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The blood-brain barrier (BBB) prevents effective delivery of most therapeutic agents to

the brain. Intra-arterial (IA) infusion of hyperosmotic mannitol has been widely used to

open the BBB and improve parenchymal targeting, but the extent of BBB disruption

has varied widely with therapeutic outcomes often being unpredictable. In this work, we

show that real-time MRI can enable fine-tuning of the infusion rate to adjust and predict

effective and local brain perfusion in mice, and thereby can be allowed for achieving

the targeted and localized BBB opening (BBBO). Both the reproducibility and safety are

validated by MRI and histology. The reliable and reproducible BBBO we developed in

mice will allow cost-effective studies on the biology of the BBB and drug delivery to the

brain. In addition, the IA route for BBBO also permits subsequent IA delivery of a specific

drug during the same procedure and obtains high targeting efficiency of the therapeutic

agent in the targeted tissue, which has great potential for future clinical translation in

neuro-oncology, regenerative medicine and other neurological applications.

Keywords: blood brain barrier, intra-arterial, mannitol, MRI, mouse model

INTRODUCTION

The treatment efficacy for many central nervous system (CNS) diseases is hindered by limited
access to therapeutic agents. The poor drug penetration is mainly caused by the blood-brain barrier
(BBB), which sequesters the CNS from the systemic circulation. As a consequence, more than
98% of the pharmaceutical agents do not enter the brain after intravascular delivery (1–3). Thus,
strategies are needed that will safely and efficiently disrupt the BBB. Intra-arterial (IA) mannitol
followed by the infusion of therapeutic agents, including chemotherapeutics, gene vectors, and
stem cells, has been the primary method by which therapeutics have been delivered across a
disrupted BBB for several decades, both in preclinical models and in clinical studies (4–8). However,
osmotic BBB opening (BBBO) proved highly variable and inconsistent (9), as it is affected by
multiple factors, including the mannitol dose, injection speed, vascular anatomy, and cerebral
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hemodynamics (10). This complexity and the inconsistent
outcomes have resulted in highly variable published protocols
(11–14).

The vast majority of previous preclinical reports on BBBO
used rats or larger animals, because of the technical challenges
that are encountered in mice. Our motivation to establish a
reliable and safe protocol for BBBO in mice was that mice are low
cost and are used for the majority of disease modeling studies.
There is also an abundance of transgenic mice, indispensable for
gaining insights into a variety of disorders (15, 16). Furthermore,
our previous IA injection experiments in several species (10,
17–19) have shown the value and importance of monitoring
local trans-catheter perfusion with MRI, allowing real-time
adjustment of infusion parameters for precise and predictable
BBBO and/or delivery of therapeutic agents at physiologically
relevant, non-damaging infusion rates. We report here on a safe
and reproducible technique to disrupt the local BBB in mice
under the guidance of interventional MRI. We believe that, with
our approach, the method to achieve BBBO can be reconsidered
and can be re-established as a precise and effective technique that
can facilitate drug delivery to the brain.

MATERIALS AND METHODS

Anesthesia and Carotid Artery
Catheterization
All procedures were approved by The Johns Hopkins Animal
Care and Use Committee. Male SCID mice (6–8 weeks old, 20–
25 g, Jackson Laboratory) were anesthetized with 2% isoflurane.
The common carotid artery (CCA) bifurcation was exposed
and the occipital artery branching off from the external carotid
artery (ECA) was coagulated. The ECA and the pterygopalatine
artery (PPA) were temporarily ligated with 4–0 silk sutures. A
temporary ligature using a 4–0 suture was placed on the carotid
bifurcation and the proximal CCA was permanently ligated.
A microcatheter (PE-8-100, SAI Infusion Technologies) was
flushed with 2% heparin (1,000 units per ml, heparin sodium,
Upjohn), inserted into the CCA via a small arteriotomy and
advanced into the internal carotid artery. Before cannulation, a
droplet of glue was added to the outer surface of the catheter to
tightly ligate the catheter to the vessel.

Interventional MRI
Themice with a secured intra-arterial catheter were positioned in
a Bruker 11.7TMRI scanner. Baseline T2 (TR/TE= 2,500/30ms)
and T1 (TR/TE 350/6.7ms)-weighted and dynamic Gradient
echo-echo planar imaging (GE-EPI, TR/TE 1250/9.7ms, field
of view (FOV) = 14, matrix = 128, acquisition time = 60 s
and 24 repetitions) images of the brain were acquired. A
superparamagnetic iron oxide (SPIO) nanoparticle formulation

(Feridex
R©
, dissolved in saline at 1:30; 0.3mg Fe/ml) was infused

intra-arterially at rates between 0.05 and 0.20 ml/min under
dynamic GE-EPIMRI to predict perfusion territory and optimize
that territory to the desired size and location. An infusion
pump (PHD 2000, Harvard Apparatus Inc.) was used to control
SPIO administration. The routine was to start injections from
the lowest speed, and then increase it at increments of 0.05

ml/min until an effective perfusion area was achieved. Then,
25% mannitol was delivered via an IA route over 1min at
a speed determined by previous contrast agent injection. Five
minutes after mannitol injection, mice received 0.07ml of
gadolinium (Gadoteridol, 279.3 mg/mL) intraperitoneally. T1-
weighted images were obtained post-gadolinium to visualize BBB
integrity (20).

Histological Validation of BBBO
For histological evaluation of BBBO, 0.1ml of IA 2% w/v Evans
blue (EB) or rhodamine red (1 mmol/l) were subsequently
administrated intra-arterially at the same rate as mannitol.
The brains were harvested right after injection and without
perfusion to avoid the clearance of the both imaging agents. For
EB verification, frozen coronal brain slabs (1-mm) were sliced
on a cryostat. For the detection of rhodamine, the brain was
cryosectioned at 30µm and fluorescent images of rhodamine
biodistribution were acquired.

Immunohistochemistry to Evaluate the
Safety of BBBO
Seven days after BBBO, animals were transcardially perfused
with Five percent sucrose and then with Four percent
paraformaldehyde. The brains were cryopreserved in 30%
sucrose and cryosectioned at 30-µm. Primary antibodies and
dilutions were used as follows: anti-GFAP (1:250, Dako); anti-
Iba1 (1:250, Wako); and anti-NeuN (1:100, Cell Signaling
Technology). The secondary antibody was goat anti-rabbit (Alexa
Fluor-488, 1:200, Molecular Probes).

Image Processing and Statistical Analysis
Quantitation of immunohistochemistry results was based on
relative fluorescence using Image J and analyzed with Mann-
Whitney U-test. While stereology is more accurate and
appropriate when absolute cell numbers are essential, in case of
microglial or astrocytic activation both cell number and signal
intensity are relevant, thus we measured relative fluorescence.
The MRI analysis of the change in area of the SPIO perfusion
territory and Gd-enhancement for each mouse was calculated
by a custom-written script in MATLAB and also analyzed
with Mann-Whitney U-test. A Pearson correlation coefficient
comparing the above-mentioned areas was calculated using
GraphPad software.

RESULTS

Real-Time MRI for Prediction of
Trans-catheter Perfusion Territory Using
SPIO
The infusion of SPIO results in a drop of T2∗ hypointensity on
MRI, which immediately clears once the infusion is stopped.
This T2∗ hypointensity in the brain can be sampled by GE-
EPI at a temporal resolution of 2 images each second, which
allows precise temporo-spatial visualization of the parenchymal
perfusion territory. Initially, our transcatheter SPIO contrast
delivery was set at 0.05 ml/min, and in those animals in
which no drop of T2∗ intensity was observed, we increased
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the speed at increments 0.05 ml/min, until the contrast agent
appeared on real-time MRI. There was no need to increase
the speed over 0.15 ml/min, which resulted in satisfactory and
reproducible brain perfusion, as visualized by a characteristic
reduction in signal intensity for the duration of the injection
bolus (Figures 1a,b). Notably, increasing the infusion speed
to 0.2 ml/min resulted in delayed brain injury, as shown by
an abnormal signal on T2-weighted images and pathological
changes on histology (Supplemental Figure 1). In addition, the
injection rate for a satisfactory perfusion territory varied among

mice, necessitating the titration of the injection speed for each
animal.

Real-Time MRI for Precise and Local
BBBO Using Mannitol
Immediately after the optimal infusion rate was determined for
a particular mouse using SPIO, IA mannitol was infused at that
rate for 1min. To clearly present the MRI images, the signal
change maps of SPIO-perfusion and Gd-contrast enhancement

FIGURE 1 | Real-time MRI to predict BBBO territory and histological validation. (a) Representative T2* images before, 34, and 72 s after infusion of SPIO at a rate of

0.15 ml/min. (b) Dynamic signal changes of the two ROIs marked in (a). (c) Contrast enhancement map at 34 s after SPIO infusion. (d) Histogram analysis of pixel

intensities in (c), showing two Gaussian distributions (red lines). Blue arrow points to where a cut-off of−53.9% was applied to separate the two distributions. (e)

Segmented map shows the area where the relative signal change was smaller than −53.9%. (f) Contrast enhancement map, (g) histogram analysis, and (h)

segmented map (1S% > 31.4) at 5min after i.p. injection of Gd. (i) Bar graph and (j) correlation analysis of the BBBO territory predicted by SPIO and that assessed

using Gd (n = 4, mean ± SD). The histological analyses show the region with extravasation of Evans blue (k) and rhodamine (l, m); (m) shows the zoomed-in area

indicated by the white square in (l) following mannitol injection.

Frontiers in Neurology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 921

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chu et al. MRI-Guided BBB Opening in Mice

(Gd-CE) were calculated first (Figures 1c,f). As a consequence,
such an approach resulted in an effective BBBO as reflected
by gadolinium enhancement on the T1-weighted scan, which
showed hyperintensity in the region previously highlighted by
the contrast infusion (Figures 1c,f). The correlation between
the SPIO-perfusion (Figure 1c) and Gd-CE (Figure 1f) MRI
was determined. The histograms were drawn and fitted into
two Gaussian distributions (Figures 1d,g). The values that
corresponded to the minimal overlap between the two Gaussian
functions were chosen to be the threshold that separated the
pixels with a significant signal change. Using these determined
thresholds, the areas with a significant signal change were
determined (Figures 1e,h). For the four mice studied, the SPIO
perfusion MRI showed an average signal change area of 26.00
± 5.60%, while Gd-CE showed an average signal change area
of 26.52 ± 5.33%, which was not significantly different (P
= 0.829, Figure 1i). A good correlation was shown between
these two methods (r = 0.937, R2 = 0.879, Figure 1j). This
indicated a successful BBBO by IA mannitol, as predicted
by the perfusion pre-scan. Furthermore, the histopathological
validation using Evans Blue, which is a gold standard for BBB
assessment and rhodamine, which was used as a surrogatemarker
of therapeutic agents, demonstrated a pattern of extravasation
that was consistent with MRI (Figures 1k–m).

Safety and Long-Term Consequences of IA
Mannitol-Induced BBBO
To assess the safety of our BBBO protocol, mice were assessed
for neurological and MRI sequelae. Three days after BBBO,

MRI showed neither T2 abnormalities nor T1 Gd-enhancement
(Figure 2a), indicating that the procedure was safe and that the
BBB breach was transient, and did not cause permanent brain
damage. Histology confirmed these observations with GFAP
and IBA-1 staining 7 days post BBBO, in which there was no
elevated astrocytic or microglia activation in the BBBO region,
as measured by fluorescence intensity. There was no statistically
significant difference in fluorescence intensity between the
targeted region and the contralateral hemisphere (P= 0.571, P=

0.093; Figures 2b,c). Similarly, there was no evidence of neuronal
damage based on NeuN staining (P = 0.331, Figure 2d).

DISCUSSION

The overall goal of BBBO is to maximize CNS targeting of the
therapeutic agent while minimizing systemic toxicity. Various
methods and drugs have been developed to induce transient
permeabilization of the BBB, with IAmannitol-mediated osmotic
disruption being the most frequently used procedure in both
preclinical and clinical studies (7, 8, 21). Although osmotic BBBO
has been an established method for decades, the parameters
for inducing BBBO are highly variable and inconsistent. The
infusion speed, in particular, is one of themost critical parameters
in small animals and many published reports recommend an
infusion that highly exceeds the physiological perfusion rate in
the carotid artery, leading to brain damage (17, 22, 23). For
example, in different preclinical studies, the infusion velocity
of mannitol into the carotid artery for some rat studies was
as low as 3.0 ml/min (14) or as high as 7.2 ml/min (13).

FIGURE 2 | MRI and histological assessment post-BBBO. (a) T2-weighted, pre-Gd, and post-Gd images 3 days after BBBO showed no sign of brain damage. No

Gd-CE could be observed in the brain, suggesting that the BBB was resealed. Fluorescent staining of the BBBO region with GFAP (b), Iba1 (c), and NeuN (d)

revealed comparable intensity between the ipsilateral and the contralateral hemisphere (2 ROIs/hemisphere as represented in lower magnification, n = 4, mean ± SD)

indicating no inflammation and no neuronal loss after BBBO.
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Similarly, one mouse BBBO study reported that the procedure
was performed with an IA infusion at a very high rate of
1.0 ml/min (6), which, in addition to the effect of mannitol,
would likely have a direct damaging effect on the BBB. In
that study, the PPA was not ligated, which might have added
variability to the procedure, as the majority of the flow might
be through the PPA and not the ICA (24). Indeed, we have
shown that IA infusion into the rat internal carotid artery at
rates exceeding 0.9 ml/min is damaging and results in scattered
white matter hyperintensities (17). Here, we also found severe
damage when the speed reached 0.2 ml/min indicating fine
balance effective BBBO and damage. We also believe that PPA
obstruction is necessary to route the entire contrast agent and
mannitol volume to the cerebral arteries. Thus, we exploited
dynamic susceptibility contrast MRI for perfusion prediction
prior to BBBO.We escalated the rate from a low speed, increasing
in 0.05 ml/min increments until the desired perfusion territory
was reached. The extravasation of rhodamine and Evans blue
corroborated the efficacy of BBBO, therefore suggesting that
IA mannitol-mediated local BBBO is predictable and can be
targeted to a specific region. The IA route for BBBO also
allows immediate IA delivery of a specific drug during the same
procedure, thus providing a “one-stop-shop” and improving the
probability to achieve an adequate therapeutic concentration.
Finally, SPIO in our study has been used at about 0.6 mg/kg
which is similar to the dose previously used in patients (25).

Hence, our procedure may have potential for future clinical
translation.
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