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Background: The current lack of effective tools for prehospital identification of Large

Vessel Occlusion (LVO) represents a significant barrier to efficient triage of stroke patients

and detriment to treatment efficacy. The validation of objective Transcranial Doppler (TCD)

metrics for LVO detection could provide first responders with requisite tools for informing

stroke transfer decisions, dramatically improving patient care.

Objective: To compare the diagnostic efficacy of two such candidate metrics: Velocity

Asymmetry Index (VAI), which quantifies disparity of blood flow velocity across the

cerebral hemispheres, and Velocity Curvature Index (VCI), a recently proposed TCD

morphological biomarker. Additionally, we investigate a simple decision tree combining

both metrics.

Methods: We retrospectively compare accuracy/sensitivity/specificity (ACC/SEN/SPE)

of each method (relative to standard CT-Angiography) in detecting LVO in a population

of 66 subjects presenting with stroke symptoms (33 with CTA-confirmed LVO), enrolled

consecutively at Erlanger Southeast Regional Stroke Center in Chattanooga, TN.

Results: Individual VCI and VAI metrics demonstrated robust performance, with area

under receiver operating characteristic curve (ROC-AUC) of 94% and 88%, respectively.

Additionally, leave-one-out cross-validation at optimal identified thresholds resulted in

88% ACC (88% SEN) for VCI, vs. 79% ACC (76% SEN) for VAI. When combined, the

resultant decision tree achieved 91% ACC (94% SEN).

Discussion: We conclude VCI to be superior to VAI for LVO detection, and provide

evidence that simple decision criteria incorporating both metrics may further optimize.

Performance: Our results suggest that machine-learning approaches to TCD

morphological analysis may soon enable robust prehospital LVO identification.

Registration: Was not required for this feasibility study.

Keywords: transcranial doppler, ultrasound, ischemic stroke, large vessel occlusion, decision tree, diagnostic

biomarker
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INTRODUCTION

Acute Ischemic Stroke (AIS) is the leading cause of long-
term disability in the United States, and fifth leading cause
of death (1). Current treatment for AIS includes the use of
intravenous tissue Plasminogen Activator, and endovascular
mechanical thrombectomy with a clot extraction or aspiration
device. Although these therapies provide effective treatment
options for Large Vessel Occlusion (LVO), their use is still
limited by short time windows from symptom onset during
which they are optimally effective (2–4). Indeed, only a small
fraction of candidate patients who could ultimately benefit
from endovascular treatment currently receive it (5). Early
LVO identification is key to enabling rapid triage and transfer
to comprehensive stroke centers, thus facilitating access to
appropriate care. Computed Tomography Angiography (CTA) is
the current gold standard for stroke diagnosis, but is limited to in-
hospital use, or a low number of prohibitively expensive mobile
stroke ambulances. Unfortunately, current prehospital stroke
assessment scales lack reliability due to training requirements and
low inherent accuracies (6, 7); causing delays in triage, transfer,
and treatment.

Transcranial Doppler (TCD) ultrasound is a reliable
diagnostic tool for assessing the presence and severity of LVO
(8–11), which has the additional advantages of being non-
invasive, inexpensive, and portable. Because it directly measures
Cerebral Blood Flow Velocity (CBFV), TCD is a strong candidate
technology for prehospital diagnosis and assessment of LVO.
Indeed, bedside TCD examinations to detect stenosed and/or
occluded intracranial vessels are routinely conducted as standard
of care at many comprehensive stroke centers (12). Numerous
studies have been published comparing TCD diagnosis of
arterial LVO with CTA imaging; reporting sensitivity (SEN) and
specificity (SPE) ranging between 79 and 98% depending on
occlusion location (13–17). A limiting factor of these studies
is the TCD operator’s ability to locate and interpret the CBFV
waveform. Such challenges have contributed to TCD being
critically underutilized for stroke assessment.

For stroke diagnosis, specialized training is required to
inspect flow velocity and morphology across multiple vessels
and depths in both cerebral hemispheres. One of the most
cited papers for stroke diagnosis using TCD was published by
Demchuk et al. (10), which instructs the operator to categorize
waveforms according to evidence of stroke-related pathology;
namely dampened, blunted, minimal, or absent signal. A number
of additional TCD exam methodologies with different criterion
for LVO assessment have been published (15, 17). Typically,
CBFV and power M-mode (PMD) waveforms are obtained
for flow through the Middle, Anterior, and Posterior Cerebral
Arteries (MCA, ACA, and PCA) in each cerebral hemisphere, as
well as the Internal Carotid Arteries (ICA). Heuristic assessments
are then made based on numerous features, including relative
velocities, collateral flow, PMD resistance signatures, and the
presence of pathological waveform morphologies.

Assessment of these categories relies heavily on qualitative
interpretation by specialists which cannot be replicated by
less formally trained personnel. The challenge of moving LVO
detection to the prehospital setting thereby obviates the need

for objective metrics by which first responders might reliably
evaluate TCD signals. An intuitive first candidate for such a
metric is CBFV asymmetry, as it is already well established
that velocity disparity, both between homologous vessels in
opposite hemispheres (10, 18) as well as adjacent vessels in
an occluded hemisphere (10, 15), can be indicative of vascular
occlusion. One promising metric for LVO detection based on
velocity disparity was published by (15); showing area under
the Receiver Operating Characteristic curve (ROC-AUC) of
92.6%. However, their metric also relied on PMD resistance
signatures as a predictive feature, which were not objectively
computed, and was limited in application to occlusions of
the MCA.

However intuitive, assessment of velocity asymmetry also
comes with the inherent concern that velocity estimates in
adjacent vessels and opposite hemispheres can be greatly
impacted by anatomical variability (incident angle of the vessel
and ultrasound beam), as well as by intrarater measurement
inconsistency (19). Moreover, reliance on mean velocity
disparity inherently discards the morphological information
currently utilized in routine stroke assessment protocols.
Such assessments incorporate morphological information
explicitly, but in a subjective manner which requires expert
interpretation. However, a number of recent studies have
observed morphological changes associated with various medical
conditions which are both objectively quantifiable (20–22),
and independent of significant changes in mean velocity (23).
Pulsatility Index is an example of a well known and widely
clinically utilized morphological TCD variable (24); one which
evidence suggests is not useful for detecting LVO (15).

Toward the aim of quantifying TCD waveform morphology
for the purpose of LVO identification, we have recently proposed
a diagnostic biomarker termed Velocity Curvature Index (VCI)
(25, 26). Mathematically, it is a straightforward extension of
the concept of graph curvature; one which is sensitive to the
morphological structure of the pathological waveforms first
described by Demchuk et al. (10). In this work we retrospectively
compare the diagnostic utility of VCI to that of a standard
Velocity Asymmetry Index (VAI) for the detection of LVO in a
clinical subject population collected in-hospital. Additionally, we
evaluate a simple decision tree classifier designed to incorporate
complimentary information from both metrics. Decision trees
are a commonly used diagnostic methodology in several areas of
medicine (27, 28), which have previously been used with TCD
variables to screen for cervical vascular injury (29). To these
ends, we employ leave-one-out cross validation and subsequent
sensitivity analysis to assess performance as diagnostic thresholds
are weighted toward detection of true positives. Our goal is the
validation of TCD-based decision criteria which are objective,
intuitive, and easily communicated; allowing physicians
and first responders alike a common language for LVO
assessment.

MATERIALS AND METHODS

Subject Examination and Imaging
We acquired TCD waveforms from two clinical populations
enrolled consecutively at Erlanger Health System’s Southeast
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Regional Stroke Center in Chattanooga, TN, from October 2016
through September 2017. The LVO group was comprised of
patients with CTA-confirmed occlusion of the M1/M2 branches
of the MCA and/or ICA (proximal extracranial or terminal
intracranial segments); these occlusion locations being selected
since they are the large cerebral arteries most amenable to
neurovascular intervention. The In-Hospital Control group
(IHC) consisted of patients who arrived at the hospital presenting
with stroke symptoms, but were later confirmed negative for LVO
by imaging. Patients in both groups received TCD examinations
in addition to standard care (patient history, monitoring,
pharmaceuticals, and CT/A/perfusion imaging). Patients were
eligible for enrollment if a complete TCD exam was acquired
within 4 h of CTA, and none of the following exclusions applied:
(1) Head CT findings consistent with acute primary intracranial
hemorrhage, (2) Hemodynamically unstable patients requiring
pharmacological support for hypotension; (3) Subjects who
underwent partial or full craniotomy; (4) Additional intracranial
pathologies present (tumor, hydrocephalus, etc.); (5) Anticipated
insufficient time to acquire a complete set of scan as described
by the protocol; (6) Significant hemodynamic pharmacological
agent (cocaine, amphetamine, etc.); (7) Subjects who are under
arrest for a felony.

CTA examinations were performed using a GE Lightspeed
VCT 64-section multidetector scanner (GE Healthcare,
Milwaukee, WI) with a slice thickness of 0.625mm, and bolus
injection of 70–150mL of Omnipaque 350 (GE Healthcare,
Milwaukee, WI) contrast material (4.0 mL/s). CTA images
were reformatted in the coronal and sagittal plane, and 10-mm
maximum intensity projection reconstructions were rendered
and sent to PACS for review. Occlusion location was determined
by the radiologist on call, who was blinded to any results of the
TCD examination.

Complete TCD examinations included (at minimum) one pair
of left/right MCA scans at depths between 45 and 60mm, each
containing 15 or more individual beat waveforms (see Figure 1).
Subjects for whom complete examinations were not obtained
were counted as missing/indeterminate data and excluded from
analysis. Data was acquired during available intervals between
patient testing/treatment, and in no way impacted patient
care. The TCD technician was often present during initial
evaluation of the subject, and so was not entirely blinded to
all clinical information or imaging results. Sample size was
not predetermined for this feasibility study, being established
pragmatically as the maximum number of subjects attainable in
the allotted time frame. Experiment protocols were approved
by University of Tennessee College of Medicine Institutional
Review Board (ID: 16-097). Reporting in this manuscript is
structured in accordance with the Standards for Reporting of
Diagnostic Accuracy Studies [(30); see Appendix for detailed
criteria checklist].

Waveform Processing and Feature
Extraction
Recording
TCD scans were acquired by a trained technician using 2 MHz
hand-held ultrasound probes. CBFV signals associated with

the left/right MCA were identified via insonation through the
transtemporal window. CBFV envelopes were digitally sampled
at 125Hz and recorded throughout the entire exam. Once the
CBFV signal was identified and optimized at a specific depth,
waveform recordings were then made in 30-s intervals. The
technician was instructed to obtain recordings for asmany depths
as possible between 45 and 60mm in both the left/right cerebral
hemispheres. Start times for each interval were marked by the
technician using a custom event remote, which prompted a 30 s
countdown to a corresponding stop event. TCD envelopes and
event information were aligned using custom software (Python
2.7; Kivy 1.9) running on Windows 10.

Processing
Average beat waveforms from each recorded depth interval were
extracted using a combination automated beat identification
algorithm with manual checking/editing. In this procedure,
individual beats within each interval were first identified
automatically using an internally developed beat extraction tool,
and displayed to the user for manual confirmation/editing.
Detected beats which lacked clear pulsatile structure and/or
deviated anomalously from the group average (usually due
to probe displacement during recording), were excluded. The
remaining beats were then aligned and averaged, resulting in
a single representative beat waveform for each recorded depth
interval (see examples in Figure 1).

Since Doppler velocities scale with the cosine of the incident
angle between the ultrasound beam and underlying blood flow
(31), TCD waveforms for a given vessel with the highest
measured velocities are assumed tomost accurately reflect reality.
In line with this reasoning, for each subject we selected a
single bilateral (left/right) pair of average beat waveforms for
analysis consisting of those with maximal mean velocity across
all recorded depths for each hemisphere.

VCI
Curvature is a well-defined mathematical property of space
curves which quantifies the degree to which a curve deviates from
being “straight” at a given point. VCI is an application of the
curvature metric specific to TCD which quantifies the degree to
which a beat is blunted and/or dampened. Since curvature is a
nonlinear function sensitive to small inflections associated with
high frequency noise, we first smooth the average beat waveform
via convolution with the Hanning window (9ms). Moreover, we
elect to consider only curvature associated with the beat systolic
complex, where the signal-to-noise ratio is presumably greatest.
The systolic complex, or “beat canopy,” comprises the proportion
of the beat with the highest velocities and richest morphological
structure.

To compute VCI for a given TCD beat waveform, curvature
is first computed for each time point (ti) of the smoothed beat
(denoted x(ti) below) via the discretized equation for graph
curvature (equation 1) expressed in terms of finite differences.
1 and δ

2 in equation 1 denote the first order backward (equation
2) and second order central (equation 3) finite difference
equations. VCI, defined by equation 5, is computed as the sum
of curvature taken over all individual time points comprising
the beat canopy (C). The beat canopy is defined in equation 4
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FIGURE 1 | Example beat waveforms from IHC (A), and LVO (B) groups, along with associated group averages (C,D). The IHC example subject recordings shown in

A display high VCI in both hemispheres, and relatively symmetric bilateral velocities (VAI = 0.95). The LVO subject recordings depicted in B show decreased VCI which

is especially pronounced in the ipsilateral hemisphere (same side as occlusion as confirmed by CTA), as well as less symmetric velocity (VAI = 0.69). Light gray traces

in (A), and (B) depict the individual beat ensemble (recorded over 30 s) from which each average beat waveform is derived. Grand averages across average beat

waveforms for all subject recordings are shown in (C,D). The IHC grand averages shown in C exhibit similar expected velocity across left and right hemispheres,

whereas LVO grand averages (D) exhibit pronounced inter-hemisphere disparity relative to occlusion location, with markedly reduced curvature especially noticeable in

ipsilateral recordings.

as the set of time points wherein velocity exceeds one quarter
of its total diastolic-systolic range (td, and ts denoting the time
points corresponding to diastolic minimum and systolic max,
respectively). Since the hypothesized effect of occlusion on the
TCD waveform is to lower VCI in the occluded vessel, when
assessing a bilateral pair of waveforms we take VCI as the
minimum computed for each member of the pair. VCI is a
positive metric which, in principle, has no upper bound, but is
clearly bounded in practice (see Figure 2A).

k (ti) =

∣

∣δ2 [x] (ti)
∣

∣

(

1+ (1 [x] (ti))
2
)
3
2

(1)

1 [x] (ti) = x (ti) − x (ti−1) (2)

δ2 [x] (ti) = x (ti+1) − 2x (ti) + x (ti−1) (3)

C =

{

i : x (ti) > x (td) +
x (ts) − x (td)

4

}

(4)

VCI =
∑

i∈C
k (ti) (5)

VAI
Velocity Asymmetry Index is ametric which quantifies the degree
to which average CBFV observed for a vessel in a given cerebral
hemisphere differ from that observed in the corresponding vessel
in the opposite hemisphere (see LVO example in Figure 1). The
hypothesis that CBFV in an occluded vessel may be lower than
that of the corresponding unaffected hemisphere is intuitive, but

also supported by previous work (18). For a bilateral pair of
left/right average beat waveforms, denoted xL(t) (with NL total
time points), and xR(t) (with NR time points) in equations 6 and
7, respectively, VAI (defined in equation 8) is computed as the
minimum average velocity across hemispheres divided by the
corresponding maximum. By definition, VAI is a positive definite
metric bounded on the closed interval [0, 1].

µL =
1

NL

∑NL

i=1
xL (ti) (6)

µR =
1

NR

∑NR

i=1
xR (ti) (7)

VAI =
min ({µL,µR})

max ({µL,µR})
(8)

Feature Statistical Analysis
For both VCI and VAI, resultant group samples were not
normally distributed. Accordingly, we tested significance of
observed differences in group distributions for each feature using
the Mann-Whitney U test statistic. The U-statistic is directly
proportional to the common language effect size (by a factor
of the product of the group sample sizes under comparison),
which is equivalent to the area under the Receiver Operating
Characteristic curve (ROC-AUC). Additionally, we computed
ROC curves detailing separability of subject group distributions
(LVO vs. IHC) for each feature. Specifically, the ROC curves give
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FIGURE 2 | Scatter plots relating the Velocity Asymmetry Index and Velocity Curvature Index (A), along with a decision tree partitioning the two-dimensional feature

space (B).

True Positive Rate (TPR) as a function of False Positive Rate
(FPR) for each possible feature threshold. To quantify binary
classification performance, we computed SEN, SPE, and accuracy
(ACC) at the thresholds which maximized Youden’s J-statistic
(32):

J=TPR−FPR (9)

Additionally, we bootstrapped 95% confidence intervals (CI)
on group means for each feature; accomplished by iteratively
resampling each group distribution with replacement (10,000
iterations), and each time taking the mean (CI given by the 2.5th
and 97.5th percentile of the resultant empirical distribution) (33).
Statistical tests and ROC curves were computed using standard
python libraries; SciPy version 1.0, and Scikit-learn version 0.19.1
(34), respectively.

LVO Classification
Decision Tree Classifier
We sought to combine VCI and VAI into a single binary classifier
with simple and intuitive decision criteria. The approach adopted
here is to augment the bilateral VCI assessment such that
subject pairs with VCI less than some low critical threshold are
classified as LVO, whereas pairs exceeding some high critical
threshold are classified as IHC. Pairs observed to fall between
these thresholds are deemed uncertain and decided then based
on VAI. This procedure effectively partitions the 2D decision
space into two subspaces with piece-wise linear boundaries (see
Figure 2). The procedure for fitting the thresholds based on a
given set of training data were as follows. First, the low VCI
threshold (VCIMIN) was fit using all the training data. Subjects
with paired VCI below the threshold were predicted as LVO,
and set aside. Next, the high VCI threshold (VCIMAX) was fit
from the remaining data. Subjects with supra-threshold VCI were
predicted as IHC, and set aside. Finally, the remaining data was
used to fit the VAI threshold (VAICRIT), with sub/supra-threshold
subjects predicted as LVO/IHC, respectively. Specifically, each of

the three thresholds (VCIMIN , VCIMAX , and VAICRIT) were fit as
the threshold which maximized Youden’s J statistic for the data
applicable to each decision (see also the sensitivity weighted J-
statistic used to determine thresholds for sensitivity analysis in
section Sensitivity Analysis).

Model Cross-Validation
For both individual diagnostic metrics (VAI and VCI), as well
as the decision tree model, leave-one-out cross-validation was
performed to assess generalization of classification performance
near decision boundaries. In this iterative procedure, a single
subject is removed from the pooled data, and the predictive
model is derived via training (i.e., threshold optimization)
with the remaining subjects. The excluded subject’s data is
then predicted using the trained model, and this procedure is
repeated for each subject to obtain a complete set of cross-
validated predictions from which to assess binary classification
performance metrics (SEN/SPE/ACC).

Sensitivity Analysis
For many clinical problems, including LVO detection, diagnostic
net benefit is optimized by increased detection of true positives
at the cost of missing true negatives (i.e., SEN is prioritized
over SPE). However, poor diagnostics for which SEN is
maximized often have no clinical value, as SPE may plummet
and overall ACC approaches chance. In order to assess how
performance characteristics of our classifiers changed when
priority is weighted toward increased sensitivity, we performed
a sensitivity analysis wherein we iterated cross-validation of
each model, each time incrementing classification thresholds
away from the starting point of Youden’s maximal J, toward
increasing sensitivity. The procedure can be conceptualized as
simply adjusting the thresholds up along the associated ROC
curves toward increased true positive rate. Mathematically, this
was accomplished by introducing a parameter (α) to modify
the formula for Youden’s J statistic as given in formula 9,
and choosing thresholds to maximize the resultant index (Jα).
Classifier performance was assessed by cross-validating each
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model with α ranging from 0.5 (threshold equivalent to Youden’s
maximal J) to 1 (maximal sensitivity) in steps of 0.01.

Jα=αTPR− (1−α) FPR (10)

RESULTS

Subject Demographics
The current analyses included 33 LVO subjects (16 female),
and 33 IHC subjects (13 female), with average ages of 66.9
years (SD = 15.7), and 56.4 years (SD = 16.3), respectively.
A total of 156 subject screenings were attempted at Erlanger
Medical Center, of which 68 were excluded due to screening
failures (time required to complete exam, subject compliance,
etc.). Of subjects with sufficient initial screenings, 50 and 38
were initially enrolled in the LVO and IHC groups, respectively.
Of the LVO subjects, 3 were discontinued (subject either
expressed desire to discontinue, or was transferred or died
before enrollment could be completed). An additional 14 LVO
and 5 IHC subjects were subsequently excluded due to the
presence of disqualifying criteria unknown at the time of
enrollment. In the LVO group, there were 20 subjects with M1
occlusions, 3 with M2 occlusions, and 8 with ICA occlusions. An
additional subject had dual occlusions of both the M1 and ICA
(same hemisphere), and another additional subject had bilateral
occlusions of both ICA, in addition to an M2 occlusion. TCD
exams were performed an average of 33min (SD = 20) post-
CTA for IHC subjects compared to 43min (SD = 44) post-
CTA for LVO subjects (difference not significant between groups;
t = −1.15, p = 0.26). At time of admittance, LVO subjects
were more physiologically/cognitively impaired as assessed by
National Institute of Health Stroke Scale (NIHSS), with average
scores of 16.8 (SD = 6.6), compared to 1.9 (SD = 2) for IHC
(differences strongly significant between groups; t = −12.2; p
<< 0.001). No adverse events were reported for any subjects as a
result of TCD examination.

Individual Metric Statistical Comparisons
Figure 3 shows VAI and VCI metric distributions for LVO
and IHC groups (A, C), and associated ROC curves depicting
separability of group metrics (B, D). VAI means were greater
for IHC subjects (0.89, CI = 0.86–0.92) relative to LVO (0.65,
CI = 0.58–0.72). Associated ROC-AUC was observed at 88.4%,
with significant group distribution differences confirmed by
Mann-Whitney testing (p << 0.001). Similarly, VCI means
were greater for IHC subjects (4.95, CI = 4.55–5.36) relative
to LVO (2.66, CI = 2.38–2.97); with associated ROC-AUC
observed at 94.2%. Significant group distribution differences
were likewise confirmed byMann-Whitney testing (p<< 0.001).
SEN/SPE/ACC at thresholds corresponding to Youden’s maximal
J are detailed in Table 1 for both metrics.

Sensitivity Analysis
Figure 4 shows SEN, SPE, and ACC dependence on the alpha
weighting parameter using leave-one-out cross-validation for
each classifier. By definition, the sensitivity of each classifier
increases with increased alpha. Interestingly, performance

FIGURE 3 | Group feature distributions (A,C) were significantly different for

both metrics (p << 0.001). Associated ROC curves (B,D) confirm both VAI

and VCI provide diagnostically relevant information concerning the presence of

LVO, with the greater separability observed for VCI suggesting it more

information rich.

TABLE 1 | Descriptive information and performance indicators comparing LVO

and IHC groups for VAI and VCI metrics at thresholds corresponding to Youden’s

maximal J statistic.

Metric Mean (LVO,

IHC)

CI (LVO, IHC) AUC SEN SPE ACC

LVO VS. IHC GROUP METRICS

VAI 0.65, 0.89 (0.58–0.72),

(0.86–0.92)

0.88 0.82 0.82 0.82

VCI 2.66, 4.95 (2.38–2.97),

(4.55–5.36)

0.94 0.91 0.88 0.89

In column 3, CI refers to 95 percent Confidence Intervals around the respective means

given in column 2.

indicator trajectories vary substantially between the VAI classifier
and the other two (VCI and decision tree). For VAI, observed
SPE and ACC are optimal near the maximal J (alpha =

0.5), and rapidly degrade with increased prioritization of SEN
corresponding to alpha greater than 0.6. In contrast, for VCI
and the decision tree, a stable range of alpha exists away from
the maximal J for which SPE, and ACC are optimized and all
performance indicators are stable. This range, roughly 0.6–0.8, is
indicated in gray in Figure 4. Above this range, SEN increases for
VCI and decision tree are accompanied by precipitous decreases
in ACC and SPE. Together these results suggest a natural optimal
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alpha range for prioritization of sensitivity for the VCI and
decision tree classifiers.

Figure 5 shows cross-validated confusion matrices for each
classifier with alpha specified at 0.6, which represents the start
of the optimal range for the VCI and decision tree classifiers, and
the tail end of the optimal range for the VAI classifier. For VAI,
we observed an overall accuracy of 79%, with SEN/SPE of 76%,
and 82%, respectively. For VCI, we observed an overall accuracy
of 88%, with SEN/SPE of 88%, and 88%, respectively. Finally, for
the decision tree we observed an overall accuracy of 91%, with
SEN/SPE of 94%, and 88%, respectively. Together, these results
demonstrate the superiority of the VCI classifier relative to VAI.
However, within the framework of the decision tree, VAI helped
to increase SEN of LVO identification relative to VCI alone.
Figure 5 results are summarized in Table 2.

DISCUSSION

To our knowledge, this work represents the first published
LVO decision criteria based on TCD variables which can be

computed algorithmically and interpreted objectively. Results
from all classifiers fall into the range observed in previous TCD
studies using complex multi-vessel recording protocols (13, 17).
Moreover, previous studies using predictive variables amenable
to ROC analysis have not been subject to cross-validation in
the manner we have performed here. Most importantly, these
metrics substantially outperform stroke severity scales currently
in prehospital use, which recent reviews suggest are unlikely to
predict LVO with both high sensitivity and specificity (6, 7).
Specifically, (6) published performance indicators for 5 such
stroke assessment scales (RACE, 3ISS, LAMS, CPSSS, and PASS);
reporting ACC and SEN capped at 74 and 64% across all scales.
A sense of the potential for improvement upon these numbers
can be gleaned from our simple decision tree which achieved
cross-validated ACC and SEN exceeding 90%.

Previous work assessing TCD efficacy in detecting LVO align
well with our current results. Tsivgoulis et al. (17) detected
occlusions and stenoses based on the presence of the pathological
waveforms described by Demchuk et al. (10) with SEN/SPE
of 79 and 94%, respectively. A similar exam protocol was

FIGURE 4 | Cross-validated performance indicators for the VAI (A) and VCI (B) metrics as well as combined decision tree classifier (C). Sensitivity increases with the

alpha weighting parameter as specificity decreases. VAI specificity decreases rapidly with increased sensitivity, whereas VCI and the decision tree display a stable

range (indicated in gray) wherein specificity and accuracy are optimal.

FIGURE 5 | Confusion matrices at the specified threshold corresponding to alpha = 0.6 in the optimal range for VAI (A), VCI (B), and the Decision Tree Classifier (C).
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TABLE 2 | Performance indicators for leave-one-out cross-validated classifiers

comparing LVO and IHC groups, with classification thresholds specified at alpha

equal to 0.6.

Classifier SEN SPE ACC

CROSS-VALIDATED LVO CLASSIFIER PERFORMANCE METRICS

VAI 0.76 0.82 0.79

VCI 0.88 0.88 0.88

Decision tree 0.94 0.88 0.91

used by Brunser et al. (13), but with additional power M-
mode criteria also considered, which achieved SEN/SPE of 90
and 94% detecting occlusion of any non-specific artery. The
sensitivity and specificity observed for our metrics compare
reasonably well with these previous results, which is especially
encouraging considering our features were extracted from
bilateral examination of a single vessel. Reliance on the MCA
signals is pragmatic, but also represents a notable opportunity
for improvement upon our current experimental paradigm.
The MCA possesses the longest expected segment of probeable
depths, and is thus most easily insonated and reliably located,
but there is clearly more diagnostic information available
in other vessels in the form of relative morphology and
collateral flow which may improve performance in future
experiments.

It is notable that the performance indicator curves we
observed for VCI and the decision tree were extremely similar.
This is a natural consequence of the decision criteria, which
dictates that VAI is used only to decide “uncertain” subjects,
thus serving mainly to improve upon VCI sensitivity to
the degree allowable by the training data. Further work is
needed to determine if there are specific occlusion types or
patient demographics for which each metric works particularly
better or worse, which should help to optimize decision
criterion. In this configuration, VCI is doing the “heavy
lifting” in our decision tree. It is an effective diagnostic
metric because it is sensitive to the morphological structure
of Demchuk’s minimal, blunted, and dampened flows (10).
The blunted waveform, for example, possesses an inherently
smooth (i.e., low curvature) systolic complex, and is thus
readily quantified by VCI. Forthcoming work will analyze in
specific detail the manner in which VCI captures the subtle
morphological variations associated with pathological LVO
waveforms.

Some limitations of our study and directions for future work
should be noted. The primary factor which could potentially
inhibit generalisability of our results is the small sample
size of our study. Much further data is required to refine
estimates of morphological variability inherent in LVO and
clinical control patient populations. Additionally, numerous
important subgroup analyses are required to determine if/how
TCD morphology depends on demographic and clinical factors
(age, gender, occlusion type, etc). It should also be noted that
the TCD technician’s exposure to patient clinical information
represents a potential source of bias which should be mitigated in
future work bymore thorough blinding. Finally, the relationships

between curvature, heart rate, and stroke pathology require
further investigation. In our sample, LVO subjects had an average
heart rate of 87.9 (SD = 22.2) beats per minute (BPM), vs.
71.2 (SD = 11) BPM for IHC; which was significantly different
between groups (t = 3.8, p < 0.001). However, there was no
significant correlation between heart rate and curvature within
either subject group (r = −0.006, p = 0.9 for IHC; r = −0.29,
p = 0.1 for LVO). Moreover, when we use heart rate itself as a
predictor to distinguish between groups, we observe an AUC of
73%, considerably underperforming both the VAI (88% AUC),
and VCI (94% AUC) metrics. So, while it is possible that heart
rate accounts for some degree of variance between groups, it
remains unclear whether the effect is causal or correlative. It is
certainly plausible that the lack of blood supply characteristic of
LVO causes heart rate to increase; meaning heart rate is effectively
part of the diagnostic signal. Further work is needed to establish
how elevated heart rate might affect VCI when occlusion is not
present.

One strength of the current approach is simplicity of data
acquisition and communicability of decision criteria. However,
as the amount of data we acquire increases, the subtle
variations we will ultimately wish to detect will undoubtedly
require more complicated and abstracted models. Given the
efficacy of initial results, the road map to such models is
encouraging. Incorporation of depth dependent and inter-
hemispheric morphological dynamics across multiple vessels
might ultimately allow precise prehospital localization of
occlusion, and distinction between occlusive and hemorrhagic
strokes. Moreover, digital rendering of individual subject
vasculature, currently possible with emergent technologies such
as 3D MRA time of flight imaging, could facilitate ultra
rapid mapping and scanning across multiple vessels, as well
as development of anatomically realistic mathematical models
of cerebral hemodynamics. Such models could dramatically
increase our understanding of the fluid mechanics involved in
vascular occlusion, and the associated impact on morphological
biomarkers like VCI.

CONCLUSIONS

Our results suggest both VAI and VCI contain robust
information concerning the presence of intracranial occlusion.
Both are objective and real-time computable, and thus represent
promising candidate metrics for the development of TCD-based
prehospital LVO diagnostic systems. The feature distributions
and classification performance indicators we observed suggest
VCI may be superior to VAI for LVO detection, but even
simple approaches to feature combination such as the decision
tree analyzed herein may serve to further increase diagnostic
accuracy. More data is needed to determine how well these
decision criteria scale and generalize to a wider range of
subject demographics and pathologies. Nonetheless, these results
demonstrate the foundational potential for machine-learning
approaches to TCD morphological analysis to enable faster and
more widespread access to life saving medical intervention in the
future.
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