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Epilepsy is a neurological disorder characterized by a long term propensity to produce

unprovoked seizures and by the associated comorbidities including neurological,

cognitive, psychiatric, and impairment the quality of life. Despite the clinic availability

of several novel antiepileptic drugs (AEDs) with different mechanisms of action, more

than one-third of patients with epilepsy suffer with pharmacoresistant epilepsy. Until

now, no AEDs have been proven to confer the efficacy in alteration of disease

progression or inhibition of the development of epilepsy. The ketogenic diet, the high-fat,

low-carbohydrate composition is an alternative metabolic therapy for epilepsy, especially

for children with drug-resistant epilepsy. Recently clinical and experimental results

demonstrate its efficacy in ameliorating both seizures and comorbidities associated with

epilepsy, such as cognitive/psychiatric concerns for the patients with refractory epilepsy.

Of importance, ketogenic diet demonstrates to be a promising disease-modifying or

partial antiepileptogenesis therapy for epilepsy. The mechanisms of action of ketogenic

diet in epilepsy have been revealed recently, such as epigenetic mechanism for increase

the adenosine level in the brain and inhibition of DNA methylation. In the present review,

we will focus on the mechanisms of ketogenic diet therapies underlying adenosine

system in the prevention of epileptogenesis and disease modification. In addition, we

will review the role of ketogenic diet therapy in comorbidities associated epilepsy and the

underlying mechanisms of adenosine.

Keywords: ketogenic diet, epilepsy, epileptogenesis, comorbidities, adenosine

INTRODUCTION

Possible implications of the ketogenic diet (KD), a high-fat, low-carbohydrate diet, have been
demonstrated in neurological fields, for instance: cognitive decline and dementia (1, 2), Parkinson
disease (3), multiple sclerosis and its cognitive complications (4, 5), migraine and cluster headache
(6–8). Epilepsy is a chronic neurological disorder characterized by a long term propensity
to produce unprovoked seizures and by the associated comorbidities including neurological,
cognitive, psychiatric, and impairment the quality of life. (9). Despite several novel antiepileptic
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drugs (AEDs) move into clinic in recent years, pharmacotherapy
is not effective in 30% of all cases, and up to 30 percent
of patients with epilepsy remains refractory or drug resistant
(10, 11), most of them are not suitable for resective operation
and have to continue to suffer from uncontrolled recurrent
seizures and the lower quality of life involved an extensive
range of cognitive and psychiatric symptoms. However, current
AEDs have been developed for antiictogenesis (inhibition of
seizures) and not for antiepileptogenesis (prevention of epilepsy
or disease-modification) (12). In addition, epilepsy has been
regarded as prototype neuropsychiatric illness with interface of
neurology and psychiatry, and treatment of comorbidity may
autonomously ameliorate the efficacy for seizures inhibition and
enhance the quality of life for patients with epilepsy (13, 14). KD
was developed as a non-pharmacological treatment for epilepsy,
and was regarded as a last resort of therapy for children with
pharmacoresistant epilepsy. The efficacy of KD in the treatment
of pharmacoresistant epilepsy suggests that the mechanisms of
action in controlling seizures conferred by KD are different with
that of conventional AEDs (15). Clinical and experimental results
indicated that KD therapy is a promising disease-modifying
or partial antiepileptogenesis treatment for pharmacoresistant
epilepsy (16, 17). In addition, KD therapy provides effectiveness
in ameliorating both seizures and comorbidities associated with
epilepsy, such as cognitive/psychiatric concerns for the patients
with pharmacoresistant epilepsy (18–21), and improving the
quality of life (22, 23). The satisfactory efficacy in the treatment
of patients with pharmacoresistant may offer the impetus to
uncover novel mechanisms underlying the development of
epilepsy and associated comorbidities. Therefore, in order to
develop novel therapies aim to modify the development of
epilepsy (disease modifcation) and associated comorbidities,
there is a critical need to strengthen the extensive research for
KD from bench to bedside and bedside to bench. The present
review is indicted not to offer a comprehensive overview of all
potential mechanisms, but to focus on the role of KD therapy in
epileptogenensis, comorbidities associated with epilepsy, as well
as the possible mechanisms underlying adenosine dysfunction.

PREVENTION OR MODIFICATION OF

EPILEPTOGENESIS OF THE KD THERAPY

The term epileptogenesis refers to a complex processes that
happens prior to the initial epileptic seizure appears to translate
the epileptic brain with higher propensity of recurrent seizures
and processes that aggravate seizures to drug resistant (12), which
involves alterations in expression and functions of receptors and
ion channels, epigenetic alterations, inflammatory mechanisms,
glial activation, and reorganization of neuronal circuitry (16,
24). The true antiepileptogenic efficacy means prophylactic drug
treatment in prevention of spontaneous recurrent seizures after a
brain insult. The term disease modification refers to the therapy
may modulate the intrinsic process of the disease even though
it may not hamper the occurrence of a disease (12). The halt
of development of epilepsy after initial diagnosis is defined as
a therapy of disease modification (12). Until now, conventional

AEDs offered efficacy only for inhibition of epileptic seizures
and not for prophylaxis therapeutic intervention of epilepsy
or modulation of the epilepsy development. Therefore, novel
avenues for ideal therapies to hamper disease development of
epilepsy are imperative (16).

The high-fat, low-carbohydrate KD has been regarded as a
palliative therapy for pharmacoresistant epilepsy in children and
adults. The 30% of children with pharmacoresistant epilepsy
on the diet had more than 90% seizure reduction, and 52%
of the children had more than 50% seizure reduction at
3 months (25). Even in adult patients with drug resistant
epilepsy, 32% of those using KD attained the efficacy of seizure
reduction more than 50% (26). Previous data on KD therapy in
adolescents and adults indicted that up to 13% of patients with
pharmacoresistant epilepsy were seizure-free and approximately
two thirds of patients reduced seizure more than 50% (27).
Currently, most of the KD therapy studies in epilepsy mainly
focused on KD efficacy in seizure control, and no valid and
well-designed clinical research to evaluate the efficacy of KD
therapy on antiepileptogenesis or disease modification has been
implemented (16). The emerging clinical findings indicated that
KD can also provide antiepileptogenic and disease-modifying
therapies in pharmacoresistant epilepsy (17, 28). Some patients
with KD therapy become long term seizure-free even after
termination of KD therapy (17). The long term clinical efficacy in
KD therapy for epilepsy over time might suggest the mechanism
underlying disease-modification (29).

In addition, experimental research also indicated that KD
therapy prevented disease progression in two different typical
animal models of epilepsy induced by electrical kindling and
chemicoconvulsants (16). In the pentylenetetrazole kindling
mice model with consecutive injection of subconvulsant doses
of pentylenetetrazole, KD but not a typical AEDs affords
long-lasting protective efficacy (increased seizures threshold)
against epileptic seizures caused by pentylenetetrazole even after
termination of KD. This kindling model is an ideal animal
model of epileptogenesis and has been extensively evaluated to
study the pathomechanisms underlying the epileptogenic process
(16). Therefore, the lasting outcomes in this kindling paradigms
extensively used to evaluate the efficacy of the inherent capacity
of antiepileptogenic therapy are likely to consistent with an
antiepileptogenic or disease modification effect (16, 29, 30).
In rats post-status epilepticus model of temporal lobe epilepsy
evoked by pilocarpine, animals on the control diet displayed
seizures progressed in severity and frequency, while animals on
the KD diet displayed the epileptic seizures with severity and
frequency significantly decreased (16). Of importance, reduction
of seizures in the model maintained even after the diet reversal.
Post-status epilepticus model of temporal lobe epilepsy have
been extensively implanted to explore the novel AEDs with
potential disease modifications, which is characterized by an
first brain lesion, a dormant period, reactive astrogliosis in
hippocampus and alteration of brain networks resulting in
recurrent spontaneous seizures (12, 31). The results in the study
highly indicated the KD offered a role in disease modification
or partial antiepileptogenesis in a typical model of temporal lobe
epilepsy (16).
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Recent evidence demonstrated that KD treatment also confers
antiepileptogenesis efficacy in genetic models of epilepsy with
kcna1-null mutant mice (32, 33). Kcna1-null mutant mice model
occupied with several characteristics, such as early onset epilepsy
with a severe seizure phenotype with myoclonic and generalized
tonic–clonic seizures, resistant to traditional AEDs, cognitively
impaired, cardiac arrhythmias and sudden death (33). It is an
ideal model to study the epileptogenesis or disease modification,
because the mice in the model experienced several kinds of
temporal lobe epilepsy syndromes, and gradually progressed
into terminal events associated with human sudden unexpected
death in epilepsy (33–38). KD therapy demonstrated to retard
the disease development, postpone the advent of catastrophic
seizures, and to increase the life span by 47% in this model of
progressive epilepsy (33).

However, there exist controversies on whether KD therapy
has the role of antiepileptogenesis or disease modification.
In the post-traumatic epilepsy model, a good model to
test antiepileptogenic therapies (39), no evidence for KD-
induced antiepileptogenesis was demonstrated (40). In rats post-
status epilepticus model of temporal lobe epilepsy induced by
pilocarpine, another commonly used model to verify disease
modification or epileptogenesis (12), KD therapy did not
demonstrated to halt the clinical course of epilepsy development
after status epilepticus induced by an initial lithium-pilocarpine
administration (41).

In addition, the adverse effects of the KD had been reported
in extensive studies (42). The chief adverse effects were
gastrointestinal symptoms, such as diarrhea, obstipation,
vomiting (43–46) and weight down (43, 46). Other adverse
effects were also addressed, such as abdominal pain, renal
stones, gallstones, infectious disease (pneumonia and sepsis),
acute pancreatitis, hypercholesterolaemia, dropped bone
matrix density, fatty liver, tachycardia, nephrocalcinosis, status
epilepticus, acidosis, dehydration, prolonged of hospitalization,
hunger and any infection of the respiratory tract (42).

ADENOSINE-DEPENDENT EPIGENETIC

MECHANISM INVOLVING THE DISEASE

MODIFICATION THERAPY OF KD

Extensive experimental and clinical evidence demonstrated
that disruption of glia-derived adenosine system as one of
the important mechanism subserved the development of
epilepsy (47), and therapeutic adenosine augmentation exerts
anticonvulsant and seizure terminating efficacy (15, 47–53),
mediated by both receptor-dependent and receptor–independent
pathways (54). Antiictogenic effects (anticonvulsant effects) of
adenosine are through adenosine receptor-dependent pathway,
mainly acting via adenosine A1 receptors (A1R) (15, 48, 50, 52,
55–57). Acting through presynaptic A1R, adenosinemay regulate
multiple neurotransmitters releasing, and the most important
inhibitory actions base on the glutamatergic system in the central
nervous system (15, 58). On the other hand, acting through
post-synaptic A1R, adenosine has been proved to hyperpolarize
the synaptic potentials in post-synaptic neurons and boost

NMDA receptor inhibition via activation of K+ channels (59).
Our previous study demonstrated that KD increased the level
of adenosine in the brain and exerted anticonvulsant effects
via A1R (15).

Apart from its receptor-dependent efficacy, adenosine has
been indicated to play a crucial role in modulation of DNA
methylation homeostasis in receptor-independent effects (51,
54, 60). Adenosine is regarded as a mandatory end product
of S-adenosylmethionine dependent transmethylation reactions
(60–62). Upregulated adenosine kinase expression or deficiency
of adenosine drives an increase in the transmethylation
pathway leading to hypermethylated DNA, which is potentially
implicated in epileptogenesis. Deficiency of adenosine and DNA
hypermethylation develop into a vicious circle associated with in
the onset of epileptogenesis, spontaneous seizures, progression of
epilepsy and chronic pharmacoresistant epielpsy (60). Therefore,
to restore the adenosine level or DNA methylation in epilepsy
might be the novel and promising therapeutic target (62).
Studies have demonstrated that focal augmentation of adenosine
remarkably down-regulate DNA methylation in post-status
epilepticus model of temporal lobe epilepsy (16). Therefore,
adenosine and DNA methylation might be highlighted as
emerging antiepileptogenic or disease-modification agents for
epilepsy therapy (32, 62, 63).

DNA methylation has been proved to exert high fidelity
modulation of gene expression in brain and play an important
role in the pathogenic mechanisms of onset of epileptogenesis
and development of epilepsy. Therefore, intervention of DNA
methylation is regarded as a reasonable prophylaxis therapy for
epilepsy in view of the fact that it acts on directly the predominant
pathway that initiates the mutiple downstream cellular and
molecular events mediating epileptogenesis (62). Global DNA
hypermethylation has been demonstrated in patients with
temporal lobe epilepsy and rats post-status epilepticus model of
temporal lobe epilepsy (16, 51, 61, 62). Adenosine exerts a crucial
role as an endogenous regulator of DNA methyltransferases
activity. In recent study, KD therapy has been indicted to prevent
disease progression via increased adenosine and decreased DNA
methylation. Of note, down-regulation of DNA methylation by
KD therapy maintained after diet discontinuation (16). Based
on this premise, it is likely that the KD treatment plays its
antiepileptogenic efficacy via an adenosine-dependent DNA
methylation modulation (32).

COMORBIDITIES ASSOCIATED WITH

EPILEPSY

The term comorbidities have been defined as “any additional
distinct clinical entity” (64, 65). Several different kinds of
comorbidities, such as cognitive comorbidities, psychiatric
comorbidities and neurological comorbidities, exist in epilepsy
(66). Psychiatric and neurological comorbidities are relatively
frequent in epilepsy (67), affecting on average, 30–50% of patients
(68). Currently, the goals of therapy for patients with epilepsy
are not limited to reach the aim of seizure free, but must
also the improvement of comorbidities associated with epilepsy,
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including neurological, psychiatric and cognitive comorbidities.
Cognitive comorbidities include memory, attention, executive
dysfunction, etc. Learning is one cognitive issue or a consequence
and learning problems that lead to an major obstacle to
get educational and professional success (66); Psychiatric
comorbidities refer to behavior and mood problems, such
as bipolar disorder, attention deficit hyperactivity disorder
(ADHD), depression, anxiety disorders and autism (66).
Neurological comorbidities are migraine headache (69), sleep
disorders, such as sleep apnea, insomnia, restless legs syndrome,
and the parasomnias (70), pain (neuropathic pain, fibromyalgia,
chronic pain) and other (asthma, diabetes, and high blood
pressure) (71). The comorbidities are frequent seen in patients
with epilepsy, and can deteriorate quality of life further
than seizures themselves do (18). Currently, the bidirectional
relation between epilepsy and associated comorbidities has
been paid much more attentions (72–76). Research upon
the overlap of psychiatric and neurologic symptoms from a
pathophysiologic and phenomenologic perspective is becoming
a hot topic in epilepsy. The comorbidities associated with
epilepsy are attributable to recurrent seizures and medications.
In fact, the utmost recent data demonstrate that some
neurocognitive and psychological comorbidities as well as
structural brain changes predate the onset of seizures, with the
early cognitive compromise being further magnified by the onset
of epileptogenesis, and later on, by the chronicity of seizures (77–
79). Therefore, the comorbidities need to be addressed in an early
stage of the illness as they have a profound worse influence on
the quality of life and complicate the therapeutic management of
epilepsy (66). Base on this premise, it is crucial that therapy for
epilepsy should aim at both seizures and comorbidities associated
with epilepsy, because improving the lives of persons with
epilepsy rely more on addressing comorbidities than seizures
themselves (80, 81).

Even though the KD therapy has been proved to be efficacy
in inhibition of seizures in patients with pharmacoresistant
epilepsy, much more attention is needed to comorbidities and
clinical advantages of KD. Recent study demonstrated that
KD therapy afford a beneficial contribution on behavioral
and cognitive function in children and adolescents with
pharmacoreisistant epilepsy (18, 82, 83). On the other hand,
studies with objective neuropsychiatric tests demonstrated that
KD therapy afford benefits on alertness without amelioration
in global cognition (20). KD therapy provided cognitive
improvements in patients with pharmacoreisistant epilepsy,
although it is unclear if this is an independent efficacy of the diet
(84). More specifically, an improvement is observed in mood,
sustained attention, and social interaction. This activation of
mood and cognition was not asssociated with the decrease of
seizure frequency and correlates with the prominent efficacy of
the KD (19, 19, 20, 84), and appeared no relation to AEDs
diminution, age when KD therapy is initiated, type of KD,
and sleep amelioration (19, 20). In consistent with the effects
of KD to control seizure and improve cognition in patients
with pharmacoreisistant epilepsy, several lines of experimental
research also demonstrated the neuroprotective efficacy on
cognition (21, 85, 86). For the status of KD therapy in psychiatric
comorbidities associated epilepsy, such as depression or bipolar

disorder, although currently there is no long-term, prospective,
randomized, placebo-controlled crossover dietary clinical trial
(87), KD has been regarded as a novel frontier therapy for
mood disorder, particularly in therapy with drug resistant mood
disorder (88).

KD therapy has a long been used in children with
pharmacoresistant epilepsy. However, overall distinct role of
KD in comorbididties associated with epilepsy, especially
psychiatric comorbididties is unclear. The impact of KD
in psychiatric disorders is speculative. There is no solid
evidence to corroborate this statement. Currently, there is
inadequate evidence for the administration of KD in psychiatric
comorbidities associated with epilepsy including behavior and
mood problems, such as attention deficit disorder, bipolar
disorder, depression, anxiety disorders, schizophrenia, autism
spectrum disorder, and combinations of these conditions (87). So
far, KD therapy is still not a recommended treatment option for
the psychiatric disorders.

ADENOSINE DYSFUNCTION IN

COMORBIDITIES ASSOCIATED WITH

EPILEPSY

For the cognitive comorbidities, extensive clinical and
experimental study has been proved that adenosine plays
an important role in controlling inflammation inhibiting
seizures (15, 47–50, 52, 53, 55, 56, 89), and regaining cognitive
function when cognition is afflicted secondary to epilepsy
(47, 52, 53, 60). Adenosine impacts cognition processes via
action on adenosine receptor A2A (A2AR) signaling pathway
and regulation of neurotransmitters including glutamatergic,
dopaminergic, GABAergic, and BDNF (90). The astrocytic
A2AR might play a prominent role in interacts with glutamate
transporter-1 and thereby regulates astroglial glutamate uptake.
Therefore, malfunction of A2AR in astrocytes, by moduating
glutamate transporter-1activity, initiates an astrocyte-to-neuron
wave of communication causing disruption of glutamate system
and cognitive impairment (91). Increasing the adenosine level
in the brain via pharmacologic inhibition of the key enzyme
of adenosine clearance, or intrastriatal implants of engineered
adenosine-releasing cells can improve cognitive function (92).
KD therapy has been proved to increase the adenosine level in
the brain (15, 16), and KD therapy has been demonstrated to
afford an improvement of cognitive activation in the patients
with epilepsy (19). Based on the evidence above, it is strongly
suggested that KD therapy ameliorated the cognition deficit
though augmentation of the adenosine in the brain, which
might be highly regarded as an ideal method for the therapy of
cognitive comorbidities associated with epilepsy.

Depression is the common psychiatric comorbidities in
patients with epilepsy (93). A1R signaling pathway in astrocytes
has been demonstrated to be necessary in decreasing depressive-
like behaviors secondary to sleep deprivation in mice (90), which
indicated the activation of adenosine signaling triggered by
sleep deprivation contributes to inhibition of depression (94). S-
adenosylhomocysteine, a precursor of adenosine, has been found
to be efficacy for the patients with treatment-resistant depressive
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disorder (95). The common clinical antidepressive treatment,
such as acupuncture (96, 97) and deep brain stimulation (98) has
been indicated via increasing of adenosine and activation of A1R
in the brain (99–101). KD therapy, the adenosine augmentation
approach (15, 16), has been demonstrated to be effective in
inhibition of depression (87). Therefore, it is suggested that one
of the mechanisms underlying the KD therapy for depression via
A1R. KD therapy might represent a novel strategy for the therapy
of psychiatric comorbidities associated epilepsy.

Sleep disorders is the common neurologic comorbidities
associated with epilepsy (70). Extensive studies have
demonstrated that adenosine plays a crucial role in modulation
of sleep homeostasis (90, 102, 103). Adenosine receptors A1R
and A2AR have been demonstrated to play an important role
in sleep modulation (90). A1R agonists promote sleep (104),
while A1R antagonists inhibit sleep (105), via basal forebrain
mediated mechanisms, respectively. A2AR agonist also has
been demonstrated to promote sleep (106), via activation of
cells of the leptomeninges or nucleus accumbens to reinforce
the neuronal activity in ventrolateral preoptic region (107).
This effect of sleep regulation was not found in A2AR-deficient
mice (108). Inhibition of the A2AR in the shell of the nucleus
accumbens (90, 109) has been reputed the potential mechanism
of the arousal effects of caffeine (non-selective antagonist of A1R
and A2AR).

Ii is well-accepted that of upregulation of adenosine
(increasing adenosine level or activation of adenosine receptors)
promote sleep and downregulation of adenosine (decrease

adenosine level or inactivation of adenosine receptors)
induce wakefulness (90). It is hypothesized that a decreased
adenosine tone uniformly forms the base for both epilepsy
and sleep disruption (90). However, recent study found a
lineal association of regionally distinguishable dichotomous
levels of adenosine in one model represent both epilepsy
and comorbid sleep disorders (110). In the model, adenosine
level was decreased in the dorsal hippocampus contributing
to seizure threshold diminution, while adenosine level was
increased in the lateral hypothalamus leading to chronic
partial sleep deprivation. To clarify the specific brain regional
alterations in adenosine tone in patients underlies both epilepsy
and sleep disorder is important for the targeted therapy in
the future.
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