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Now that genetic testing can identify persons at risk for developing amyotrophic lateral

sclerosis (ALS) many decades before symptoms begin, there is a critical need for

biomarkers that signal the onset and progression of degeneration. The search for

candidate disease biomarkers in patients with mutations in the gene C9orf72 has

included imaging, physiology, and biofluid measurements. In cross-sectional imaging

studies, C9+ ALS patients display diffuse reductions of gray and white matter integrity

compared to ALS patients without mutations. This structural imaging signature overlaps

with frontotemporal dementia (FTD), reflecting the frequent co-occurrence of cognitive

impairment, even frank FTD, in C9+ ALS patients. Changes in functional connectivity

occur as critical components of the networks associated with cognition and behavior

degenerate. In presymptomatic C9+carriers, subtle differences in volumes of subcortical

structures and functional connectivity can be detected, often decades before the

typical family age of symptom onset. Dipeptide repeat proteins produced by the

repeat expansion mutation are also measurable in the cerebrospinal fluid (CSF) of

presymptomatic gene carriers, possibly throughout their lives. In contrast, a rise in the

level of neurofilament proteins in the CSF appears to presage the onset of degeneration

in presymptomatic carriers in one longitudinal study. Cross-sectional studies indicate

that neurofilament protein levels may provide prognostic information for survival in C9+

ALS patients. Longitudinal studies will be needed to validate the candidate biomarkers

discussed here. Understanding how these candidate biomarkers change over time is

critical if they are to be used in future therapeutic decisions.

Keywords: C9orf72, cortical thinning, diffusion tensor imaging, dipeptide repeat proteins, functional connectivity,

motor neuron disease, neurofilament proteins, biomarker

INTRODUCTION

A repeat expansion mutation in the C9orf72 gene is the most common cause of familial
amyotrophic lateral sclerosis (ALS) in people of Northern European ancestry and accounts for
5-10% of sporadic ALS cases in Europe and the USA (1, 2). The C9orf72 mutation (C9+) is
also a common cause of familial frontotemporal dementia (FTD) (3). The clinical phenotype is
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often mixed, and many C9+ ALS patients have some degree of
cognitive impairment, ranging from mild executive dysfunction
to frank FTD (4). Because mutation carriers can be identified
by genetic testing many decades before symptoms begin,
there is considerable interest in biomarkers to identify when
degeneration begins and to monitor disease progression.
Currently, development of such biomarkers is at the early stage
of identifying measures that differ in group comparisons. This
review will discuss the current status of studies of non-invasive
biomarkers such as imaging and physiology, and minimally
invasive biomarkers derived from biofluids.

IMAGING STUDIES

There is particular interest in neuroimaging as a biomarker
because it offers a way to visualize pathological changes in
the brains of living patients. In autopsy studies, brains from
C9+ patients exhibited the neuronal loss, gliosis, and TDP-
43 inclusions characteristic of sporadic ALS and some FTD
patients (5), as well as the nuclear RNA foci and cytoplasmic
aggregates of dipeptide repeat (DPR) proteins specific to the
C9orf72 mutation (5, 6). The distribution of these pathologic
findings differs between C9+ ALS and C9+ FTD patient brains
(7, 8). The story emerging from neuroimaging studies is that the
diversity of clinical phenotypes reflects the extent to which the
most affected brain regions contribute to networks that underlie
cognitive, behavioral, motor, and language function (9, 10).

Structural MRI—Gray Matter Atrophy
In structural MRI scans, C9+ ALS patients displayed extensive,
relatively symmetric volume loss and cortical thinning compared
to similarly aged healthy subjects (1, 11–14). Compared to
C9– ALS patients (i.e., without the C9orf72 mutation), C9+
ALS patients had greater atrophy of extra-motor cortical
regions, particularly parieto-occipital cortical areas, including
the cuneus and precuneus (11–13), and relatively less atrophy
of the precentral motor cortex (13, 14). Correlations between
volumetric changes and cognitive testing measures have led
several investigators to conclude that the predominant gray
matter imaging pattern in C9+ ALS patients is associated with
cognitive changes (11–14). A similar pattern of diffuse, relatively
symmetric cortical volume loss is found in C9+ FTD patients
(15–19).

Several studies report more atrophy of subcortical structures
in C9+ ALS than in C9– ALS patients. The topographic
specificity of connections between these subcortical structures
and specific cortical regions can lead to discrete functional
deficits. Nearly all volumetric studies to date have reported
thalamic atrophy in C9+ carriers. Thalamic atrophy has been
reported in C9+ ALS patients (11–13), C9+ FTD patients (15,
16, 18–22), and presymptomatic C9+ carriers (23–26). Although
C9+ ALS patients may have more thalamic atrophy compared to
C9– ALS patients with a similar degree of cognitive impairment
(11), the association between thalamic atrophy and cognitive
impairment can be seen in FTD patients with other gene
mutations (27) and C9– ALS patients with cognitive impairment
(28). Because there is topographic specificity of corticothalamic

circuits, degeneration of particular thalamic nuclei should
produce different functional impairments. However, most MRI
studies measured the hemi-thalamus in its entirety. Using a
more refined segmentation scheme in a cohort of C9+ FTD
patients, Lee and colleagues (20) found atrophy specifically in the
medial pulvinar nucleus of the thalamus, a multisensory nucleus
with connections to posterior parietal, prefrontal, and cingulate
cortical areas (29). Schonecker and colleagues reported greater
atrophy of motor sub-regions of the thalamus in symptomatic
C9+ carriers (30).

Atrophy of other subcortical structures has also been reported.
The cerebellum has been of particular interest because high
levels of DPR proteins (8, 31, 32) and RNA foci were found in
cerebellar Purkinje and granule cells in C9+ patients (33), and
levels of cerebellar DPR proteins in C9+ ALS were correlated
with cognitive impairment (31). While a pathological study
reported no appreciable neuronal loss in the cerebellum (15),
cerebellar atrophy has been reported in some, but not all,
imaging studies. Detection differences largely reflect whether the
whole cerebellum or focal cerebellar regions were measured.
Changes in focal cerebellar regions, such as in lobule VIIa/crus
I, were found in several studies of C9+ ALS and C9+ FTD
patients (11, 17, 21, 27, 34). This region of the cerebellum has
been mapped in functional MRI studies to cortical association
networks, including the dorsolateral prefrontal cortex and
parietal association areas that play a role in executive function
(35). Volume loss has also been reported in various nuclei of
the basal ganglia in C9+ ALS and C9+ FTD patients (20, 28,
36), a finding associated with cognitive and behavioral scores
across the spectrum of ALS and FTD, and thought to result
from disruption of corticostriatal circuits (37). Two studies also
reported hippocampal atrophy in C9+ ALS (11, 38), a finding
consistent with the occurrence of hippocampal sclerosis in some
C9+ ALS-FTD brains (5) and memory deficits.

The diffuse nature of the brain atrophy, involving cortical
and subcortical structures, has led to the suggestion that changes
in ventricular volume be used to follow longitudinal disease
progression in C9+ carriers (13, 17, 34) (Figure 1).

Pathological Correlates
The distribution of atrophy in structural MRI scans of C9+ ALS
and FTD patients mirrors the distribution of neuronal loss and
TDP-43 pathology in brains of C9+ ALS-FTD patients (5) and
sporadic ALS and FTD patients (39). However, the relationship
between these hallmarks of degeneration–neuronal loss, gliosis,
and TDP-43 inclusions—and the RNA foci and DPR protein
aggregates specific for the C9+ genotype is still evolving. Unlike
TDP-43 pathology, which closely parallels neurodegeneration,
the distribution of RNA foci (33) and DPR protein pathology
do not (6–8, 33, 40, 41), although reports on the latter have
been somewhat conflicting. A moderate association between the
amount of poly(GA) dystrophic neurites and degeneration in the
frontal cortex was observed (40), and inclusions of poly(GR),
which is especially toxic in in vitro models (42), correlated
with TDP-43 pathology and neurodegeneration in C9+ FTD-
ALS brains (7, 41). Nevertheless, the presence of DPR protein
aggregates and RNA foci did not lead to TDP-43 accumulation
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FIGURE 1 | Representative examples of diffuse cortical atrophy in MRI scans of ALS patients with C9orf72 mutations. The demographic information and scores on

motor and cognitive scales are listed below each patient’s scan. (A) Compared to age-matched controls, mild ventricular enlargement was seen in C9+ patients 1, 2,

and 3 who had ALS, but good cognitive function, as evidenced by their scores on the Mattis Dementia Rating Scale−2 (DRS-2). The surface rendering of one patient

[left side of panel (A)] shows sulci in frontal lobe sulci are also mildly enlarged compared to the occipital lobe. (B) C9+ patients 4, 5, and 6 had ALS-FTD with a similar

degree of motor dysfunction to those in panel (A), as measured by their ALS functional rating scale revised (ALSFRS-R) scores, but marked cognitive impairment with

low DRS-2 scores. There is marked enlargement of ventricles evident in axial slices, as well as enlargement of frontal and temporal sulci in the surface rendering at left

of panel (B).

in a neurologically healthy mosaic carrier (43), and DPR protein
pathology with little, if any, TDP-43 pathology was observed
in a c9FTD kindred with early intellectual disability (44) and
three C9orf72 mutation carriers who developed relatively rapid
cognitive decline but died prematurely due to unrelated illness
(45).

Diffusion Tensor Imaging of White Matter
Tracts
In diffusion tensor imaging (DTI) studies, C9+ ALS patients
showedmore widespread loss of white matter integrity compared
to healthy controls and C9– ALS patients, most commonly in
the frontal white matter, as measured by decreased fractional
anisotropy, increased radial diffusivity, or increased mean
diffusivity (11, 12, 14, 38, 46). Several white matter tracts affected
in C9+ ALS are not typically affected in cognitively intact
C9– ALS patients, including the genu of the corpus callosum,
anterior limbs of the internal capsule, thalamic radiations, and
long association tracts such as the uncinate fasciculus, superior
longitudinal fasciculus, and inferior longitudinal fasciculus (11,

12, 14, 38, 46). These frontal and association tracts were also
affected in diffusion studies of C9+ FTD patients (17, 20, 36),
and presymptomatic C9+ carriers in some studies (47). Motor
tracts, including the corticospinal tract and motor segment of the
corpus callosum, were affected in C9+ ALS patients compared
to healthy controls (11, 46), but exhibited less disruption than in
C9– ALS patients (14). In a group of C9+ carriers with a mixture
of phenotypes, changes in diffusion indices of specific tracts
correlated with clinical measures: frontal white matter correlated
with lexical fluency and behavioral scores, and changes in motor
tracts correlated with the ALS functional rating scale (46).

Unresolved Questions About Structural
Imaging as a Biomarker
Several questions arise from the findings in structural MRI
scans. First, does a genotype-specific C9+ MRI signature
exist? To address this question, Westeneng and colleagues
(38) identified a candidate “genotype-specific MRI signature”
in a model comparing 92 volumetric and DTI variables in
scans of 28 C9+ to 28 C9– ALS patients. Although 11
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imaging variables identified a C9+ specific signature in the
training dataset, nearly 20% of C9– ALS patients in a large
validation dataset were classified as having the C9+ MRI
signature. Misclassified patients scored more poorly on a
measure of executive function, thus underscoring the close
association between neuroanatomical atrophy patterns and
clinical phenotypes. A second question is whether the volumetric
differences in adult C9+ carriers arise during development or
are a consequence of degeneration. This question was addressed
in imaging studies comparing relatively young presymptomatic
C9+ carriers (<age 40) to non-carriers from the same families.
Although older presymptomatic C9+ carriers had clear evidence
of atrophy compared to similarly-aged C9– family members,
so did younger C9+ presymptomatic carriers when compared
to C9– family members of the same age (24–26, 47, 48).
Cortical and subcortical structures were smaller, particularly
the thalamus, in younger C9+ carriers. The common genetic
background of family members with and without the C9orf72
mutation facilitated detection of small differences in these
studies. Lee and colleagues found that smaller gray matter
volumes occurred across a range of ages in presymptomatic
C9+ carriers and had a similar age-related decline as in C9–
controls, suggesting a developmental origin (47). Longitudinal
studies in individual C9+ carriers before and after the onset of
symptoms will be needed to truly determine whether congenitally
small brain structures begin accelerated volume loss with the
onset of degeneration in adulthood or whether the C9orf72
mutation leads to slow, lifelong accumulation of subclinical
pathology. Lastly, because the distribution of atrophy mirrors the
distribution of TDP-43 in pathological studies (5), longitudinal
structural imaging, in combination with clinical phenotyping,
can be used to test hypotheses that TDP-43 pathology spreads
through axonal connections. Pathological studies in sporadic
ALS have led to the proposal that TDP-43 pathology spreads
through corticofugal projections (49). In contrast, in behavioral-
variant FTD, TDP-43 pathology has been proposed to spread
from orbitofrontal cortex to posterior regions through axonal
tracts (50).

Functional Connectivity
Changes in functional connectivity using task-based or resting
state fMRI have been reported prior to development of clinical
symptoms in patients with GRN or MAPT mutations at risk
for FTD (51). Three studies examined changes in functional
connectivity in resting state networks in C9+ carriers. One
study in symptomatic carriers found that C9+ and C9–
behavioral variant FTD patients had disruption of salience
network connectivity that was associated with neuropsychiatric
severity, as well as disruption of sensorimotor connectivity
(20). The disruption of the salience network occurred with
atrophy of different nodes within the salience network in
individual patients (20). Disruption of the salience network
and a network generated from a medial pulvinar nucleus seed
was also observed in young presymptomatic C9+ carriers
(47). Another study reported increased connectivity in the
visual network of C9+ carriers with a mixture of motor and

cognitive phenotypes compared to sporadic cases with similar
phenotypes (11).

Proton Emission Tomography
Hypometabolism in the frontal lobes in FDG-PET studies is
considered supportive of a clinical diagnosis of FTD (52). The
few reports of PET imaging in C9+ carriers had slightly different
findings. In one study, C9+ ALS patients had more widespread
hypometabolism occurring in the cingulate, insula, caudate, and
thalamus, with clusters of hypermetabolism in occipital, left
precentral, left postcentral, and superior temporal cortex when
compared to C9– ALS patients with or without FTD (53).
In contrast, the other study reported that C9+ ALS and C9–
ALS patients exhibited hypometabolism in peri-rolandic cortex;
several prefrontal regions had hypometabolism in both groups,
but C9+ ALS patients alone had focal hypometabolism in the
thalamus and posterior cingulate cortex (54). One case study
also reported frontal and temporal hypometabolism in a C9+
ALS patient who subsequently developed FTD (55). Another
reported that amyloid imaging, but not FDG-PET, distinguished
FTD from Alzheimer disease in a C9+ carrier (56).

PHYSIOLOGY

Physiological methods have been used to assess cortical function
in C9+ carriers. Transcranial magnetic stimulation (TMS)
is a non-invasive technique for assessing cortical excitability.
Numerous TMS studies in sporadic ALS patients have provided
evidence for hyperexcitability of the motor cortex early in disease
(57), with loss of excitability at late stages (58). C9+ ALS patients
were similarly found to have increased cortical excitability
according to several different TMS indices, but presymptomatic
C9+ carriers did not (59–61). Evoked potential measures have
been used to explore particular cognitive functions in C9+
patients (62), but have not been routinely used to identify disease
onset or severity. Electroimpedance myography (63) and Motor
Unit Number Index (MUNIX) (64) are non-invasive methods
that have been used to follow lower motor neuron dysfunction in
ALS patients in clinical trials but, to date, have not been reported
in C9+ ALS patients.

ENERGY METABOLISM

Patients with ALS develop defects in energy metabolism that
include low body mass index (BMI), hypermetabolism, and
hyperlipidemia (65, 66). While the contribution of dysregulated
energy homeostasis to ALS pathogenesis remains to be resolved,
such defects correlate with prognostic factors. For instance,
weight loss and hypermetabolism are associated with faster
disease progression and shorter survival in ALS (66–68).
The cause of these metabolic changes is unknown, but may
result from hypothalamic atrophy. Gorges et al. (69) have
shown that the hypothalamus is atrophied in ALS patients
and in presymptomatic ALS mutation carriers (the latter were
comprised predominantly of C9+ individuals). Furthermore,
they found a modest but significant correlation between
hypothalamic volume and BMI, especially in patients with
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TABLE 1 | Timeframes for detecting changes in selected candidate biomarkers in C9orf72 carriers.

Years prior to

symptom onset

1 year prior to

clinical symptoms

Early–mid stages

of disease

Late stages of

disease

CSF dipeptide repeat proteins • • • •

Functional connectivity salience network (fMRI) • • • •

Thalamic atrophy • • • •

CSF NfL • • ?

Cortical hyperexcitability (TMS) • ?

Reduced integrity of frontal white matter and association tracts (DTI) ? • •

CSF pNfH ? • •

FDG-PET frontotemporal hypometabolism • •

Global loss of functional connectivity • •

Global volume loss–ventricular atrophy, subcortical atrophy • •

Diffuse cortical thinning • •

Diffuse loss of white matter integrity (DTI) • •

CSF, cerebrospinal fluid; DTI, diffusion tensor imaging; FDG-PET, fluoro-deoxyglucose proton emission tomography; fMRI, functional magnetic resonance imaging; pNfH, phosphorylated

neurofilament heavy chain; NfL, Neurofilament light chain; TMS, transcranial magnetic stimulation. Question marks indicate measures needing further study.

familial ALS, and observed that anterior hypothalamic volumes
correlate with age of disease onset (69). While these findings are
not specific to C9+ carriers, they do suggest that hypothalamic
atrophy, BMI, and disturbances in energy homeostasis could
provide prognostic insight.

CSF AND BIOFLUID STUDIES

Fluid-based biomarker discovery efforts for ALS have most
often been conducted using cerebrospinal fluid (CSF) due to
its proximity to affected neuroanatomical regions. However,
progress has been made using plasma and serum, and studies
using urine and saliva are emerging (70). Among the more widely
studied biomarker candidates are inflammatory mediators,
metabolic markers and neurofilament proteins; the latter,
however, have arguably garnered the most attention (70, 71).
Neurofilament proteins, which include neurofilament heavy
chain (NfH), neurofilament medium chain and neurofilament
light chain (NfL), are abundantly and exclusively expressed in
neurons where they form the neuronal cytoskeleton. Because
neurofilament proteins are released from neurons upon axonal
damage or degeneration, they are considered indicators of
neuronal injury for various neurological disorders.

Neurofilament Proteins
In C9+ carriers, levels of CSF phosphorylated NfH (pNfH) were
significantly higher in patients with ALS or FTD compared to
asymptomatic individuals, and strongly associated with survival
in patients with C9+ ALS (72). Notably, C9+ ALS patients had
significantly higher pNFH levels than C9– ALS patients, which
presumably reflected increased neurodegeneration, consistent
with reports that patients with C9+ ALS develop greater brain
atrophy, particularly in extra-motor regions, compared to C9–
ALS patients (11–13). More diffuse degenerationmay account for
the shorter survival of C9+ ALS patients compared to C9– ALS
patients (1, 72–75). Similar to pNfH, CSFNfL levels were elevated

in symptomatic compared to presymptomatic C9+ carriers
(76, 77), and higher NfL levels in symptomatic individuals
correlated with greater disease severity and shorter survival (77).
Furthermore, elevated CSF NfL in C9+ carriers was associated
with lower gray matter volumes in the ventral and dorsomedial
prefrontal cortex, ventral, and dorsal insula, anterior cingulate,
caudate, medial thalamus, and other frontotemporoparietal
regions (77).

These findings supporting CSF pNfH and NfL as prognostic
markers for C9+ patients could significantly impact drug
development. For instance, the heterogeneity of disease course
in C9+ ALS could result in different proportions of fast
and slow progressors in clinical treatment arms. Using pNfH
and NfL levels as surrogates for progression rate could
facilitate stratification of patients into balanced groups to
reduce variability in treatment outcomes. Early evidence also
suggests that NfL in CSF and serum can inform the potential
phenoconversion of individuals from an asymptomatic to a
symptomatic state (78). Through the study of individuals that
carry a mutation in C9orf72 or other ALS-associated genes,
Benatar and colleagues found that NfL in asymptomaticmutation
carriers was elevated above the range seen in healthy individuals
as early as 12 months prior to the earliest clinical symptoms
(78). Should these findings be validated in additional cohorts,
NfL could provide insight on when neurodegeneration begins.
This would facilitate the timely diagnosis of C9+ ALS, and
increase the likelihood of enrolling patients in clinical trials at an
early stage of disease when they are most likely to benefit from
therapeutic intervention.

Dipeptide Repeat Proteins
In addition to prognostic biomarkers, markers of target
engagement would improve the interpretation of clinical trials
for C9+ ALS and FTD. As mentioned above, a characteristic
neuropathological feature of C9+ ALS and FTD is the presence
of neuronal inclusions formed of DPR proteins synthesized from
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expanded C9orf72 repeats. One of these proteins, poly(GP), is
abundantly expressed in the brain of C9+ carriers and is detected
in CSF (72, 77, 79, 80). While several studies observed that CSF
poly(GP) did not associate with age at disease onset, survival,
or markers of neurodegeneration (e.g., CSF pNfH or NfL, or
measures of brain atrophy) (72, 77, 79), poly(GP) shows promise
as a pharmacodynamic biomarker (81).

Since RNA transcripts of expanded C9orf72 repeats are
believed to play a key role in C9+ALS and FTD (82), therapeutic
strategies that target C9orf72 repeat RNA are being developed.
Given that levels of poly(GP) correlated with levels of repeat-
containing RNA in the cerebellum of C9+ carriers (31, 83),
poly(GP) was investigated as a marker of target engagement for
repeat RNA-based therapies. Antisense oligonucleotides (ASOs),
small molecules and genetic modifiers that target C9orf72 repeat
RNA attenuated poly(GP) levels in various preclinical models
including yeast, worms, mice, and C9+ ALS patient cell lines
(81, 84, 85). For example, poly(GP) was detected in CSF of mice
expressing an expanded C9orf72 repeat in the brain, and CSF
poly(GP) was decreased following treatment with a repeat RNA-

targeting ASO. Of note, CSF poly(GP) levels correlated with DPR

protein pathology, repeat RNA levels and RNA foci burden in
the brains of mice (81). These data suggest that monitoring CSF
poly(GP) before and during treatment of patients participating
in clinical trials presents a feasible approach to gauge target
engagement.

SUMMARY

The search for biomarkers of disease onset and progression

in C9orf72 repeat expansion carriers has yielded promising
candidate biomarkers (Table 1). Clinically, cognitive, behavioral,

and motor impairment occur on a continuum in patients with
the C9orf72 mutation. Non-invasive imaging studies in C9+
carriers have identified structural and functional changes in

critical components of the networks associated with cognition
and behavior. Early thalamic involvement has been detected in

structural, functional, and metabolic imaging studies in C9+
carriers across different clinical phenotypes, in both prospective
and retrospective studies. Diffusion changes in frontal white
matter may also occur early in disease. These non-invasive
imaging measures warrant further study in asymptomatic
carriers as early markers of degeneration. Among the minimally
invasive biomarker measures, CSF pNfH or NfL may allow
identification of disease onset in asymptomatic carriers and
forecast survival in symptomatic carriers (72, 77, 78). Now
that C9orf72 mutation carriers can be identified by genetic
testing many decades before symptoms begin, and efforts to
develop gene-directed therapy are underway, it is possible to
imagine that biomarkers will play important roles in future
therapeutic decisions. For example, in the future, persons
known to carry the C9orf72 mutation could undergo periodic
screening with non-invasive tests such as MRI or physiology,
followed by minimally invasive testing to measure CSF or blood
biomarkers when findings suspicious for neurodegeneration
arise.
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