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The emerging concept of a crosstalk between hemostasis, inflammation, and immune

system prompt recent works on coagulation cascade in multiple sclerosis (MS). Studies

on MS pathology identified several coagulation factors since the beginning of the disease

pathophysiology: fibrin deposition with breakdown of blood brain barrier, and coagulation

factors within active plaques may exert pathogenic role, especially through the innate

immune system. Studies on circulating coagulation factors showed complex imbalance

involving several components of hemostasis cascade (thrombin, factor X, factor XII).

To analyze the role of the coagulation process in connection with other pathogenic

pathways, we implemented a systematic matching of genome-wide association studies

(GWAS) data with an informative and unbiased network of coagulation pathways. Using

MetaCore (version 6.35 build 69300, 2018) we analyzed the connectivity (i.e., direct

and indirect interactions among two networks) between the network of the coagulation

process and the network resulting from feeding into MetaCore the MS GWAS data.

The two networks presented a remarkable over-connectivity: 958 connections vs. 561

expected by chance; z-score = 17.39; p-value < 0.00001. Moreover, genes coding for

cluster of differentiation 40 (CD40) and plasminogen activator, urokinase (PLAU) shared

both networks, pointed to an integral interplay between coagulation cascade and main

pathogenic immune effectors. In fact, CD40 pathways is especially operative in B cells,

that are currently a major therapeutic target in MS field. The potential interaction of PLAU

with a signal of paramount importance for B cell pathogenicity, such as CD40, suggest

new lines of research and pave the way to implement new therapeutic targets.

Keywords: multiple sclerosis, genome-wide association studies, cluster of differentiation 40, plasminogen

activator, urokinase gene, connectivity analysis

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00095
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00095&domain=pdf&date_stamp=2019-02-14
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Renato_Umeton@DFCI.Harvard.edu
mailto:giovanni.ristori@uniroma1.it
https://doi.org/10.3389/fneur.2019.00095
https://www.frontiersin.org/articles/10.3389/fneur.2019.00095/full
http://loop.frontiersin.org/people/620777/overview
http://loop.frontiersin.org/people/290825/overview
http://loop.frontiersin.org/people/621817/overview
http://loop.frontiersin.org/people/620845/overview
http://loop.frontiersin.org/people/620841/overview
http://loop.frontiersin.org/people/157693/overview


La Starza et al. MS GWAS Data and Coagulation

INTRODUCTION

Recent studies focused on the role of coagulation cascade
in neuroinflammation and neurodegenerative disease,
considering new suggestions on a crosstalk between hemostasis,
inflammation and immune system (1). The majority of
these studies regarded multiple sclerosis (MS), but others
demonstrated a dysregulation of several proteins of the
coagulation cascade in many other central nervous system (CNS)
diseases: traumatic brain and spinal cord injury, Parkinson
disease, amyotrophic lateral sclerosis, Huntington disease and
Alzheimer dementia (2–6).

A recent review discussed the role of fibrinogen in some
neurological diseases, with an emphasis on the cellular targets
and the fibrinogen-induced signal transduction pathways in
the CNS: fibrinogen has a pleiotropic role in the activation
of inflammation and pathologies that share, as common
change, the increased blood-brain barrier (BBB) permeability.
This produces the extravasation of plasma proteins that are
undetectable in a healthy CNS, but abundantly deposited inmany
neurological conditions, whereby they mediate both pathological
inflammation and tissue repair (7).

In MS the BBB breakdown and activation of the innate
immune system appears to be an early event in the diseases
development, that may precede the clinical onset. Different
studies showed that fibrin deposition is a leading feature of
MS pathology and it is presents all over the disease course
(7). Fibrinogen can directly activate microglia cells in vitro
and increase their phagocytic ability by binding to the integrin
receptor CD11b/CD18, which is specifically expressed in the
CNS (8). Participation of the coagulation cascade to the
neuropathology of MS was strongly suggested by a proteomic
analysis on laser-micro dissected, post-mortem brain lesions.
Comparative proteomic profiles identified tissue factor and
protein C inhibitor within chronic active plaque samples. In vivo
experiments with antagonists of the coagulation factors identified
(hirudin or recombinant activated protein C) were capable of
ameliorating animal models of MS and suppressing pathogenic
immune effectors, confirming the impact of dysregulated
coagulation factors on demyelinating processes and suggesting
potential therapeutic targets (9).

Another approach focused on the study of circulating
coagulation factors, as possible biomarkers and targets of
treatment tactics in MS pathogenic process. Gobel et al.
(10) studied different neurological diseases (all the forms
of MS, neuro myelitis optica spectrum disorders, other
inflammatory neurological diseases, and non-inflammatory
neurological conditions) compared to healthy status. The plasma
levels of different coagulation proteins measured and the results
demonstrated significantly higher levels of prothrombin and
factor X in MS patients, without significant changes in the
other conditions. Thrombin produces different inflammatory
responses, including platelet activation, vasodilatation, leukocyte
attraction, production of cytokine, and chemokine (IL-1, IL-6,

Abbreviations: GWAS, genome-wide association studies; PLAU, plasminogen

activator, urokinase.

TNFα) (11). These effects in CNS are also dependent on
thrombin concentration: at low-to-moderate concentrations, it
protects hippocampal neurons and astrocytes from insults, while
at higher concentrations thrombin induces cell death (12, 13).
Another coagulation factor that proved to be somehow involved
in MS pathogenic process was factor XII (FXII). Increased FXII
levels and reduced function within the intrinsic coagulation
pathway were evident in people with MS (14); Gobel et al. found
high levels of FXII activity in the plasma of MS patients during
relapse, and immune activating effects mediated by interactions
between FXII and dendritic cells in a CD87-dependent
manner (15).

The above studies [with the prominent exception of the
proteomic analysis by Han et al. (9)] were planned with
a hypothesis-driven approach focusing on single factors of
coagulation cascade. The coming of genome-wide association
studies (GWAS) data would allow unbiased approaches capable
of disclosing a more extensive landscape of coagulation process
involvement inMS pathogenesis. GWAS results are derived from
population-based association studies, comparing disease cases
and controls for common genetic variants, that have variable
frequencies in the general population. Each common variants
(signaled by a single nucleotide polymorphism) explain a small
fraction of the risk/protection in a population. The overall MS
genetic risk is multifaceted: many common variants of small
effect spread throughout the genome, loci of stronger effects
lying in the human leukocyte antigen (HLA) haplotype, that had
been associated to disease risk since eighties, as well as recently
described low-frequency and rare-coding variants all contribute
to the complex genetic architecture of MS (16).

GWAS STUDIES AND COAGULATION

GWAS studies encompassing the last decade have identified
more than 200 MS-associated loci across the human genome
(17). Technological advances, adequate increase of sample size,
and improved statistical approaches have all contributed to a
substantial progress in the definition of the complex genetic
architecture of MS. This prompted a significant extension of the
view on MS genetics, that was essentially limited to the role
of human histocompatibility haplo types until 15 years ago. At
least two challenges remain: (i) the definition of a comprehensive
etiological model, with the need of better understanding both
the plausibly causal effects in altering disease risk for many
of the susceptibility gene regions identified, and the impact of
non-genetic factors, as demonstrated, among others, by twin
studies (18, 19); (ii) the clinical translation of genomic data, that
may exploit the relevance of pathogenic pathways, for which
therapeutics is already available in clinical practice, or may drive
the discovery of new druggable targets.

One potentially informative approach to deal with these
issues includes bioinformatics attempts capable of extracting
from GWAS data the biological consequences and the functional
implications of individual disease-associated variants. Our
group implemented analyses aimed at clarifying the interplay
between diseases-associated genomic regions and presumed
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causal environmental factors (20–22). Another bioinformatics
reworking allows to explore the reciprocal interactions of
pathways resulting from GWAS data, to disclose unknown
networks and to focus on previously under estimated pathways
in MS etiology.

By applying the latter approach we used bioinformatics tools
to analyze the role of the coagulation cascade in connection with
other biological pathways contributing to the complex disease
pathogenesis. Using MetaCore (version 6.35 build 69300, 2018)
we analyzed the connectivity (i.e., direct and indirect interactions
among two networks) between the network of the coagulation
process (a standard map in MetaCore, presented in Figure 1,
that includes 94 components) and the network resulting from
feeding into MetaCore the MS GWAS data. In particular we
considered genes that were reported in 19MS GWAS studies
(23–41) filed in the GWASCatalog (https://www.ebi.ac.uk/gwas);
such list (Supplementary Table 1) contains 398 genes, that were
either reported as associated toMS in the aforementioned studies,
or that were originally reported as hits on non-well specified
regions, later mapped to better characterized regions and genes.
The connectivity analysis in MetaCore takes place in two steps:
first, the genes that are shared by the two networks (i.e., elements
that appear in both the coagulation process network and the
MS GWAS network) are identified; second, every element in
each network is enriched with its interactors. A statistics is then
computed counting how many interactions are observed among
the two enriched networks, comparing this number to what
would be expected by chance. MetaCore connectivity analysis
showed the following results: the coagulation process network
and the MS GWAS network presented a remarkable over-
connectivity, showing 958 connections (561 were expected by
chance) that lead to z-score of 17.39 and p-value< 0.00001; genes
coding for cluster of differentiation 40 (CD40) and plasminogen
activator, urokinase (PLAU) appeared both in the coagulation
process network and the MS GWAS network (Figure 2).

These analyses on one hand confirm that the coagulation
cascade may have an impact on MS development, as already
reported (see above), on the other hand fail to detect main
coagulation components previously indicated by experimental
studies. This limitation may pertain the analyses based on GWAS
studies in general, which incorporate huge number of gene
variants and several levels of possible functional complexities.
Specifically, PLAU pathway has already been scrutinized for
its role in the activation of matrix metallopeptidase9, that
has in turn been associated with BBB breakdown, a crucial
event in MS development (42). However, the network sharing
by PLAU and CD40 pathways, resulting from our analysis,
points to a more integral interplay between coagulation cascade
and immune effectors, that are currently the main focus of
research on MS etiopathogenesis and therapy. CD40 pathways
is especially operative in B cells, being the typical signal
mediating help by T cells (through CD40 ligand) on cognate
B lymphocytes for antibody production and other important
functions, such as antigen presenting cells and cells modulating
the immune response. Recent studies show indeed that MS-
associated genetic variants alter the expression of co-stimulatory
molecule, including CD40 in B cells, as well as the level of
steering cytokines such as interleukin-10, which is considered

to have an immunoregulatory function downstream of CD40
(43). Moreover, the CD40-CD40 ligand dyadis intensively
investigated for its essential role in the development of MS,
with the aim of targeting it therapeutically and antagonize
neuroinflammation (44).

The role of CD40 pathway in MS development refers to the
more general topic of the role of B cells in neuroinflammation.
Our recent works suggest that B lymphocytes, in an activated
and pro-survival status, contribute to MS development with
functions other than antibody-production (45). Indeed, B
lymphocytes are professional antigen-presenting cells for
autoreactive T cells (43, 46), as well as potent producers of
steering cytokines and other immune effectors influencing both
pathogenic (lymphotoxin, tumor necrosis factor, granulocyte
macrophage-colony stimulating factor, and metallo-peptidases)
and protective (interleukin 10) milieus in neuroinflammation
(47–49). Accordingly, CD20-targeted monoclonal antibodies,
that deplete B cells in their earlier stages of development,
turned out to be highly and consistently effective in tackling
the disease development (50, 51). Hence, the finding that PLAU
pathway may potentially interact with a signal of paramount
importance for B cell pathogenicity, such as CD40, may open
new perspectives for translational research. Along this line,
the protease activity of microglial cells activated by urokinase
plasminogen activator coupled with its receptor seems very
important for their pathogenic role in MS (52) and, notably, this
pathogenic role is increasingly recognized also in a very recent
GWAS study on MS.

CONCLUSION

The case of the relationship between coagulation pathway and
MS molecular model may teach us how fruitful a bioinformatics
reworking of GWAS data may be. In particular bioinformatics
approaches that match GWAS data with other biological
repositories of unbiased comprehensive records may shed light
on the functional relevance of common diseases-associated single
nucleotide polymorphism: each genetic variant is often located in
regulatory genomic regions, and may be active in different ways
in diverse tissues, making it very difficult to encompass a detailed
understanding of the underpinning pathobiology.

Future works based on connectivity analyses may inform a
number of questions that are still open in the context of MS
heritability: the degree of epistasis and interaction with non-
genetic causative factors; the existence of genetic interactors
determining disease forms, clinical course, and response to
diseases modifying therapies; the predictivity of endophenotypes,
in particular the imaging data, that often segregate on a
familiar basis. Moreover, the discovery of “clinically actionable
genes” may represent a timely task in the current landscape of
MS therapeutics.

Many new diseases modifying therapies, already available in
clinical practice, show superior effectiveness compared to the
treatments that were in place only a decade ago. The “cost” is
the safety profile, being at least suboptimal. Approaches based
on drugs targeting PLAU system, that have successfully been
used to ameliorate CNS inflammation (53, 54), may be potential
resources, with good therapeutic index and synergic action
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FIGURE 1 | Coagulation process map, as available in MetaCore 2018. The elements on this map, together with their interactors, were used for the connectivity

analysis.

FIGURE 2 | Highlight of the elements (PLAU and CD40) that are shared among the coagulation process map and the MS GWAS gene list; PLAU and CD40

interactors are also highlighted.
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with currently available immune-modulators, potentially to be
exploited in combination schemes.
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