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Background: Intracerebral hemorrhage (ICH) is a life threatening stroke subtype and a

worldwide health problem. In this study, we investigate brain-heart interaction after ICH

in mice and test whether ICH induces cardiac dysfunction in the absence of primary

cardiac disease. We also investigate underlying mechanisms such as oxidative stress

and inflammatory responses in mediating cardiac dysfunction post-ICH in mice.

Methods: Male, adult (3–4m) C57BL/6J mice were subjected to sham surgery or

ICH using an autologous blood injection model (n = 16/group). Cardiac function was

evaluated at 7 and 28 days after ICH using echocardiography (n = 8/group per time

point). Western blot and immunostaining analysis were employed to assess oxidative

stress and inflammatory responses in the heart.

Results: Mice subjected to ICH exhibited significantly decreased cardiac contractile

function measured by left ventricular ejection fraction (LVEF) and left ventricular fractional

shortening (LVFS) at 7 and 28 days after ICH compared to sham-control mice (p <

0.05). ICH induced cardiac dysfunction was significantly worse at 28 days than at 7

days after ICH (p < 0.05). ICH in mice significantly increased cardiomyocyte apoptosis,

inflammatory factor expression and inflammatory cell infiltration in heart tissue, and

induced cardiac oxidative stress at 7 days post-ICH compared to sham-control mice.

Compared to sham-control mice, ICH-mice also exhibited significantly increased (p <

0.05) cardiomyocyte hypertrophy and cardiac fibrosis at 28 days after ICH.

Conclusions: ICH induces significant and progressive cardiac dysfunction in mice. ICH

increases cardiac oxidative stress and inflammatory factor expression in heart tissue

which may play key roles in ICH-induced cardiac dysfunction.

Keywords: brain-heart axis, cardiac dysfunction, cardiac inflammation, intracerebral hemorrhage, oxidative stress

INTRODUCTION

Spontaneous, non-traumatic intracerebral hemorrhage (ICH) is a life threatening stroke subtype
and a major cause of disability (1, 2). Mortality rates associated with ICH are as high as 35–52%
within the first 30 days after ICH and approximately 42–65% over the first year following ICH
(1). Cardiac dysfunction occurs commonly in patients and experimental animals with stroke and
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traumatic brain injury (TBI) (3–5). Cardiovascular complications
in ICH patients are closely related with early mortality and
poor outcome after ICH (6). Approximately 4% of ICH
patients encounter a serious cardiac complication such as acute
myocardial infarction, ventricular fibrillation, acute heart failure,
and cardiac death within 2 days after stroke (7). Patients
with a history of heart disease also are more susceptible to
developing cardiac dysfunction after ICH, and ICH patients
who developed cardiac complications typically had extended
hospital stays (7). Another study reported that roughly 2%
of ICH patients with or without coronary artery disease
before ICH attacked developed acute myocardial infarction
and these patients experienced increased risk of heart failure
which were associated with increased mortality and extended
hospital stays (8). Previous pre-clinical studies in mice have
shown that ischemic stroke and TBI induce cardiac dysfunction
characterized by significantly decreased (LVEF), cardiomyocyte
hypertrophy, interstitial fibrosis, cardiac inflammatory responses,
and cardiomyocyte death (5, 9, 10). However, whether ICH
induces acute and chronic or progressive cardiac dysfunction
in the absence of primary cardiac disease and mechanisms
underlying of ICH induced cardiac dysfunction remain poorly
understood.

Direct damage to brain tissue as well as products of hematoma
degradation can trigger a complex cascade of pathophysiological
responses including inflammatory and oxidative stress pathways
which contribute to secondary brain injury after ICH (11–
13). Inflammatory responses including activation of microglia
and neutrophils, lead to the generation of free radicals
(14). Post ICH, neutrophils are stimulated and activated,
releasing large amounts of reactive oxygen species (ROS),
which consume superoxide dismutase and increase of lipid
peroxidation (15). In addition, oxidative stress and ROS
also induces inflammation with increased expression of pro-
inflammatory factors such as tumor necrosis factor (TNF), and
nuclear factor-??B (16). Pro-inflammatory factors stimulate the
production of ROS (16). Thus, there is a positive feedback
cycle between inflammation and oxidative stress. In addition to
the enhanced neuroinflammation and oxidative stress in brain
after ICH, inflammation and oxidative stress are also increased
in the circulation. Recent clinical studies have demonstrated
that elevated serum concentration of Interleukin-6, TNF-α,
matrix metalloproteinase-9 (MMP-9), and cellular fibronectin
are significantly higher in ICH patients compared to healthy
controls subjects and these inflammatory factors are highly

Abbreviations: Abbreviations: IBA1, Ionized calcium binding adaptor molecule

1; ICAM-1, Intercellular Adhesion Molecule-1; ICF, Interstitial collagen fraction;

ICH, Intracerebral hemorrhage; IL-1, Molecular interleukin-1; IL-1β, Interleukin-

1beta; IVS, Interventricular septum; LV, Left ventricle; LVEF, Left ventricular

ejection fraction; LVFS, Left ventricular fractional shortening; LVID, Left

ventricle interior diameter; MCP1, Monocyte chemotactic protein-1; MCSA,

Cardiomyocyte cross-sectional areas; MMP-9, Matrix metalloproteinase-9; NOX-

2, Nicotinamide adenine dinucleotide phosphate oxidase-2; PSR, Picro Sirius Red;

ROS, Reactive oxygen species; TBI, Traumatic brain injury; TGF-β, Transforming

growth factor beta; TNF, Tumor necrosis factor; TUNEL, TdT-mediated Biotin-

dUTP Nick End labeling; BP, Blood pressure; DAP, Diastolic arterial pressure;

MAP, Mean arterial pressure; SAP, Systolic arterial pressure; H&E, Hematoxylin

and Eosin.

associated with larger hematoma volume (17). White blood
cell count increase in the peripheral is correlated with the
early neurological deterioration (18). Circulating markers of
oxidative stress are significantly elevated in ICH patients and are
significantly and inversely correlated with long term (30 days)
functional outcome (19). Thus, a growing number of clinical and
preclinical studies indicate that the peripheral immune system
and systemic oxidative stress are activated after ICH and may
aggravate brain and systemic damage.

Human and animal studies show that immune responses
and oxidative stress are involved in the pathological cascade
leading to cardiac muscle dysfunction and heart failure (20,
21). Inflammatory mediators contribute to left ventricle (LV)
dysfunction, LV dilation, cardiomyocyte hypertrophy, and
cardiac myocyte apoptosis (22). Increased ROS contribute to
atherosclerosis, restenosis, cardiac hypertrophy, cardiac fibrosis,
and heart failure (23–25). Therefore, inflammation and oxidative
stress may have crucial roles in mediating brain-heart interaction
after ICH.

In this study, we investigated whether ICH induces cardiac
dysfunction at acute and chronic phases post ICH and whether
the oxidative stress and inflammation are involved in brain-heart
interaction after ICH. To our knowledge, this is the first study to
investigate the effects of oxidative stress and inflammation effect
on “brain-heart interaction” after ICH in mice. Our results may
provide potential therapeutic strategy for clinical treatment of
cardiac complications after ICH.

MATERIALS AND METHODS

Animals
Adult male C57BL/6J mice (8–10 weeks old) were purchased
from Vital River Laboratory Animal Technology Co., Ltd
(Beijing, China). This study was conducted in accordance with
the National Institutes of Health guidelines for the use of
experimental animals. Experimental protocols were approved by
the Tianjin Medical University General Hospital Animal Care
and Use Committee. Adequate measures were taken to minimize
the number of experiment animals used and to ensure minimal
pain or discomfort in animals. Mice were maintained in a facility
with a temperature-controlled environment on a 12 h light-dark
cycle, and all animals were allowed free access to food and water.

ICH Model
To induce ICH in mice, we employed a double-injection method
as described previously (26), with some modifications. Briefly,
30 µL of blood was collected within a non-heparinized capillary
tube from the angular vein when themouse was anesthetized with
5% chloral hydrate via intraperitoneal injection (7 mg/kg). Blood
was quickly transferred into a 50 µL syringe with a 26G needle
(Hamilton Company). The head was fixed and held in apposition
parallel to the table using a stereotactic frame. A 1mm diameter
cranial burr hole was drilled at the following coordinates relative
to bregma at the injection site: X (right lateral) = 2.3mm; Y
(rostral) = 0.5mm. A 26G needle was inserted to 3.5mm below
the surface of skull, and left in place for 5min prior to injection.
The first 5 µL was injected to generate clotting along the needle
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track. After an additional 5min pause, the remaining 25 µL was
injected during the subsequent 25min at the same rate of 1
µl/min (27). After the injection was completed, the needle was
left in place for 10min to prevent reflux, before being gently
removed. The burr hole was sealed using bone wax (Johnson
and Johnson) and the incision closed. The body temperature
was maintained using warming lamps throughout the procedure.
After regaining consciousness, animals were returned to their
home caged free access to food and water. Sham control mice
were subjected to the same procedures as the ICHmodel without
blood injection.

Experimental Groups
For each separate study, adult male C57BL/6 mice were
randomized to two groups: (1) Sham group (total n = 16); (2).
ICH group (total n = 16). Cardiac function was measured at 7
and 28 days after ICH by an investigator who was blinded to
the experimental groups. One set of mice (n = 8/group) were
sacrificed at 7 days after ICH for immunohistochemistry and
Western blot assay. Another set of mice (n = 8/group) were
sacrificed at 28 days after ICH for immunostaining analysis.

Echocardiography Measurements
Cardiac function was evaluated using transthoracic
echocardiography measurements obtained using a Vevo2100
High Resolution Ultrasound System in real time (Visual Sonics
Vevo 2100, Canada) with an MS-250 ultrasound scanning
transducer (model C5). Mice were anesthetized with 2%
isoflurane mixed with 0.5 L/min 100% O2 and placed in a supine
position atop a heating pad maintain a steady-state sedation
level throughout the procedure with 1.0–1.5% isoflurane mixed
with 0.5 L/min 100% O2. M-mode imaging was used to obtain
stable images of the parasternal long axis view. The following
parameters were calculated: interventricular septum (IVS), left
ventricle interior diameter (LVID), LV Volume, LVEF, and LVFS.
All data were analyzed off-line at the end of the study with
software resident on the ultrasound system and measured by an
investigator who was blinded to the experimental groups.

Blood Pressure Measurements
To test whether ICH affects blood pressure (BP), diastolic
arterial pressure (DAP), mean arterial pressure (MAP) and
systolic arterial pressure (SAP) were measured by tail-cuff
method (CODA 8-Channel High Throughput Non-Invasive
Blood Pressure system, KENT scientific) at baseline (one day
before ICH) and 1, 3, and 7 days after ICH or sham surgery.
The mice were habituated for 2–3min in plastic restrainers for
7 consecutive days before experiments were performed. Body
temperature was maintained at 37◦C using a warming pad.
Blood pressure was recorded and averaged over 15 consecutive
readings.

Western Blot
Equal amounts of cell lysate from heart and plasma samples
were subjected to Western blot analysis which was performed as
previously described (10). Protein concentration was measured
using the BCA kit (Thermos Fisher Scientific, USA). The

following primary antibodies were used: interleukin-1beta (IL-
1β, 1:1000, Abcam, Cambridge, MA, USA), intercellular
Adhesion Molecule-1 (ICAM-1, 1:1000, R&D Systems,
Minneapolis, USA), monocyte chemotactic protein-1 (MCP-
1, 1:1000,Abcam, Cambridge, MA, USA), MMP-9 (1:1000,
Millipore, Billerica, USA), nicotinamide adenine dinucleotide
phosphate oxidase-2 (NOX-2, 1:1000, BD Bioscience, USA),
transforming growth factor beta (TGF-β, 1:1000, Santa Cruz,
USA), b-actin (1:10000, Abcam, Cambridge, MA, USA).

Immunohistochemical Evaluation of Heart
and Brain
Mice were euthanized at 7 days and 28 days after ICH
(n = 8/group in each time point). Under deep anesthesia,
mouse heart and brain were harvested and fixed with 4%
paraformaldehyde for 48 h and then embedded in paraffin wax.
A series of sections (6µm thick) were cut from seven coronal
brain sections processed. Hematoxylin and Eosin (H&E) staining
was used for hemorrhagic lesion volume calculation. Heart
coronal sections (6µm thick) were cut and Picro Sirius Red
(PSR, 1:1000 dilution, Sigma, USA) staining was employed
to assess cardiomyocyte cross-sectional areas (MCSA) and
interstitial collagen fraction (ICF) measurement (10). For heart
and brain immunostaining, antibody against CD45 (a marker
for leukocyte; 1:250 dilution, Abcam,) and IBA1 (a marker
for monocytes/macrophages; 1:1000 dilution, Wako, California,
USA), CD206 (a M2 macrophage marker; 1:3000, Abcam,
Cambridge, MA, USA), CD86 (M1 macrophage marker; 1:100;
Abcam, Cambridge, MA, USA) were employed. For detecting
the apoptotic cells in heart tissue, the extent of cell death was
assessed and quantified by TdT-mediated Biotin-dUTP Nick End
labeling (TUNEL) stain using a TUNEL kit (Millipore, Billerica,
USA). Negative controls consisted of similar procedures without
the addition of primary antibody.

Immunostaining Quantification
Five slides from each heart, with each slide containing four
fields of view were imaged. For each mouse brain, five slides
were prepared and for every slide five randomly chosen fields of
view in the peri-hematoma brain region were imaged. All slides
were digitized under a 20 × or 40 × objective (Olympus B ×

40, Tokyo Japan) using a three-CCD color video camera (Sony
DXC-970MD) interfaced with MCID image analysis system
(Imaging Research, St. Catharines, Ontario, Canada). Percent
of positive areas of PSR in the fields of view were calculated
using image pro plus 6.0. For each field of view, cell numbers
of TUNEL positive cells, CD45 positive cells, IBA1 positive cells,
CD86 positive cells and CD206 positive cells were counted. A
single value was obtained from averaged data and presented
as percentage positive area or number of positive cells/mm2.
Hemorrhagic lesion volume was digitally quantified using MCID
image analysis system and summed from seven coronal slices
at different levels. The lesion volume in cubic millimeters was
calculated by multiplying the thickness by the measured areas
(28). All quantification analysis was performed in a blinded
fashion.
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Statistical Analysis
Statistical analysis was measured by unpaired 2-tailed Student
t test for comparison of 2 groups with use of Graph Pad
Prism 5 (Graph Pad Software Inc., San Diego, CA). ∗P < 0.05
was considered statistically significant. Data in all figures are
presented as mean± SEM.

RESULTS

ICH Induces Progressive Cardiac
Contractile Function Deficits and Cardiac
Hypertrophy Measured by
Echocardiography (Figure 1)
To test whether ICH induces cardiac dysfunction,
echocardiography was performed on 7 days and 28 days
after ICH. Figures 1A–C shows that ICH significantly decreased
LVEF (B) and LVFS (C) at both 7 days and 28 days after ICH
compared to sham control mice. Echocardiography results
(Figures 1D–F) also show that ICH mice had significantly
decreased IVS (D) and increased LVID (E), LV Volume (F)
both in diastolic and systolic stage at 7 days and 28 days after
ICH compared to sham control group, respectively. Compared
with 7 days, the ICH mice at 28 days showed a significantly
decreased LVEF (B), LVFS (C), IVS (D) and increased LVID (E),
LV Volume (F), respectively (∗p < 0.05). The data indicate that
ICH induces progressive cardiac contractile function deficits and
cardiac hypertrophy compared to sham control mice.

ICH Increases Cardiac Fibrosis and
Cardiomyocyte Hypertrophy as Well as
Apoptosis at 28 Days After ICH. ICH Does
Not Induce Any Significant Differences in
BP at 1, 3, 7 Days After ICH (Figure 2)
To determine whether ICH induces cardiac fibrosis and cardiac
hypertrophy, PSR staining was performed at 28 days post
ICH. Figure 2B shows that the ICH group mice exhibited
significantly increased cardiac fibrosis and hypertrophy identified
by increasing ICF and enlarged MCSA at 28 days after ICH
compared to sham control mice. We also found that ICH
significantly increases heart apoptosis quantified by TUNEL
staining compared to sham control mice at 28 days after ICH
(Figure 2A). The data indicate that ICH induces heart fibrosis
and hypertrophy as well as apoptosis at 28 days after ICH. To
test whether ICH affects BP, DAP, MAP and SAP were measured.
The data (Figures 2C–E) show that ICH does not induce any
significant differences in BP between sham control and ICH
groups before or after surgery.

ICH Significantly Increases Systemic and
Cardiac Inflammatory Factor Expression
and Oxidative Stress Compared to Sham
Control Mice (Figures 3, 4)
To investigate the mechanisms by which ICH induces cardiac
dysfunction in mice, we evaluated inflammatory factor
expression and oxidative stress indicator expression in serum

and heart by Western blot at 7 days after ICH. Figures 3A–E
show that ICH significantly increased the expression of ICAM-
1(B), IL-1β (C), NOX-2 (D), and TGF-β (E) in serum compared
to sham control group. Figures 4A–E show that ICH also
significantly increased ICAM-1 (B), NOX-2 (C), MCP-1(D), and
MMP-9 (E) expression in the heart tissue compared to sham
group. The data indicate that ICH increases systemic and cardiac
inflammation and oxidative stress compared to sham control
mice.

ICH Significantly Induces Brain
Hemorrhage and Increases Inflammatory
Factor Leukocyte and Macrophage
Infiltration into Brain at 7 Days After ICH
When Compared to Sham Control Mice
(Figure 5)
To determine whether ICH induces inflammatory cell infiltration
into brain at early stage after ICH, CD45, IBA1, CD206, and
CD86 immunostaining was employed. Figure 5A shows that
ICH significantly induces brain hemorrhage compared to sham
control mice. Figures 5B,C show that ICH significantly increases
inflammatory cell infiltration (CD45) and microglia/microphage
expression (IBA1) as well as increases M1 (Figure 5D) and M2
(Figure 5E) macrophage expression in the peri-hematoma region
of brain tissue at 7 days after ICH compared to sham control
mice.

ICH Significantly Increases Cardiac
Inflammatory Cell Infiltration Compared to
Sham Control Mice (Figure 6)
To determine whether ICH induces inflammatory cell
infiltration into heart at early stage after ICH, leukocyte
(CD45) and microphage (IBA1) expression were measured
using immunostaining. The phenotype of macrophages was
evaluated using M1 marker (CD86) and M2 marker (CD206).
The result shows that ICH significantly increases leukocyte
(Figure 6A), macrophage (Figure 6B) and M1 (Figure 6C)
and M2 (Figure 6D) macrophage infiltration into the heart
compared to sham control mice. The data indicate that ICH
induces inflammatory cell infiltration into heart compared to
sham control mice.

DISCUSSION

Cardiac complications are common in the ICH patients (29, 30).
In this study, we report that ICH in adult mice induces significant
and progressive cardiac dysfunction with increased cardiac
fibrosis, cardiomyocyte hypertrophy and apoptosis compared to
sham control mice. ICH also increases systemic and as well as
cardiac inflammatory and oxidative stress compared to sham
control mice. We are the first to demonstrate that ICH induces
progressive cardiac dysfunction in the absence of primary cardiac
disease in mice. Increasing heart inflammation and oxidative
stress may contribute to ICH induced heart damage after ICH.
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FIGURE 1 | ICH induces progressive cardiac contractile functional deficits and cardiac hypertrophy measured by echocardiography. (ICH) in mice induces acute (7

days) and chronic (28 days) cardiac dysfunction. (A) Representative pictures of echocardiography, (B) left ventricular ejection fraction (LVEF), (C) left ventricular

fractional shortening (LVFS) dimension at end diastolic and end systolic, (D) inter ventricular septum (IVS) dimension at end diastolic and end systolic, (E) left ventricle

internal diameter (LVID) dimension at end diastolic and end systolic, (F) left ventricular volume (LV volume) dimension at end diastolic and end systolic. Bar graphs

summarize the results from sham mice, ICH mice at 7 days after ICH and at 28 days after ICH. n = 8/group for echocardiography. Data are presented as mean ± SE;
*p < 0.05.

ICH Induces Progressive Cardiac
Dysfunction
Acute brain injury may cause cardiac injury (31). Clinical
studies indicate that cardiac complications increase in-hospital
mortality in ICH patients (64% with increased troponin I
compared with 28% with normal troponin I (29, 30). 4.1% of
patients suffer at least one acute serious cardiac complication
after intracerebral hemorrhage, and acute heart failure was the
most common serious in-hospital cardiac event (7). As ICH
patients have systemic complications (hypertension, diabetes
mellitus, myocardial ischemia, etc.), acute heart failure may

occur as a consequence of fluid overload, new-onset myocardial
ischemia, or high BP. Whether ICH directly induces cardiac
dysfunction remains poorly understood. In this study, we focus

on the interaction between ICH and heart injury. Our data
indicate that ICH not only induces acute and chronic cardiac
dysfunction identified by decreased LVEF and LVFS, but also

increases chronic cardiac pathological remodeling identified
by increased cardiac interstitial fibrosis and cardiomyocyte
hypertrophy compared to sham control mice. Compared with
acute (7 days) ICH, the ICH mice at a chronic stage (28 days)
exhibited more severe and progressive deficits identified by
decreased LVEF, LVFS, IVS, and increased LVID, LV Volume.
To our knowledge, our data are the first to demonstrate that
ICH induces progressive cardiac deficit in the absence of primary
cardiac disease in mice.

ICH Increases Inflammatory Cell Infiltration
into Heart and Increases Inflammatory
Factor Expression in Heart Tissue
Clinical studies found systemic activation of the immune system
after ICH which may influence outcome in ICH patients
(32). ICAM-1, a transmembrane protein molecule, is found in
low concentrations in the membranes of leukocytes, activated
lymphocytes and endothelial cells under normal physiological
conditions (33). However, it is rapidly up-regulated by cytokine
stimulation, enhancing adhesion of leukocytes to endothelial
cells (34). When activated, leukocytes bind to endothelial cells
via ICAM-1 signaling, and then ICAM-1 promotes leukocyte
transmigration into tissues (34, 35). Circulating ICAM-1 levels
are significantly increased following ischemic stroke in patients
(36). MCP-1 is a small, pro-inflammatory cytokine that recruits
inflammatory monocytes into various tissues (37). Clinical
studies have found that myocardial infarction and brain ischemic
stroke both significantly increase circulating MCP-1 level when
compared to health controls (38). ICAM-1 and MCP-1 can be
induced by the pro-inflammation molecules interleukin-1 (IL-
1) and TNF. Our pre-clinical studies also found that ischemic
stroke and TBI in mice significantly increase serum and heart
ICAM-1 and MCP-1 expression as well as induce heart deficits
(5, 10). In the present study, we found that ICH significantly
increases ICAM-1, MCP-1 and IL-1 expression in the heart and
serum as well as increases inflammatory cells (leukocyte and
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FIGURE 2 | ICH increases apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy at 28 days after ICH; ICH does not affect DAP, MAP, and SAP compared to

sham control mice. ICH in mice induces cardiac fibrosis and cardiomyocyte hypertrophy as well as apoptosis at 28 days after ICH (A) Terminal deoxynucleotidyl

transferase (TUNEL) staining for cardiomyocyte apoptosis and quantitative data, scale bar, 20µm; (B) Picro Sirius Red (PSR) staining and quantitative data for

interstitial collagen fraction (ICF) and cardiomyocyte cross-sectional areas (MCSA) measurement at 28 days after ICH, scale bar, 20µm. (C–E) (DAP), mean arterial

pressure (MAP) and systolic arterial pressure (SAP) measurement at 1, 3, 7 days after ICH. Data are presented as mean ± SE, *p < 0.05 compared with sham control.

FIGURE 3 | ICH significantly increases systemic inflammatory factor expression and oxidative stress compared to sham control mice. (A) Western blot assay shows

that ICH significantly increases systemic inflammatory factor expression at 7 days after ICH such as (B) intercellular adhesion molecule-1 (ICAM-1), (C) Molecular

interleukin-1beta (IL-1β) and (E) Transforming growth factor beta (TGF-β). ICH also significantly increases oxidative stress indicated by (D) NADPH oxidase-2 (NOX-2)

expression in serum. Data are presented as mean ± SE, *p < 0.05 compared with sham control.

macrophage) infiltration into the heart after ICH. The increased
MCP-1 and ICAM-1 may play a role in increasing inflammatory
cell infiltration into the heart after ICH.

Following onset of ICH, there are large numbers of infiltrating
macrophages in the peri-hematoma regions as shown by previous

studies (39, 40) as well as our data in the present study. In
their study, Min et al. demonstrated a significant increase in
M1 macrophage markers such as iNOS and CD86 as well as
M2 macrophage markers such as Arginase-1 and Ym1 at 7
days after a collagenase induced ICH model in mice (39). The
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FIGURE 4 | ICH significantly increases cardiac inflammatory factor expression and oxidative stress compared to sham control mice. (A) Western blot assay shows

that ICH significantly increases cardiac inflammatory factor expression such as (B) intercellular adhesion molecule-1 (ICAM-1), (C) NOX-2, (D) monocyte chemotactic

protein-1(MCP-1), and (E) matrix metalloproteinase-9 (MMP-9) in heart tissue at 7 days after ICH compared to sham control group. Data are presented as mean ±

SE, *p < 0.05 compared with sham control.

glial cells of the brain likely facilitate M2 polarization of the
infiltrating macrophages to facilitate repair and recovery after
ICH (39). In our study, we found a significant increase in M1
(CD 86) as well as M2 (CD206) macrophages in brain as well
as heart tissue at 7 days after ICH which is consistent with
their findings. In the present study, we focus our investigation
on whether inflammatory responses participate in ICH induced
heart damage.

Inflammatory cell infiltration into the heart may induce
cardiac inflammatory factor expression. The invasion of
macrophages not only causes direct damage to the heart, but
also contributes to release MCP-1, TGF-β and MMP-9, which
thereby exacerbates the cardiac damage (41). Mewhort et al.
reported that systemic monocytes increase cardiac myofibroblast
activity and release of TGF-β andMMP-9 thereby, inducing local
extracellular matrix (ECM) remodeling (42). Peripheral blood
monocytes co-cultured with myofibroblasts under direct contact
conditions significantly increase TGF-β1 and MMP-9 level in the
culture media (42). Monocyte released TGF-β increases cardiac
hypertrophy and fibrosis (42). TGF-β is known to stimulate
cardiac myofibroblast activation and increases ECM deposition
in the infarct by upregulating collagen and fibronectin synthesis
as well as by decreasing matrix degradation (43). Increased
TGF-β is related with increased collagen synthesis markers
and is correlated with increased MMP-9 level in hypertensive
disease patients (44). MMP-9 can be secreted by a wide number
of inflammatory cells such as neutrophils, macrophages, and
fibroblasts. MMP-9 regulates neutrophil migration across the
basement membrane (45), and has been associated with cardiac
pathological remodeling and fibrosis in cardiovascular disease
(46). TGF-β and MMP-9 both not only promote abnormal
cardiac collagen deposition and fibrosis, but also mediate
cardiac function (44). Increased TGF-β and MMP-9 levels are
related with the impairment of LV longitudinal deformation
and abnormal LV twisting (assessed by echocardiography and

electrocardiogram) in hypertensive patients as well as impaired
arterial elastic function (44). We found that ICH significantly
increases TGF-β and MMP-9 expression in the heart as well
as induces cardiac deficit after ICH compared to sham control
mice. The increased heart inflammation and TGF-β and MMP-9
expressionmay promote ICH induced cardiac functional deficits.

ICH Induced Oxidant Stress may
Contribute to Cardiac Damage
TGF-β also increases the expression level of NOX-2 (47).
NADPH oxidase family enzymes (or NOXs) are a major source
of ROS and have been implicated in oxidative damage following
brain injury such as trauma, and ischemic or hemorrhagic stroke
(48). Oxidative stress also contributes to the pathogenesis of
heart failure. NOX-2 promotes cardiomyocyte death and plays
an important role in cardiac remodeling following myocardial
infarction (49). By promoting the transition of fibroblasts to
myofibroblasts, NOX 2 also increases cardiac inflammation and
induces fibrosis and cardiomyocyte hypertrophy (50). In our
study, we found that ICH significantly increased heart and
serum NOX-2 level as well as increased cardiomyocyte apoptosis
compared to the sham group. Taken together, ICH significantly
increases systemic inflammatory status and oxidative stress,
which in concert may mediate ICH-induced cardiac deficits.

Limitations
Catecholamine released in the post-injury period may play a role
in mediating cardiac deficits after brain injury (51). Sympathetic
response and elevated systemic catecholamine levels have been
associated with cardiac dysfunction in patients after stroke
(52). Besides sympathetic nerve terminals which can release
catecholamine directly into heart, the adrenal medulla can also
release catecholamine into bloodstream which can then reach
the heart (51, 52). High levels of circulating catecholamines can
exacerbate cardiac damage, but high circulating catecholamine
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FIGURE 5 | ICH model induces brain hemorrhage and increases inflammatory factor leukocyte and macrophage infiltration into brain at 7 days after ICH compared to

sham control mice. (A) Hematoxylin and Eosin (H&E) staining images showing that ICH model in mice induces brain hemorrhage. ICH in mice significantly increases

expression of (B) leukocyte (marker CD45, scale bar, 20µm) and (C) microglia/microphage (marker IBA1, scale bar, 50µm) in brain tissue at 7 days after ICH

compared to sham control mice. ICH in mice significantly increases (D) M1 macrophage indicated by CD86 (scale bar, 20µm) and (E) M2 macrophage indicated by

CD206 (scale bar, 20µm) in brain compared to sham control mice. Data are presented as mean ± SE, *p < 0.05 compared with sham control.
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FIGURE 6 | ICH significantly increases cardiac inflammatory cell infiltration compared to sham control mice. ICH increases cardiac inflammatory cells infiltration at 7

days after ICH. (A) CD45 (leukocyte marker) and (B) IBA1 (macrophage marker) immunostaining and quantitative data at 7 days after ICH. ICH in mice significantly

increases (C) M1 macrophage indicated by CD86 and (D) M2 macrophage indicated by CD206 in heart compared to sham control mice. (A,B) scale bar, 50µm;

(C,D) scale bar, 20µm. Data are presented as mean ± SE. *p < 0.05 compared with sham.

levels are not required for pathological cardiac remodeling (52).
Therefore, while catecholamine may play a role in cardiac
dysfunction after ICH, there may be several other pathways that
mediate cardiac dysfunction after brain injury.

In addition, the nervous system and the immune system affect
each other. The nervous system communicates with the immune
system via sympathoadrenergic pathways. There is evidence
suggesting that all human immune cells (including T and B
cells, dendritic cells, macrophages, microglia, and neutrophils)
can express dopaminergic receptors (53). Previous studies also
suggest the occurrence of endogenous catecholamine in immune
cells (54), dopamine, noradrenaline, and adrenaline have been
identified and measured in several immune cell types (55, 56).
Thus, immune response after brain injury may also play a vital
role in mediating brain-heart interaction.

In this study, we establish a direct link between the
brain and heart and our data indicate that inflammation and
oxidative stressmay participate brain-heart interaction after ICH.
However, we do not exclude the possibility that several other
factors may mediate brain-heart interaction after ICH. The effect
of sympathetic activation in mediating cardiac dysfunction after
ICH are not tested in the study and further studies to find
investigate and identify other mediators of cardiac dysfunction
after ICH are warranted.

CONCLUSIONS

Our study demonstrates that ICH induces progressive cardiac
dysfunction in the absence of primary cardiac disease in
mice. Increasing heart inflammation and oxidative stress
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may play key roles in mediating ICH-induced cardiac
dysfunction.
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