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The goal of the paper is to present an example of integrated analysis of electrical,

hemodynamic, and motor activity accompanying the motor function recovery in a post-

stroke patient having an extensive cortical lesion. The patient underwent a course of

neurorehabilitation assisted with the hand exoskeleton controlled by brain-computer

interface based on kinesthetic motor imagery. The BCI classifier was based on

discriminating covariance matrices of EEG corresponding to motor imagery. The

clinical data from three successive 2 weeks hospitalizations with 4 and 8 month

intervals, respectively were under analysis. The rehabilitation outcome was measured

by Fugl-Meyer scale and biomechanical analysis. Both measures indicate prominent

improvement of the motor function of the paretic arm after each hospitalization. The

analysis of brain activity resulted in three main findings. First, the sources of EEG

activity in the intact brain areas, most specific to motor imagery, were similar to the

patterns we observed earlier in both healthy subjects and post-stroke patients with

mild subcortical lesions. Second, two sources of task-specific activity were localized in

primary somatosensory areas near the lesion edge. The sources exhibit independent

mu-rhythm activity with the peak frequency significantly lower than that of mu-rhythm in

healthy subjects. The peculiarities of the detected source activity underlie changes in EEG

covariance matrices during motor imagery, thus serving as the BCI biomarkers. Third, the

fMRI data processing showed significant reduction in size of areas activated during the

paretic hand movement imagery and increase for those activated during the intact hand

movement imagery, shifting the activations to the same level. This might be regarded

as the general index of the motor recovery. We conclude that the integrated analysis of

EEG, fMRI, and motor activity allows to account for the reorganization of different levels

of the motor system and to provide a comprehensive basis for adequate assessment of

the BCI+ exoskeleton rehabilitation efficiency.
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INTRODUCTION

The methods of post-stroke rehabilitation using the
limb exoskeleton controlled by brain-computer interface
(BCI) based on kinesthetic motor imagery (MI) may be helpful
for the motor function recovery (1). The procedure efficiency
has been shown by several randomized controlled studies (2–8).
Yet case studies of patients involved in BCI procedures are not
numerous. The studies mainly concern the BCI system design
and improvement (9–11) while smaller number of them are
centered on different aspects of the procedure outcome, both
motor (12) and psychological (13).

The present study is aimed to demonstrate the results
of integrated analysis of electrical, hemodynamic, and motor
activity accompanying the motor function recovery. The results
were obtained for a patient with an extensive post-stroke cortical
and subcortical lesion in a chronic post-stroke period. There were
two major reasons for selecting the patient for the study. First,
she demonstrated high accuracy of BCI control. This suggests
high contrast and stability of her EEG patterns specific to motor
imagery, making identification of these patterns easier. Second,
she went through three hospitalizations, which allowed us to
investigate the long-term treatment effects.

The motor outcome of BCI+ hand exoskeleton rehabilitation
was assessed both using the FM score (14) and biomechanical
analysis of upper limb movements before and after the
interventions. The biomechanical analysis was used to avoid
possible subjectivity of the FM scoring and, what is more crucial,
to capture the motor function tiniest alterations as they might
testify to degree of motor recovery (15).

The EEG analysis was based on the previously developed
methodology which was applied to find sources of
electrophysiological brain activity the most specific for motor
imagery during the BCI control by both healthy subjects and
post-stroke patients with mild subcortical lesions (16–18). The
hemodynamic activity was investigated through the comparative
analysis of fMRI data before and after the course of rehabilitation
during the final hospitalization period.

METHODS

Patient
The patient, female, 42 years old, was recruited in the study
16 months after hemorrhagic stroke. Following the MRI data
the lesion was located in cortical-subcortical areas of the frontal
lobe in the left hemisphere (Figure 3A). The muscle tone and
tendon reflexes of the paretic arm were increased. The patient
was able to follow the instructions of the rehabilitation procedure
(the score of Montreal Cognitive Assessment amounted to 26)
and had no other neurologic, neuromuscular or orthopedic
diseases. The muscle force was assessed by Medical Research
Council (MRC) scale as 1 for distal domain of the arm and
as three for proximal one during all the three hospitalizations.
Anxiety and depression were assessed by Hospital Anxiety and
Depression Scale (HADS) (19) as 4/4 for first and second
hospitalizations which corresponds to the norm (<7) and
as 8/7 for the third one, which corresponds to subclinical

anxiety/depression. The patient went in for sports and was
familiar with kinesthetic motor imagery. In addition, the patient
was highly motivated for rehabilitation, which stimulates the
efficiency of BCI-based procedures (20, 21). The patient met the
inclusion criteria elaborated for the BCI+ Exoskeleton clinical
trials (8).

The patient went through three 2-weeks hospitalizations
with 4 and 8 months intervals, respectively. She was provided
with standard therapy in accordance with Russian treatment
protocols and standards. Each hospitalization the therapy was
complemented with 10 BCI+ Exoskeleton sessions, one session
a day.

BCI+ Exoskeleton Procedure
During the BCI treatment the patient was sitting in a medical
chair with her hands placed into two exoskeletons (Android
Technics, Russia). She controlled extension of two hand
exoskeletons (Figure 1A) by performing motor imagery tasks,
following visual cues presented on the monitor (Figure 1B).
The tasks were to relax (R) and to imagine kinesthetically slow
extension of either the paretic (right, RH) or the intact (left, LH)
hand fingers. The exoskeleton extended the patient’s fingers if the
BCI classifier recognized the imagery of their extension.

The EEG data were recorded with NVX52 device (Medical
Computer Systems, Russia) with 40 AgCl electrodes. The data
were digitized at 500Hz, filtered on-line with band-pass 5–30 and
50Hz notch filters, and fed to the BCI classifier. The raw EEG
data were stored for further processing.

Each day electrode positions on the scalp were digitized with
the EEG PinPoint system (Localite GmbH, Germany) after the
daily BCI session was over. The positions were set in the MRI
anatomical image coordinate system.

The BCI classification algorithm was designed under the
assumption that EEG has a multivariate Gaussian distribution
with zero mean and covariance matrix depending on the task
performed (22). The BCI classified ongoing EEG signal by
comparing its covariance matrix obtained for the last second
epoch with the three EEG covariance matrices corresponding
to the R, LH, and RH tasks (Figure 1C). The details of the
experimental setup and procedure are given in (8).

Motor Function Assessment
The motor functions were assessed using the standard clinical
FM score and biomechanical analysis of upper limb movements.
The movements were registered by the TrakStar electromagnetic
system (Ascension Technology Corp., USA). Four sensors were
placed on the patient’s hand, forearm, upper arm and acromion.
Their positions and orientations were digitized at 100Hz. Passive
and active movements along each of the seven arm degrees of
freedom (DoF) were recorded to calculate the individual joint
axes and the rotation angles in the joints (23). FM assessment
and motion recordings were performed at the beginning and
at the end of each hospitalization for both intact and paretic
arm. Mean absolute values of all angular velocities (MAV),
considered as indices of muscle forces (24) were computed for
each DoF.
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FIGURE 1 | (A) photo of the left exoskeleton attached to the chair arm pad; the right exoskeleton has symmetrical construction. (B) visual cues of the BCI system; the

upper arrow corresponds to relaxation, the left and right arrows correspond to the left and right hand extension imagery; the blue arrow signals the patient to prepare

for performing the corresponding task; the green arrow signals the patient to start performing the task; circle in the middle of the screen serves both as a gaze fixation

point and for additional visual feedback, it becomes green when the BCI classifier recognizes that the cued task is executed. (C) schematic illustration of the BCI

classification algorithm. After several presentations of each task the corresponding EEG covariance matrices (CR for Relaxation, CLH and CRH for the left and hand

motor imagery) are estimated. Then for each sliding 1 s EEG window, X, the probability of its corresponding to each task is estimated using the Bayesian approach.

The command is generated based on the maximal probability, and the window is shifted as new EEG data are acquired. The more correct answers the BCI provides,

the more is the exoskeleton extended.

Post-hoc EEG Analysis
For the sake of post-hoc analysis the raw data were filtered
with 5–30Hz band-pass zero-phase FIR filter and 50Hz zero-
phase notch filter to avoid power line interference. The filtered
data of each session were decomposed into components using
several independent component analysis algorithms: AMICA
(25), FastICA (26), RunICA (27), kurtosis optimization (28),
PWCICA (29), and variance non-stationarity maximization (30).
Each component is defined by its temporal activity and voltage
distribution over EEG electrodes (topographic map), resulting
from a certain source of electrophysiological activity. Since the
sources which may be related to the EEG activity prove to be
dipolar (31, 32), only components which distributions could be
accurately approximated with that of a single dipolar source were
selected for further analysis. The approximation was considered
accurate if the residual variance of a single dipole fit did not
exceed 5%. The dipole was fitted using individual head model

created from T1- and T2-weighted MRI images and the digitized
electrode positions. For model creation and fit technique see our
previous works (16, 18).

The components selected from all experimental sessions
were grouped into clusters according to their topographic maps
similarity. The clustering was performed using the Attractor
Neural Network with Increasing Activity (33, 34). We assume
that finding a component by several ICA methods with different
criteria of component independency makes it more certain that
the component actually corresponds to the specific source of
brain activity. Thus, in case two or more components of the same
session were assigned to the same cluster, only the component
found by more methods was chosen for further analysis. The
components found by different methods for the data of the
same session were considered to be identical if the cosine
between the component distribution vectors (the topographic
maps) exceeded 0.95 and the correlation coefficient between their
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activities exceeded 0.8. The component relevance for the BCI
performance was estimated using the algorithm described in
(16). Current source density of the relevant components was
estimated by sLORETA (35) using the individual head model and
the digitized electrode positions.

MRI and fMRI Registration and Analysis
Scanning was performed on a 3T Siemens Magnetom Verio
at the beginning and at the end of third hospitalization. The
anatomical images were acquired using T1-weighted multiplanar
reconstruction mode (TR = 1,900ms, TE = 2.47ms, 512 × 512
matrix, FOV= 250× 250mm) with 0.488× 0.488× 1mm voxel
size.

The fMRI data were acquired with BOLD sensitive T2∗-
weighted mode (36 slices, TR = 3,000ms, TE = 30ms, 64 × 64
matrix, FOV = 192 × 192mm, BW = 2,232 Hz/pixel) with 3 ×
3 × 3mm voxel size. 120 3D images were obtained during each
session (one session before and one after training). Experimental
design contained consequent trials of the mental tasks used to
control BCI. Each trial lasted 30 s and contained 10 full brain
scans.

The fMRI data were processed according to SPM12 (Statistical
Parametric Mapping, Wellcome Trust Centre for Neuroimaging
at UCL, London, UK) standard single subject processing
workflow. Two t-test contrasts were used to identify areas
where activation during left and right hand MI was significantly
different from activation during relaxation (p < 0.001).

RESULTS

Accuracy of the BCI Control
The average probabilities of the correct BCI classification were
0.61 ± 0.02 (max. 0.77), 0.58 ± 0.015 (max. 0.75) and 0.62 ±

0.02 (max. 0.84) for the first, second, and third hospitalization,
respectively. There was no significant difference between the BCI
control accuracy for different hospitalizations (p > 0.17, pair-
wise Wilcoxon test). There were also no evident trends in the
classification accuracy during each hospitalization.

Motor Output
The total FM score increased from 75 to 85 (from 4 to
8 in the distal and from 17 to 20 in proximal domains),

FIGURE 2 | Topographic maps and power spectral densities (PSD) of the four most relevant independent EEG components which are the main BCI biomarkers. The

sources of their activity are located in the left primary somatosensory area (SILa, SILb), in the precuneus (PRC) and in the right primary somatosensory area (SIR). The

power spectral densities are shown in 5–30Hz band. The blue lines indicate relaxation, the green and red lines indicate the imagery of the left (intact) and right (paretic)

hand extension, respectively. The PSD of each component is given in relative units proportional to V2/Hz, since the component activity scale is undefined (28). The

components exhibit the suppression of EEG rhythmic activity during the motor imagery. The sources located in the damaged hemisphere have lower peak frequency

compared to the sources in the intact areas.
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FIGURE 3 | (A) T2 contrasted image of the lesion in the left motor and premotor areas; (B) results of the task-specific EEG source localization. The SIR source (red) is

located in the primary somatosensory area of the right (intact) hemisphere, the SILa,b sources (green and magenta) are located in the primary somatosensory area of

the left hemisphere, near the lesion edge, the PRC source (blue) is located in the precuneus. (C) voxels with BOLD response significantly higher during LH MI than

during relaxation (p < 0.001) before the treatment; (D) voxels with BOLD response significantly higher during RH MI than during relaxation (p < 0.001) before the

treatment; (E) voxels with BOLD response significantly higher during LH MI than during relaxation (p < 0.001) after the treatment; (F) voxels with BOLD response

significantly higher during RH MI than during relaxation (p < 0.001) after the treatment. All images are presented in the neurological convention. The left and the right

hemispheres are marked by L and R, respectively.

from 74 to 89 (from 3 to 7 in the distal and from
22 to 24 in the proximal domains), and from 75 to
84 (from 3 to 5 in the distal and from 22 to 24 in
the proximal domains) during the first, second, and third
hospitalizations, respectively. Thus, for each hospitalization the
improvement of motor functions exceeded five points, the
minimal clinically important difference for chronic patients
(36, 37).

Wrist DoFs and pronation-supination of the forearm were
the most affected. Biomechanical analysis showed increasing of
the forearm pronation-supination MAV in both the paretic and
intact arms. During the first hospitalization the MAV increased
from 0.06 to 0.12 rad/s for the paretic arm and from 2.95 to 4.95
rad/s for the intact arm. Corresponding MAV values increased
from 0.09 to 0.24 rad/s and from 4.7 to 5.2 rad/s during the
second hospitalization, and from 0.07 to 0.11 rad/s and from 4.47
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to 4.68 rad/s during the third one. The MAV of the wrist DoFs
never exceed 0.06 rad/s.

BCI Biomarkers
The data of 72 EEG recordings were processed, 24 recordings
for each hospitalization. The component clusters were sorted
according to the number of elements. The components of
each of the first four clusters appeared in more than 65%
sessions while the components of all other clusters appeared
in <20% sessions. Moreover, the components of each of the
four clusters were relevant for the BCI performance in more
than 50% of sessions while the components of all the rest
clusters were relevant in <40% of sessions. The component
relevance means that changes in their activity are the main
cause for the difference between the task-specific EEG covariance
matrices. That is why the components of the first four
clusters, which were the most common and relevant, were
considered as the main BCI biomarkers and were selected
for detailed analysis. The topographic maps (Figure 2), activity
spectral densities (Figure 2), and source locations (Figure 3B)
suggest that components of the selected clusters represent
the activity of the primary somatosensory areas of the left
(SILa, SILb) and right (SIR) hemispheres and precuneus (PRC).
The components demonstrate the suppression of alpha-band
EEG activity during the motor imagery. The peak frequencies
of SIR and PRC sources located in the intact areas were
10.54 and 10.29Hz, while the peak frequencies of the SILa
and SILb sources located near the lesion were significantly
lower: 8.69 and 8.54Hz (p < 0.001, Wilcoxon test). The SILb
sources were always found together with SILa although less
frequently (66% sessions vs. 94% sessions). Despite the proximity
of SILa and SILb locations the sources exhibit independent
activity.

The SILa, SILb, SIR, and PRC source occurrence and relevancy
rates were consistent for all hospitalizations, as well as their
locations and peak frequencies.

Hemodynamic Activity
Both before and after the treatment, the primary sensory-
motor cortex, and the supplementary motor area (SMA) of the
right hemisphere, the supramarginal gyri of both hemishperes
and areas BA44/45 of the left hemisphere (Broca area) were
activated during the intact (left) hand MI (Figures 3C,E). After
the treatment the volume of all the areas of activity increased with
the only exception for a zone in the upper parietal lobe.

During the paretic (right) hand MI, the activity before the
treatment was represented by the extensive clusters in the
primary sensory-motor areas, in the SMA, in the frontal lobes,
in the temporal gyrus and in the cerebellum of both hemispheres
(Figures 3D,F). After the treatment areas of activation decreased
in size. The overall levels of activation during intact and paretic
hand MI shifted to the same level.

DISCUSSION

In spite of the extensive post-stroke cortical and subcortical
lesion the patient was able to control the BCI as accurately as

the best of healthy subjects (18). Along with high motivation
it testifies to the favorable rehabilitation potential (38). The
accuracy of BCI control did not exhibit significant trends
during the BCI training in all three hospitalizations, while
FM score and biomechanical indices of the paretic arm
recovery increased. Also, biomechanical analysis revealed motor
improvement for the intact arm. The motor improvement for
both arms may result from the patient’s high ability for motor
imagery.

At the beginning of every following hospitalization the
FM scores were lower than at the end of the previous
one. This suggests that while the BCI training is efficient
for the motor recovery, the improvement in the motor
function may not remain at the level attained after 2 weeks
long treatment. The long-term positive effect of the BCI
training manifested in the higher indices of the motor
recovery during the second hospitalization as compared to the
first one.

During the imagery of the left (intact) hand areas of fMRI
activations were almost the same as for healthy subjects (39) with
the predominance of the right hemisphere activity. During the
imagery of the paretic hand large clusters of fMRI activity were
observed in both hemispheres. After BCI training the areas of
fMRI activity expanded during the intact hand motor imagery
and shrank for the paretic hand. The reduction of fMRI activity
foci during the paretic handmotor imagery after the BCI training
was observed earlier (3). The shift of the activity to the same level
during motor imagery of paretic and intact hands is regarded
as a motor recovery index (40). The activity in SMA observed
during the right and the left hand motor imagery can testify
to the role of SMA in the controlling movements of the both
arms (41).

The EEG analysis revealed four sources of brain electrical
activity which were the most relevant to the BCI control.
Two of the sources were typical for the EEG activity during
motor imagery in both healthy subjects and patients with
subcortical stroke (18). These sources were localized in the
right primary somatosensory cortex (SIR) and precuneus
(PRC), the areas unaffected by lesion. Two other sources
(SILa and SILb) were specific for the patient in question
in contrast to the symmetric SIL and SIR sources observed
in healthy subjects and patients with subcortical stroke
(18). These specific sources were localized at the posterior
border of the damaged area, close to the central sulcus
and approximately symmetric to SIR. We suppose that these
sources represent the activity of the remaining parts of a
damaged neural network in the primary somatosensory area
of the left hemisphere symmetric to that observed in the
intact (right) hemisphere. These sources demonstrate typical
mu-rhythm desynchronization during the motor imagery, but
they exhibit independent activity and their peak frequency is
significantly lower than that of the similar sources of healthy
subjects.

No task-specific EEG components were localized in SMA,
while the SMA sources were expected (18) and the SMA
activation was revealed by fMRI. This demonstrates the value of
the integrated multi-modal analysis.
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CONCLUSIONS

Active use of hand motor imagery for controlling the exoskeleton
by BCI is shown to contribute to positive dynamics of arm
motor function recovery in a patient with extensive cortical
lesion. Two BCI biomarkers corresponding to EEG activity in
intact brain areas were similar to those observed earlier in
healthy subjects and post-stroke patients with mild subcortical
lesions. Another two biomarkers corresponded to the activity
in primary somatosensory areas near the lesion edge. Their
sources exhibited independent mu-rhythm activity with the
peak frequency significantly lower than that of mu-rhythm in
healthy subjects. Significant reduction in size of areas activated
during the paretic hand movement imagery and increase for
those activated during the intact hand movement imagery were
observed by fMRI. The shift of the activations to the same level
was regarded as the general index of the motor recovery. We
conclude that the integrated analysis of EEG, fMRI, and motor
activity allows to account for the reorganization of different
levels of the motor system and to provide a comprehensive basis
for adequate assessment of the BCI+ exoskeleton rehabilitation
efficiency.
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