem cells that activate downstream cellular pathways and
promote infiltration of endogenous NSC to the site of stroke
injury (Figure 2). This involves the transplantation of stem cells
which have either been differentiated from iPSCs, ESCs,MSCs, or
BMSCs to a neural progenitor state, or are un-differentiated. The
delivery of neural progenitor cells to the site of injury triggers
recovery through reducing inflammation and reactive gliosis as
well as promoting angiogenesis (159). The transplantation of
un-differentiated pluripotent stem cells (iPSCs and ESCs) has
a heightened risk of teratomas and is therefore investigated to
a lesser extent (160, 161). In contrast, BMSCs and MSCs have
been shown to have beneficial anti-inflammatory effects through
inhibition of microglia activation without the heightened risk
of tumorigenesis (162). Further research is needed to try and
optimize the transplantation of pluripotent stem cells to avoid
tumorigenic complications, with the transplantation of cells
within a hydrogel of growth factors to direct differentiation
potentially offering a better therapeutic approach.

Cell therapies are commonly administered through i.v.
injection, requiring cells to cross the BBB. The selective
permeability of the brain endothelium restricts cell infiltration
resulting in much larger doses of cell therapy being needed
to have a therapeutic effect (163, 164). To circumvent this
limitation, dual therapies including stem cells administered with
biomaterial, astrocyte-derived conditioned medium or drugs
that transiently open the BBB have been considered (163,
165). Alternatively, therapies based on administration of T-
cell (Treg), known not to cross the BBB, are able to dampen
the immune response in the brain and subsequently exert
anti-inflammatory actions after stroke (166–169). The anti-
inflammatory and neuroprotective effect of Tregs occurs through
C-C Chemokine Receptor Type 5 (CCR5) interaction with the

endothelial vessel wall, which allows the Tregs to interact with
circulatorymacrophages and neutrophils (167). This information
suggests CCR5 as a potential therapeutic target for enhancing the
therapeutic effect of Tregs as well as a sole target without Treg
therapy.

Studies have reported modest recovery and highlighted the
need to develop new strategies to improve the safety and
efficacy of stem cell therapies in stroke. In vitro pre-treatment
of stem cells by specific culture conditions and/or biological
agents (also known as “preconditioning” or “priming”) can
improve the survival, engraftment, immunosuppressive and
paracrine properties of stem cells, therefore enhancing their
regenerative capacity. For MSCs, preconditioning strategies
have been explored in order to enhance the anti-inflammatory
properties of MSCs, including exposure to hypoxia/growth
factors (170) and inflammatory cytokines (171), whilst the only
preconditioning strategy in human stroke patients (STARTING-
2) tested the transplantation of autologous MSCs exposed to
autologous serum obtained at stroke onset (172). Further, the
encapsulation of cells within a hydrogel can create a pre-
made tissue to help promote brain repair following stroke. This
approach also improves the rate of stem cell survival from
implantation, as the cells have a support matrix to aid their
integration in the host tissue. This has been shown through
using a HA based hydrogel with growth factors, cell adhesion
domains (RGD, IKVAV, and YISGR) and neural stem cells, which
enhanced stem cell survival following injection in stroked mice
(122). A similar HAhas been used to inject NSC and subsequently
differentiate to a neuronal lineage (123).

Gene Therapies
The mass advancements of gene-editing technologies has
enhanced the capabilities of both cell and gene therapies, with
beneficial genes being introduced to cells in vitro or in vivo to
promote the expression of neuroprotective or anti-inflammatory
factors. These advancements also raise ethical considerations as
editing of the germ line coding sequences results in permanent
and hereditary genetic changes, as opposed to editing non-germ
line genes. In addition to ethical considerations it is important to
ensure that editing a certain gene does not have off-target effects
that could cause adverse events in patients.

The use of gene therapies offers the potential to alter
cellular and molecular processes that are important to recovery
from ischemic stroke, reducing the inflammatory response and
initiating regeneration of damaged tissue. This approach has
been used to deliver anti-inflammatory gene therapies that
promote production of VEGF (116, 173), anti-inflammatory
neural cell adhesion molecule (NCAM) (116), or IL-1Ra (50).
These therapies were administered in rodents by intrathecal
injection, but could be improved through encapsulation within
a hydrogel for injection or implantation as this would control the
release of gene-edited cells over time to increase the therapeutic
effect.

Hydrogel- and NPs-based delivery systems enable the
optimization of cell and gene therapy delivery to the site of stroke
injury. Systemically injected NPs can optimize BBB permeability
through precise surface chemistry and can be designed for
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controlled release of encapsulated cells. While hydrogels must
be injected directly to the brain, they provide ECM mimetic
support for both the encapsulated cells and the surrounding host
tissue. Like with NPs, the degradation profile of the hydrogel
biomaterial can enable the controlled release of cells to the brain;
both prolonging the application of anti-inflammatory factors
over time rather than having a short therapeutic effect.

Targeting genes that affect neuroinflammation has the
potential to be used as an effective therapy for multiple different
neurological diseases, with many of these diseases having an
inflammatory pathophysiology implicated in either disease onset
or progression (174, 175). As an example, pre-clinical Alzheimer’s
disease research has identified anti-inflammatory mediators that
could be targeted using gene therapies to modulate disease
pathology (176–178). In a mouse model of Alzheimer’s disease,
viral vectors have been used to increase gene expression of
anti-inflammatory cytokines IL-2 (178) and IL-10 (177) which
had a positive effect on pathology and cognitive function in
mice. Similar approaches to inhibit neuroinflammation have
been applied to other neurological conditions, with a multiple
sclerosis gene therapy showing neuroprotective and even disease
reversing clinical outcomes in a mouse model (179). The
principles of gene-editing that have been developed in these
neurological disease models has the potential to influence stroke
gene therapy progression, with shared inflammatory pathways in
stroke allowing for similar treatments to aid tissue regeneration
in the post-stroke brain.

CONCLUDING REMARKS

Regenerative medicine is an emerging field of interdisciplinary
research, providing potential future solutions for the treatment

of stroke and other neuroinflammatory conditions. The efficacy
of the regenerative approaches discussed in this review has been
explored mainly in pre-clinical models showing reductions in
inflammatory responses and improved recovery of brain tissue.
These pre-clinical studies form the basis of scientific evidence
to progress the translation of regenerative therapies toward
clinical applications. In particular, the use of biomaterials as
anti-inflammatory agents—or as vehicles for controlled release
of anti-inflammatory agents—in the form of NPs or hydrogels
present as attractive candidates for improving the efficacy
of stroke therapies. The development and administration of
biomaterials with appropriate physical properties to treat post-
stroke inflammation is crucial; with additional complexities and
potential advantages being acquired from the bioprinting of
implantable tissues. Overall the vast array of NPs, hydrogels,
and cell and gene therapies being investigated for the treatment
of stroke is very promising and may lead to the licensing of a
regenerative medicine inspired treatment in the years to come.
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