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Biomarkers research in amyotrophic lateral sclerosis (ALS) holds the promise of improving

ALS diagnosis, follow-up of patients, and clinical trials outcomes. Metabolomics have a

big impact on biomarkers identification. In this mini-review, we provide the main findings

of metabolomics studies in ALS and discuss the most relevant therapeutics attempts

that targeted some prominent alterations found in ALS, like glutamate excitotoxicity,

oxidative stress, alterations in energetic metabolism, and creatinine levels. Metabolomics

studies have reported putative diagnosis or prognosis biomarkers, but discrepancies

among these studies did not allow validation of metabolic biomarkers for clinical use

in ALS. In this context, we wonder whether metabolomics knowledge could improve

ALS therapeutics. As metabolomics identify specific metabolic pathways modified by

disease progression and/or treatment, we support that adjuvant or combined treatment

should be used to rescue these pathways, creating a new perspective for ALS treatment.

Some ongoing clinical trials are already trying to target these pathways. As clinical

trials in ALS have been disappointing and considering the heterogeneity of the disease

presentation, we support the application of a pharmacometabolomic approach to

evaluate the individual response to drug treatments and their side effects, enabling the

development of personalized treatments for ALS. We suggest that the best strategy to

apply metabolomics for ALS therapeutics progress is to establish a metabolic signature

for ALS patients in order to improve the knowledge of patient metabotypes, to choose

the most adequate pharmacological treatment, and to follow the drug response and side

effects, based on metabolomics biomarkers.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, which
ultimately leads to death due to respiratory failure usually 3–5 years after the appearance of
first symptoms. ALS wandering diagnosis spreads ∼12 months after symptoms onset—this long
delay being partly related to the lack of specific diagnostic tests. Today, only two pharmacological
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treatments are approved for ALS: riluzole and edaravone, which
only show small effects on survival and decline of functional
impairment, respectively. Numerous clinical trials have been
conducted on the identification of new therapies for ALS, but
their findings are disappointing. One of the reasons of these
failures could be the use of inappropriate methodology in the
clinical studies, like poor design or lack of appropriate cohort
enrichment strategies (1). Early diagnosis could also increase
recruitment of patients in earlier stages of the disease to clinical
trials (2). Moreover, the functional scales used to assess motor
function in ALS patients (ALS Functional Rating Scale-Revised;
ALSFRS-R, forced vital capacity, and muscular testing) may
be insensitive to subtly follow drug response. Thus, the search
and identification of reliable biomarkers for ALS diagnosis and
prognosis is of utmost importance, as biomarkers follow-up
could help in the identification of drug-response phenotypes,
improving evaluation of treatment efficacy.

“Omics” research comprise systemic analyses (including
transcriptomics, genomics, proteomics, lipidomics, and
metabolomics) that advanced immensely in the field of
biomarkers. For example, proteomics research identified a
structural neuronal protein, the neurofilament, as a putative
biomarker for ALS, especially for ALS diagnosis regarding
its sensitivity and specificity (3). Neurofilaments also showed
promising results in the field of prognostic prediction factors
(4–6), but its application was not yet validated in the clinical
practice.

Metabolomics studies identified several metabolites related
to pathways implicated in the pathophysiology of ALS, both
in animal models and in ALS patients, thus improving
our knowledge about the disease mechanisms (7, 8). These
metabolites could represent ALS biomarkers alone or in
combination, by composing a metabolic signature for ALS.
Furthermore, as identified metabolites are related to pathways
that are modified in the disease, adjuvant therapy could target
these pathways, and compensate their dysfunction. Identification
of metabolic signatures also enables a personalized therapy
and the direct follow up of drug effect in each patient—a
proposition of a new field called pharmacometabolomics. In this
review, we provide the main findings of metabolomics studies
in ALS for biomarkers identification or for understanding ALS
pathophysiology. Furthermore, we summarize recent evidence
that support metabolomics applications in the clinical practice, as
improvement of therapeutics and treatment follow-up. Here, we
shed a light into other applications of metabolomics knowledge
through the extension of its interest beyond the biomarkers
research.

WHAT CAN METABOLOMICS ANALYSES
TELL US?

Metabolomics is based on the global search for metabolites,
defined as small molecules that represent the downstream
products of ongoing biological processes in cells, tissues, and
other biological samples (9). A particular metabolic profile—
or “metabotype”—of a systemic biofluid (such as blood or the

cerebrospinal fluid, CSF) reflects directly the metabolic status of
different organs and tissues because of continuous exchanges of
metabolites between tissues and fluids (7). To design a metabolic
profile, metabolites are selected according to their polarity, mass,
and concentrations using high-throughput techniques (10).
After data pre-treatment, metabolites are analyzed by univariate
analysis and multivariate analysis to identify the most important
contributors to the discrimination between samples (11, 12).

Metabolomics research identified several individual
metabolites and metabolic signatures (with or without
identification of each metabolite composing such signature)
that can discriminate ALS from non-ALS cases (10, 13–16).
Metabolomics can also determine metabolic signatures that
identify distinct subgroups of ALS patients according to their
clinical characteristics or disease evolution (17–19). Altogether,
the main objectives of metabolomics studies performed in ALS
have been punctually reached. However, its application in the
clinical routine or its extension to other aims (for example, for
following drug responses) will depend on the ability to overcome
several limitations of the method—for example, the differences in
samples treatment, data analysis, and lack of external validation
for many of these identified signatures.

METABOLOMICS STUDIES IDENTIFIED
METABOLITES RELATED WITH
PATHOPHYSIOLOGICAL MECHANISMS IN
ALS

Although the exact mechanism that initiate ALS pathogenesis
remain partially unknown, glutamatergic excitotoxicity,
oxidative stress, and mitochondrial dysfunction have been
reported as key contributors to the motor neuron degeneration
(20). Metabolomics may provide a new light to evaluate these
pathophysiological pathways by identifying metabolites directly
associated with these pathways (8). Here we summarize the
main findings of metabolomics studies linked with the most
prominent pathophysiological alterations observed in ALS
patients. Interestingly, these alterations were also observed in
ALS models.

Glutamate
Glutamate plays a key role in ALS, as it is not only involved in
excitotoxicity, but also in other mechanisms such as oxidative
stress and metabolism disturbance (21). The only treatment
approved that counteract the glutamatergic hyperactivation in
ALS is riluzole, a non-competitive blocker of glutamatergic
transmission (22–24). Glutamate remains the most cited
metabolite increased in blood samples (12, 25, 26) and CSF (25,
27–29) from ALS patients, as reported by independent research
groups. Recently, a metabolomics study proposed glutamic acid
as a potential biomarker for ALS, after validating it in a healthy
cohort (30). The increase of glutamate in CSF could be linked
with the decrease in astrocytic glutamate transporter (GLT)-1
expression in motor cortex and spinal cord observed in ALS
patients (17, 31, 32). Interestingly, ALS animal models also
present alterations in glutamate levels (33–35). Rats expressing
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the ALS-linked familial mutation Super Oxide Dismutase-1
(SOD1)-G93A showed a decrease in the astrocytic glutamate
transporter expression in the spinal cord (36), as reported in ALS
patients. Is important to note that astrocytes have been pointed
as key elements in the pathophysiology of ALS, as is for their role
in mediating glutamatergic activation or as for their metabolic
support to neurons (37).

Antioxidants
Oxidative stress is also a well-known mechanism involved in
ALS and is directly linked with glutamatergic toxicity that
increases the production of reactive oxygen species (ROS) (38,
39). Astrocytes release ascorbic acid (an endogenous antioxidant)
after glutamatergic stimulation, and the elevated level of
ascorbate in the CSF of ALS patients may reflect a compensatory
mechanism (11, 40). Another antioxidant metabolite, uric acid,
was shown to be involved in ALS pathophysiology. Increased
levels of uric acid were suggested to be associated with a slow
progression of ALS (41, 42). Homocysteine, another endogenous
antioxidant, was also pointed by metabolomics studies as a
potential biomarker for ALS (30, 39).

Lipids
ALS patients usually present compromised energy homeostasis,
including basal hypermetabolism, body weight loss, and
abnormal metabolism of glucose and lipids (43, 44). In agreement
with that, ALS patients present a 10-fold increase in the
cholesterol esters C16:0 and C18:0 in the spinal cord, while in
a mice model of ALS these substances are increased by 4- and
10-fold in the lower spinal cord during the presymptomatic
and symptomatic phases, respectively (45). Postmortem analyses
show that the spinal cord tissue from ALS patients presents a
remarkable decrease in docosahexaenoic acid (DHA) levels and
in n-3 polyunsaturated fatty acids (PUFA), in sharp contrast with
the increase of DHA content found in the brain cortex (46).

Creatinine
Reduced levels of creatinine in the CSF or blood from ALS
patients were reported from different research groups, including
metabolomics studies (42, 47–49). Creatinine reflects skeletal
muscle production and reduced levels of this metabolite are
directly related to amyotrophy, a cardinal ALS symptom. Use of
plasma creatinine levels as a biomarker in ALS was suggested
for monitoring disease progression in clinical trials (50), and
creatinine was the first metabolite already used to evaluate drug
therapy response to dexpramipexole in a clinical trial (51).

Findings regarding metabolomics are promising but
disappointing, as, to date, no biomarker was approved for
diagnosis or prognosis use (10). To go further with this
approach, well-designed and large cohorts studies would be
essential for biomarker validation (52), and the improvement
of analytical and statistical steps may improve the robustness
of the strategy (16, 19). Importantly, all metabolomics studies
published so far have identified metabolites linked to the same
pathophysiological pathways, thus reinforcing the potential
of metabolomics to explain pathophysiological mechanisms
underlying ALS. In this context, we suggest that metabolomics

analyses may be useful for other applications than identifying
diagnostic or prognostic biomarkers, such as for example,
monitoring disease course and identifying treatment outcomes
and side effects in clinical trials.

METABOLOMICS-IDENTIFIED
ALTERATIONS AS TARGETS FOR NEW
THERAPEUTIC STRATEGIES

Disturbed pathways identified through metabolomics studies in
cellular and animal models, as well as in ALS patients, hold the
potential to be used for the discovery of new therapies in ALS
(48). The application of metabolomics findings in preclinical and
clinical studies to target glutamatergic toxicity (21) and energy
metabolism dysfunction (44) were already reviewed. Thus, here
we will summarize the ongoing therapeutics attempts that target
alterations identified bymetabolomics studies and with beneficial
effects in ALS preclinical tests (Table 1).

As mentioned before, metabolomics and non-metabolomics
studies demonstrated alterations in glutamate levels in CFS
and blood of ALS patients. Several clinical trials tried to
demonstrate the effect of anti-glutamatergic drugs—already
approved for the treatment of other neurological diseases—for
the treatment of ALS, but failed to show any improvements.
This is the case for lamotrigine, topiramate, gabapentin,
and talampanel (21). Current active clinical trials investigate
the potential effect of memantine and perampanel in ALS,
drugs used for Alzheimer’s disease and epilepsy treatment,
respectively (21).

Focusing on oxidative stress (as edaravone, the recent drug
approved by the FDA for ALS treatment that is a ROS scavenger),
a clinical trial is investigating the effect of inosine treatment for

TABLE 1 | Ongoing clinical trials with therapeutics interventions focused in

alterations identified by metabolomics studies.

Target Intervention Clinical trials for ALS

Glutamatergic

overactivation

Perampanel Phase II, NCT03377309

(Lebanon); NCT03019419

(Japan); NCT03020797

(Unites States).

Memantine Ongoing (phase II,

NCT02118727, Unites

States).

[No effect observed in

phase II-III; (53)].

Oxidative stress Inosine Phase I, NCT02288091

(United States).

CC100 Phase I, NCT03049046

(United States).

Hypermetabolism Triheptanoin Phase I-II, NCT03506425

(United States).

High caloric fatty diet NCT02306590 (Germany).

Oral nutritional

supplementation (high

fat and protein)

NCT02152449 (France).

Information available in clinicaltrials.gov.
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ALS. Inosine is a precursor of uric acid, an antioxidant molecule
that is found altered in ALS patients. Furthermore, this clinical
trial will follow therapy response by analyzing uric acid levels in
treated individuals, applying metabolomics approaches both at
treatment strategy and follow-up. CC100 (a synthetic form of the
caffeic acid phenethyl ester) is another molecule with antioxidant
properties that is currently being investigated in a Phase I clinical
trial. The caffeic acid phenethyl ester is a natural compound with
effects on lipid peroxidation and lipid metabolism (54).

Considering that energy metabolism is also altered in
ALS patients, several studies focused in providing additional
fuel to increase energy uptake (44). While preclinical studies
successfully showed the beneficial effects of these treatments,
clinical trials failed to show the same results. In the case of
dexpramipexole (an improver of oxidative phosphorylation and
thus of ATP synthesis), a Phase II clinical trial showed prevention
of functional decline of ALS patients following a 12-month
treatment (55). However, Phase III failed to show improvements
(56). A Phase II clinical trial performed between 2009 and 2012
analyzed the beneficial effects of two hypercaloric (one high-
fat and other high-carbohydrate) diets in ALS patients receiving
enteral nutrition. Patients receiving a high-carbohydrate enteral
formula presented less adverse effects compared to control
subjects. They found that both diets were safe and tolerable,
although they did notmodify disease progression (57). Currently,
ongoing clinical trials investigate the effect of high caloric
fatty supplementation (Calogen R©) and high caloric protein/fat
supplementation (Fortimel R©) in ALS patients.

Novel therapeutic strategies may focus on creatinine as a
marker to identify the efficacy of drugs and follow-up of
treatments aiming the inhibition of the muscular loss observed
in ALS, or even in treatments aiming the increase of muscle mass
in the patients. For example, in ALS animal models, inhibition
of myostatin (a negative regulator of muscle growth) improved
muscular mass and strength. Although myostatin treatment did
not change the disease onset and progression, it improved the
muscular function, especially in the diaphragm of the animals
(58). If translated for the human disease, it could improve the
quality of life of ALS patients during disease progression.

METABOLOMICS-DRIVEN THERAPEUTICS
MANAGEMENT: THE ADVENT OF
PHARMACOMETABOLOMICS

Metabotype information can be used to identify alterations in
biochemical pathways in ALS patients that are modified or not by
treatment. This new field, called pharmacometabolomics, allows
clinicians to identify a metabolic state at baseline and after
drug therapy, increasing information about treatment outcomes,
especially drug-response phenotype (59).

Different studies revealed the potential of
pharmacometabolomics to assess drug therapy response
and identify distinct signatures of metabolites before and after
treatment exposure in diverse pathologies, from cancer to
cardiovascular diseases. For ALS, one study analyzed metabolites
and lipids composition of plasma samples from individuals

enrolled in a phase III clinical trial for Olexosime. This study
identified a metabolic profile that distinguished the placebo
from the Olexosime group, characterized mainly by alterations
in the levels of glycine, citrulline/arginine, and kynurenine.
Furthermore, clinical progression of ALS correlated with amino
acids, lipids, and spermidine levels in the Olexosime group, and
with glutamine levels in the placebo group (19). It is noteworthy
to highlight that these metabolites are linked with some of the
pathological pathways involved in ALS pathology (glutamatergic
alteration and energy metabolism dysfunction), as described
before.

In practice, pharmacometabolomics findingsmay improve the
strategy of drug administration scheme, as a complementary
tool of pharmacokinetics, and may provide new light on
drug-response effect and downstream signaling pathways (60).
This information may provide details on biochemical pathways
involved in disease and in treatment effect in ALS patients in a
narrowly controlled process.

METABOLOMICS RESEARCH IN ALS
SHOULD IMPROVE
THERAPEUTICS—CONCLUDING
REMARKS

Metabolomics represent a new approach that is increasingly
gaining importance as it helps to identify biomarkers and
unravels pathways that contribute to the pathophysiology of ALS.
Significant therapeutic advances are based on a deep knowledge
of ALS pathogenesis and metabolomics holds great potential to
play a key role in this objective. However, despite the efforts made
by metabolomics researchers to identify biomarkers for ALS,

FIGURE 1 | Metabolomics applicability enhance ALS therapeutic

management and allows a personalized medicine.
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no biomarker was validated yet. Metabolomics studies should
rather focus in identifying metabolic signatures then individual
biomarkers for ALS. This would be a revolutionary step toward
developing efficient strategies to evaluate not only disease
progression, but also treatment responses to drug therapies (19).

This also point out the urgent need of metabolomics research
to combine analysis and information (1) of different tissues in
ALS patients, as CSF, blood and muscle samples; and (2) by
combining different approaches (proteomics, transcriptomics,
lipidomics, etc.) (52). Combination of “omics” approaches with
clinical evaluation (for example, ALSFRS-R) could be the best
practice for an early diagnosis of ALS (10). Importantly, omics
analysis should be standardized between different research
centers together with refinement of statistical analysis tools
to analyze better the results obtained. Altogether, these efforts
should readily improve metabolomics application in the daily
clinical practice.

Metabolomics can also be applied to identify outcomes of
pharmacological treatment. Usual parameters and endpoints
used in clinical trials to evaluate drug efficacy are probably
not enough sensitive to observe a slight effect. In this regard,
metabolomics could identify biomarkers that are sensitive
enough to detect even small effects of drugs tested in Phase
II clinical trials, allowing them to be investigated into Phase
III. Furthermore, pharmacometabolomics approaches provide
help in evaluating drug effect as a primary or additional
parameter. Metabolome may provide longitudinal, reproducible,
and objective data that are crucial criteria to evaluate drug
effect. Besides, adjuvant therapy based on metabolomics findings
could compensate the identified altered pathways in a subtype
of patients, allowing a personalized therapeutic strategy targeting
specifically these pathways. Ongoing trials using this strategy are
presented in Table 1. However, no study yet tried to approach
several pathways at once, using a combined therapeutic strategy.

This approach should bemore relevant than focusing only on one
altered pathway.

Metabolomics applied early in ALS management should
improve therapeutic strategy and development. The major
interest of metabolomics at disease onset is to build
homogeneous subgroups of patients in order to apply a
personalized therapeutic approach (Figure 1). Metabolomics
complement data obtained from genomics, transcriptomics and
proteomics, and combined with pharmacometabolomics
approaches, they add the final piece of information to
the study of disease pathophysiology and drug response
(60). We propose to combine omics and clinical data to
improve our comprehension about the specific metabolic
pathways affected in each individual patient. Stratification
of patients based on all these findings would considerably
improve trials methodology and care management, as well as
therapeutics strategies by providing a mean to a personalized
medicine. To our knowledge, this review is the first to present
diagnosis and prognosis biomarkers as an initial step to
develop therapeutics. This new light on metabolomics
application is promising for complex and heterogeneous
diseases, like ALS, characterized by successive therapeutics
failures.
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