
REVIEW
published: 26 March 2019

doi: 10.3389/fneur.2019.00236

Frontiers in Neurology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 236

Edited by:

Tomoki Arichi,

King’s College London,

United Kingdom

Reviewed by:

Ana Carolina Coan,

Campinas State University, Brazil

Andrea Domenico Praticò,

Università degli Studi di Catania, Italy

*Correspondence:

Shashank Ghai

shashank.ghai@

sportwiss.uni-hannover.de

Specialty section:

This article was submitted to

Pediatric Neurology,

a section of the journal

Frontiers in Neurology

Received: 28 August 2018

Accepted: 22 February 2019

Published: 26 March 2019

Citation:

Ghai S and Ghai I (2019) Virtual Reality

Enhances Gait in Cerebral Palsy: A

Training Dose-Response

Meta-Analysis. Front. Neurol. 10:236.

doi: 10.3389/fneur.2019.00236

Virtual Reality Enhances Gait in
Cerebral Palsy: A Training
Dose-Response Meta-Analysis
Shashank Ghai 1* and Ishan Ghai 2

1 Institute for Sports Science, Leibniz University Hannover, Hannover, Germany, 2 Rsgbiogen, New Delhi, India

Virtual-reality-based training can influence gait recovery in children with cerebral palsy.

A consensus concerning its influence on spatiotemporal gait parameters and effective

training dosage is still warranted. This study analyzes the influence of virtual-reality

training (relevant training dosage) on gait recovery in children with cerebral palsy. A

search was performed by two reviewers according to Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines on nine databases: PEDro,

EBSCO, PubMed, Cochrane, Web of Science, EMBASE, ICI, Scopus, and PROQUEST.

Of 989 records, 16 studies involving a total of 274 children with cerebral palsy met our

inclusion criteria. Eighty-eight percent of the studies reported significant enhancements

in gait performance after training with virtual reality. Meta-analyses revealed positive

effects of virtual-reality training on gait velocity (Hedge’s g = 0.68), stride length (0.30),

cadence (0.66), and gross motor function measure (0.44). Subgroup analysis reported

a training duration of 20–30min per session, ≤4 times per week across ≥8 weeks to

allow maximum enhancements in gait velocity. This study provides preliminary evidence

for the beneficial influence of virtual-reality training in gait rehabilitation for children with

cerebral palsy.

Keywords: cerebral palsy, gait, virtual reality, brain injury, rehabilitation

INTRODUCTION

Gait dysfunctions are prominent in children with cerebral palsy (1, 2). Reduction in gait velocity,
cadence and stride length are common spatiotemporal gait characteristics exhibited by children
with cerebral palsy (2). Recent experimental and review studies have reported the beneficial
influence of virtual-reality training strategies to considerably influence gait performance in children
with cerebral palsy (3, 4). According to Aminov et al. (5), virtual reality is a superior rehabilitative
approach when compared with conventional therapeutic approaches. The authors suggest that this
strategy can allow a patient to (re)learn motor skills while interacting with real-life scenarios in an
ecological yet patient-centric manner (6).

The application of this intervention is dynamic as it allows real-time “multisensory”
feedback of executed movement to both the performer and the medical practitioner. This
further can simultaneously facilitate the motor planning and perception of the performer and
allow the medical practitioner to monitor and control the complexity of the virtual-reality
task/environment according to each performer’s capability (7). Several underlying mechanisms
through which virtual-reality training can facilitate motor rehabilitation have been reported. For
instance, amplification of sensorimotor representation by augmented sensory feedback (8–
12), enhancement of error feedback (13), reduction of cognitive load (14–17), reduction of
musculoskeletal coactivation (18), increased arousal (19), and motivation (20) are few of the
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reasons by which virtual-reality training might enhance gait
recovery (3, 4, 21). Moreover, neuroimaging studies have
reported that training with virtual reality can facilitate recovery
by instigating cortical reorganization (22) and neural plasticity
(23, 24), thus suggesting a strong potential for virtual-reality-
based training for recovering gait in children with cerebral palsy.

Recent systematic reviews have reported the beneficial effects
of virtual-reality-based training on gait performance in children
with cerebral palsy (3, 4). However, to the best of our knowledge,
only one study has elucidated the influence of virtual-reality
training on gait performance in children with cerebral palsy
statistically, i.e., a meta-analysis (3). Chen et al. (3) performed
a meta-analysis on eight studies and reported a positive effect
size of 0.75 (0.34–1.16) on the ambulation function after training
with virtual reality. Although the findings of this study are in line
with previous reviews, there were certain limitations. Firstly, the
authors did not explore the cause of heterogeneity observed in
the analysis, i.e., I2 = 59%. Secondly, the authors did not describe
the specific variables evaluated in the ambulation function, i.e.,
no information was provided as to what these enhancements
were applicable on, for instance, gait velocity, stride length, etc.
Thirdly, the authors included some studies in the analysis that,
on re-evaluation, were found to not have evaluated any gait
parameter at all.

In the present systematic review and meta-analysis, our
aim is to develop a state of evidence defining the influence
of virtual-reality training on spatiotemporal gait parameters
in children with cerebral palsy. Moreover, the importance of
determining training dosages in neurological rehabilitation has
been emphasized in several studies (25–31). Therefore, as a
secondary objective, this present review also aims to elucidate
effective training dosages for virtual-reality-based gait training
that could be incorporated by medical practitioners during gait
rehabilitation for children with cerebral palsy.

METHODS SUMMARY

This review and meta-analysis was performed according to
PRISMA guidelines (32). A systematic search of literature
was performed across nine academic databases. The inclusion
criteria were as follows: (i) Randomized controlled trials
(RCTs) and Controlled clinical trials (CCTs), (ii) virtual-
reality interventions (any training duration and setting), (iii)
spatiotemporal gait parameters evaluated, (iv) gross motor
function and/or performance measure evaluated, (v) ≥4 PEDro
score, (vi) children with cerebral palsy (age range: 6–18 years),
(vii) peer-reviewed publications, and (viii) in English, German,
Hindi, Punjabi, and Sanskrit languages. For a detailed method
section, see the Supplementary Material.

Quality and Risk of Bias Assessment
The quality of the reviewed studies was assessed using the PEDro
scale by both the reviewers (33).

Level of Evidence Assessment
A level of evidence analysis, i.e., strength of recommendation,
was assigned to each outcome measure, i.e., gait velocity, stride

length, cadence, stride width, and gross motor function measure.
This assessment was combinedly based on the methodological
quality and design of the evaluated studies (34).

Data Analysis
A within-group, i.e., pre–post meta-analysis, approach was
performed to develop a better quantitative interpretation of
the virtual-reality intervention (35). The meta-analyses were
conducted using CMA (Comprehensive meta-analysis V 2.0,
USA). The meta-analyses evaluated the influence of virtual-
reality training on gait velocity, cadence, stride length, stride
width, and gross motor function measure score. An analysis for
publication bias was performed by Duval and Tweedie’s trim and
fill procedure (36). The alpha level was set at 5%.

Characteristics of Included Studies
The initial search across the nine academic databases yielded a
total of 989 studies, which, upon implementing the inclusion
criteria, were reduced to 16 (Figure 1). Thereafter, both
qualitative and quantitative data were extracted from all the
studies (Supplementary Table 2). Of the 16 included studies,
5 were randomized controlled trials and 11 were controlled
clinical trials.

Participants
A total of 274 participants were analyzed in the 16 incorporated
studies. The included studies provided data on 120 females
and 154 males. Descriptive statistics relating to the age
(mean ± standard deviation, range) have been mentioned in
Supplementary Table 3. In the included studies, three studies did
not define the gender distribution (37–39).

Risk of Bias
Individual scores attained by the studies using the PEDro scale
for each factor have been mentioned (Supplementary Table 4).
The average PEDro score of the 18 included studies was
computed to be (M ± S.D). 5.7 ± 1.4 out of 10, indicating, on
average, a “good” quality of the studies. Here, one study scored
9 (40), one study scored 8 (41), three scored 7 (39, 42, 43), two
scored 6 (44, 45), six scored 5 (37, 46–50), and three studies
scored 4 (38, 51, 52). The risk of biasing across the studies has
been illustrated in Figure 2. Individual scoring by the studies on
each parameter has been mentioned in Supplementary Table 3.

In this present study, publication bias was analyzed by Duval
and Tweedie’s trim and fill method. The graph plots the evaluated
weighted effect size, i.e., Hedge’s g values against standard error
(Figure 3). Here, the absence of publication bias is determined
by symmetrical distribution of the studies about the combined
effect size. The trim and fill test elucidated any missing studies
based on a fixed effect model in the present analysis. However,
the method suggests that no studies are missing. Under the
random effects model, the point estimate is 0.48 and the 95%
confidence interval (CI) is 0.26–0.71 for the combined studies.
Using trim and fill, the imputed point estimate is 0.66 and the
95% CI is 0.43–0.89.
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FIGURE 1 | PRISMA flowchart for the inclusion of studies (32).

FIGURE 2 | Risk of bias across studies (x axis: %).

Level of Evidence
The analysis of level of evidence based on evidence-based nursing
care guidelines revealed a “III Level of Evidence,” supporting
the beneficial effects of virtual-reality training on gait and
motor performance in children with cerebral palsy. This level of
evidence was awarded to all the evaluated parameters and dose–
response subgroup analyses. The appraisal of level of evidence

score was based on the design and scoring of the included studies,
i.e., controlled clinical trials.

OUTCOMES

The current qualitative and quantitative evidence from the
review suggests the beneficial effects of virtual-reality training
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FIGURE 3 | Trim and fill funnel plot for Hedge’s g and standardized effect for each value in the meta-analysis. Each of the effect is represented in the plot as a circle.

Funnel boundaries represent area where 95% of the effects are expected to lie if there were no publication biases. The vertical line represents the mean standardized

effect of zero.

on spatiotemporal gait parameters for children with cerebral
palsy. Nine included studies reported significant enhancement in
gait performance for children with cerebral palsy after virtual-
reality training. Two studies reported no influence of virtual-
reality training gait on spatiotemporal gait parameters (see
Supplementary Table 3) (48, 50).

META-ANALYSIS REPORT

Gait Velocity
Gait velocity was assessed among 13 studies. Additional data
were extracted from one study (40). The analysis of studies
revealed (Figure 4) a medium effect size in the positive domain
(g = 0.68, 95% CI: 0.35 to 1.01) with negligible heterogeneity
(I2 = 13.1%, p > 0.05). In the included studies, only one
study did not utilize a training intervention with virtual reality
(50). Therefore, in a subsequent analysis, we removed this
study and reperformed the analysis to elucidate the influence of
virtual-reality training on gait velocity. The analysis of studies
revealed (Supplementary Figure 1) a large effect size in the
positive domain (g = 0.76, 95% CI: 0.44 to 1.07) with negligible
heterogeneity (I2 = 10.7%, p > 0.05).

Session Length
20–30 min: A subgroup analysis was performed on
nine studies. The analysis revealed a large effect size
(Supplementary Figure 2) in the positive domain (g = 0.88,
95% CI: 0.51 to 1.24) with negligible heterogeneity (I2 = 12.1%,
p > 0.05).
40–45 min: A subgroup analysis was performed on
three studies. The analysis revealed a medium effect size
(Supplementary Figure 3) in the positive domain (g = 0.26,
95% CI: −0.24 to 0.77) with no heterogeneity (I2 = 0%,
p > 0.05).

Sessions per Week
≤4 sessions per week: A subgroup analysis was performed
on six studies. The analysis revealed a large effect size
(Supplementary Figure 4) in the positive domain (g = 0.78,
95% CI: 0.09 to 1.47) with negligible heterogeneity (I2 = 1.4%,
p > 0.05).
≥5 sessions per week: A subgroup analysis was performed
on six studies. The analysis revealed a medium effect size
(Supplementary Figure 5) in the positive domain (g = 0.69,
95% CI: 0.42 to 0.97) with negligible heterogeneity (I2 = 2.4%,
p > 0.05).

Number of Weeks of Training
≥8 weeks: A subgroup analysis was performed on four
studies. The analysis revealed a medium effect size
(Supplementary Figure 6) in the positive domain (g = 0.69,
95% CI: 0.25 to 1.13) with negligible heterogeneity (I2 = 2.0%,
p > 0.05).
≤7 weeks: A subgroup analysis was performed on eight
studies. The analysis revealed a medium effect size
(Supplementary Figure 7) in the positive domain (g = 0.65,
95% CI: 0.35 to 0.94) with no heterogeneity (I2 = 0.69%,
p > 0.05).

Stride Length
Stride length was assessed among four studies. Additional data
were extracted from one study (40). The analysis of the studies
revealed (Figure 5) a medium effect size in the positive domain
(g = 0.30, 95% CI: −0.40 to 1.01) with no heterogeneity
(I2 = 0%, p > 0.05). In the included studies, only one study
did not utilize a training intervention with virtual reality (50).
Therefore, in a subsequent analysis, we removed this study and
reperformed the analysis to elucidate the influence of virtual-
reality training on stride length. The analysis of studies revealed
(Supplementary Figure 8) a medium effect size in the positive
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FIGURE 4 | Forest plot illustrating individual studies evaluating the effects of virtual-reality training on gait velocity among children with cerebral palsy. Weighted effect

sizes, Hedge’s g (boxes), and 95% CI (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes

and 95% CI.

FIGURE 5 | Forest plot illustrating individual studies evaluating the effects of virtual-reality training on stride length among children with cerebral palsy. Weighted effect

sizes, Hedge’s g (boxes), and 95% CI (whiskers) are presented, demonstrating repositioning errors for individual studies. The (diamond) represents pooled effect sizes

and 95% CI.

domain (g = 0.50, 95% CI: −0.20 to 1.24) with no heterogeneity
(I2 = 0%, p > 0.05).

Cadence
Cadence was assessed among two studies. Additional data were
extracted from one study (40). The analysis of studies revealed
(Supplementary Figure 9) a medium effect size in the positive
domain (g = 0.66, 95% CI: −0.52 to 1.84) with negligible
heterogeneity (I2 = 10.8%, p > 0.05).

Stride Width
Stride width was assessed among three studies. Additional data
were extracted from one study (40). The analysis of studies
revealed (Figure 6) a small effect size in the negative domain
(g = −0.07, 95% CI:−0.57 to 0.43) with negligible heterogeneity
(I2 = 4.5%, p > 0.05). In the included studies, only one study
did not utilize a training intervention with virtual reality (50).
Therefore, in a subsequent analysis, we removed this study and
reperformed the analysis to elucidate the influence of virtual-
reality training on stride width. The analysis of studies revealed

(Supplementary Figure 10) a small effect size in the negative
domain (g = −0.23, 95% CI: −0.53 to 0.06) with moderate
heterogeneity (I2 = 0%, p > 0.05).

Gross Motor Function Measure
Gross motor function measure was assessed among six studies.
The analysis of studies revealed (Figure 7) a medium effect size
in the positive domain (g = 0.44, 95% CI: 0.06 to 0.83) with
negligible heterogeneity (I2 = 0.54%, p > 0.05).

Session Length
20–30 min: A subgroup analysis was performed on
four studies. The analysis revealed a medium effect size
(Supplementary Figure 11) in the positive domain (g = 0.56,
95% CI: 0.05 to 1.07) with negligible heterogeneity (I2 = 0.08%,
p > 0.05).
40–45 min: A subgroup analysis was performed on
two studies. The analysis revealed a small effect size
(Supplementary Figure 12) in the positive domain

Frontiers in Neurology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 236

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ghai and Ghai Virtual Reality Enhances Gait

FIGURE 6 | Forest plot illustrating individual studies evaluating the effects of virtual-reality training on stride width among children with cerebral palsy. Weighted effect

sizes, Hedge’s g (boxes), and 95% CI (whiskers) are presented, demonstrating repositioning errors for individual studies. The (diamond) represents pooled effect sizes

and 95% CI.

FIGURE 7 | Forest plot illustrating individual studies evaluating the effects of virtual-reality training on gross motor function measure among children with cerebral

palsy. Weighted effect sizes, Hedge’s g (boxes), and 95% CI (whiskers) are presented, demonstrating repositioning errors for individual studies. The (diamond)

represents pooled effect sizes and 95% CI.

(g = 0.14, 95% CI: −0.50 to 0.78) with no heterogeneity
(I2 = 0%, p > 0.05).

DISCUSSION

The primary objective of this present systematic review
and meta-analysis was to synthesize the current state of
knowledge to determine the effects of virtual-reality training on
spatiotemporal gait parameters in children with cerebral palsy.
The findings from the current meta-analyses suggest a positive
influence of virtual-reality training to enhance gait performance.
Spatiotemporal parameters, i.e., gait velocity, cadence, and
stride length, which are usually adversely affected in cerebral
palsy (53), were enhanced after training with virtual reality,
i.e., gait velocity (g = 0.76), stride length (g = 0.76), and
cadence (g = 0.80).

Studies have suggested that virtual-reality training can
facilitate motor performance by providing a performer with
real-time “multisensory” feedback of the executed movement
(19, 54, 55). Children with cerebral palsy have been reportedly
associated with substantial deficits in sensory perception,
which might affect their motor planning and performance
(56). Here, the addition of different sensory modalities, for
instance, auditory, visual, and proprioceptive feedback, could

provide a “sensory deficit” patient with enriched knowledge of
performance (movement amplitudes, relative limb position) and
result (4, 19, 57–59).

Additionally, the enhancements in spatiotemporal gait
parameters could be attributed to substantial changes in force,
power, and kinematics at the ankle and knee joints (60).
According to Chen et al. (46), virtual-reality-based training can
substantially enhance isokinetic muscle strength and the amount
of physical activity performed by children with cerebral palsy.
This was also demonstrated in our analysis where gross motor
function measure was enhanced (0.45) after training with virtual
reality. In terms of movement kinematics, we presume that
the explicit multisensory (i.e., visual–auditory–proprioceptive)
feedback concerning the movement execution within the virtual
environment could have allowed the patients to specifically time
and control their movement patterns [see guidance hypothesis
(61, 62)], thereby promoting a smooth movement pattern with
reduced musculoskeletal co-contraction (18). In this review,
several studies reported enhancement in gait kinematic scores
(45, 50, 63, 64), which usually are adversely affected in children
with cerebral palsy.

Furthermore, the patient-centered, closed-loop [tailored
difficulty progression (65)] approach of virtual-reality training
could be an additional reason for the superior influence of
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this rehabilitation intervention as compared to conventional
approaches like resistance training (66), rhythmic auditory
cueing (67), and robot-assisted training (68). Here, linking
the individual performance measures concerning the motor
restrictions and cognitive performance with the adaptive
modulation of the task to be trained can provide adaptive
mechanics in the virtual environment that might facilitate
neuroplasticity (69). For instance, Xiao et al. (22) in a
neuroimaging study reported the beneficial influence of virtual-
reality-based training on motor planning and execution centers.
The authors reported enhanced activations in primary, secondary
motor, sensorimotor, and premotor cortices in stroke patients
after virtual-reality training [also see (19, 70)]. Interestingly,
the authors also reported hyperactivity in the ipsilesional
somatosensory cortex with virtual-reality training (22). This
enhanced activation in the somatosensory cortex of the
affected hemisphere could be interpreted as unmasking of
(pre)existent movement patterns (functional recovery via motor
relearning) (70, 71).

Finally, we also elucidated specific virtual-reality training
dosages that could be beneficially incorporated to attain
maximum benefits in gait recovery in children with cerebral
palsy. Fluet and Deutsch (72) had previously emphasized future
studies for deducing training dosages in neurorehabilitation. The
authors hypothesized that larger training dosages might account
for more enhancements in motor recovery. However, as per the
current findings of this meta-analysis, this was not the case.
In terms of the length of training sessions, higher increments
in spatiotemporal gait parameters were noted during training
interventions lasting for 20–30min as compared to 40–45min of
training (gait velocity: 0.88 vs. 0.26, gross motor function test:
0.56 vs. 0.14). Likewise, similar increments were noted for the
number of sessions per week, i.e., ≤4 sessions allowed higher
increments in gait velocity as compared to ≥5 weeks (0.84 vs.
0.65). In terms of the number of weeks of training, more number
of weeks was observed to allow a greater influence on training,
i.e., ≥8 weeks allowed better performance as compared to ≤7
weeks of training (0.83 vs. 0.65).

Two major limitations persisted in the present review. First,
this study was not pre-registered in a prospective register for
systematic reviews, such as PROSPERO. Second, a dose–response
meta-analysis was performed for some variables with very few
number of studies. This could raise concerns regarding the
reliability of some outcome measures, i.e., incurring a type
II error. We strongly recommend the reader to interpret the
results with caution. Nevertheless, our findings are in line
with previously published “high-quality” systematic reviews and
meta-analyses that report positive or negligible effects of virtual-
reality training on gait performance in children with cerebral
palsy (3, 4). However, this present review extends the findings

of these studies due to several reasons. Firstly, the present
review incorporates a higher number of experimental studies
that support our conclusion, i.e., 16 studies (274 participants)
as compared to previously published review studies (3, 4).
This large difference in the number of included studies could
be attributed to the higher number of relevant academic
databases searched (with multiple languages), i.e., nine, and
the inclusion of controlled clinical trials. Secondly, this current
review presents robust evidence to suggest training dosage with
virtual reality for allowing enhancements in gait velocity and
gross motor function test. Thirdly, this study provides evidence
for the beneficial effects of virtual-reality training on generalized
physical activity and motor output. It is important for the
reader to consider that it is not our intention to disregard
previously published reviews and meta-analyses. These reviews
have addressed different factors for individuals with cerebral
palsy (i.e., quality of life, arm recovery, and postural control),
which was not the objective of the present review. Therefore,
in our opinion, interpretations should be drawn simultaneously
from all the reviews to develop a better understanding of
the influence of virtual-reality-based training strategies for
gait recovery after cerebral palsy. A III Level of Evidence
supported the beneficial effects of virtual-reality-based training
on gait performance. This weak level of evidence strongly
warrants the need for multiple, high-quality, multicentered,
randomized controlled trials to support the application of
virtual-reality training on gait performance in children with
cerebral palsy.

In conclusion, virtual-reality training facilitates gait
performance in children with cerebral palsy. The present
study reports the influence of virtual-reality-based training on
the most commonly evaluated spatiotemporal gait outcomes;
this shall allow the clinicians to better interpret the results with
previous studies and other interventions and deduce practical
implications for the benefit of children with cerebral palsy.
The review, based on limited state of evidence, i.e., III Level of
Evidence, suggests a training duration of at least 20–30min, ≤4
times per week across ≥8 weeks.
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