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Deep brain stimulation has developed into an established treatment for movement

disorders and is being actively investigated for numerous other neurological as well

as psychiatric disorders. An accurate electrode placement in the target area and the

effective programming of DBS devices are considered the most important factors for the

individual outcome. Recent research in humans highlights the relevance of widespread

networks connected to specific DBS targets. Improving the targeting of anatomical and

functional networks involved in the generation of pathological neural activity will improve

the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview

over the latest research on target structures and targeting strategies in DBS. In addition,

we provide a detailed synopsis of novel technologies that will support DBS programming

and parameter selection in the future, with a particular focus on closed-loop stimulation

and associated biofeedback signals.
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INTRODUCTION

Deep brain stimulation (DBS) has become the treatment of choice for movement disorder, such as
Parkinson’s disease (PD), medically intractable essential tremor (ET) and complicated segmental
and generalized dystonia (1). In addition, DBS is increasingly used in other neurological disorders
like neuropathic pain and epilepsy, and is being investigated for psychiatric disorders (2), such as
obsessive-compulsive disorder, depression and Tourette syndrome and neurodegenerative diseases
like Alzheimer’s disease (3). DBS is thought to modulate the function of the target region by
applying electrical current to the area (4). Recent reviews propose that DBS likely acts through
multimodal, non-exclusive mechanisms including immediate neuromodulatory effects on local
and network-wide electrical and neurochemical properties, synaptic plasticity and long-term
neuronal reorganization, potentially also providing neuroprotective effects and leading to
neurogenesis (4–7).

DBS surgery involves implantation of electrodes into one of several target regions and
administering electrical current pulses that are generated by an implanted impulse generator.
Although the effects of DBS on for example Parkinsonian symptoms and quality of life are generally
satisfying (8), the clinical outcome may vary between patients (9) and side effects can be induced
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(10) due to the stimulation of different functional pathways or
structures nearby the original target. New approaches, such as
current steering (11) are able to restrict the volume of tissue
activated (VTA) (12) and therefore promise a more precise
stimulation of neural structures. Improving the initial targeting
and later stimulation of specific neural structures and pathways
involved in the generation of pathological neural activity as well
as avoiding others will be a crucial point for improving the
clinical DBS effect and, at the same time, limiting side-effects.

The setting of DBS parameters to optimize therapy is time-
consuming and will likely get more complicated with new
technological developments, introducing an ever increasing
combination of parameters like pulse duration, stimulation
frequency, stimulation contacts and so forth. In open loop
DBS, which is the current standard protocol, these stimulation
parameters are set by a clinician in a trial and error procedure and
remain constant until manually updated, irrespective of disease
fluctuations. In a closed loop DBS system, a sensor continuously
records a feedback signal, a so-called biomarker, which is ideally
correlated or causally linked to a clinical symptom. A second
major point of interest in DBS research therefore is to develop
more sophisticated strategies and automated algorithms on how
to program and adjust stimulation parameters in a precise and
effective manner.

TARGET STRUCTURES

Contemporary research in humans features investigations into
different network structures connected to individual DBS targets
and explores structural networks (13, 14) involved in the
generation of disease symptoms. There are currently a handful
of FDA approved DBS targets, including the subthalamic nucleus
(STN), the internal segment of the globus pallidus (GPi), the
nucleus ventralis intermedius (ViM), as well as several other
investigational targets used for, often more than one for a given
disorder or symptom (15). A popular target for DBS in medically
intractable tremor, like Parkinsonian or essential tremor is the
ViM. Studies using tractography show structural connectivity
between ViM and motor cortical, subcortical, brainstem and
cerebellar sites (16). Various other research groups show that
the dentato-rubro-thalamic tract in the subthalamic region is
implicated in tremor control (17) and report successful guidance
of DBS surgery based on fiber tracking (18). Comparing STN
DBS near tremor frequency in PD and DBS of the ventrolateral
thalamus in ET, Cagnan and colleagues describe differences
in the response of the behavioral tremor characteristics. They
reason that different networks could be involved in essential and
Parkinsonian rest tremor and conclude that these differences will
be important in developing future strategies for closed loop DBS
for tremor control (19).

Studies in dystonia patients have shown that ventral GPi
stimulation is more efficient in alleviating dystonic symptoms
(20). Using diffusion tensor tractography for investigating the
connectivity patterns of different target structures and DBS
electrode locations, Rozanski et al. report substantial differences
in connectivity of dorsal and ventral GPi. The authors interpret

their results in favor of functional differences in the ventral and
dorsal GPi and recommend that specific targeting could play an
important role in promoting distinct effects of DBS (21).

While PD patients show similar improvement in motor
function after GPi- and STN-DBS (22), STN DBS is superior in
improving off-drug phase motor symptoms (23). Therefore, the
STN is often the preferred target to treat Parkinsonian symptoms,
such as bradykinesia, tremor and rigidity. Accola et al. used
STN LFP recordings from PD patients to investigate the relation
between subthalamic fiber connectivity and oscillatory activity.
The dorso-lateral portion of the STN, which shows the highest
beta power in the STN, predominantly projected to premotor,
motor, but also to associative and limbic areas. Ventral areas
are connected to medial temporal regions, like hippocampus and
amygdala (13). Recently, Tinkhauser et al. reported that beta
oscillations recorded from directional contacts can be used as a
predictor of the clinically most efficient contacts for stimulation
in patients with PD (24). Various research groups (25–30) suggest
that the posterior dorsolateral subthalamic region next to the red
nucleus could be a “sweet spot” to help guiding DBS electrode
placement in PD. However, the small size of the STN and
its proximity to different axonal projections (31) can result in
multiple side effects during high-frequency stimulation.

In summary, these results highlight the relevance of targeting
specific (sub)-structures and networks in improving the clinical
outcome after DBS surgery.

Improving Surgical Planning, Evaluation,
and Stimulation
Functional neurosurgery has been driven by technological
innovations and DBS has evolved over the years, including new
approaches to surgical targeting, evaluation and in the delivery
of therapy at the target. For a detailed overview see Gross and
McDougal (32). Improving and personalizing the targeting of
specific (sub)-structures and avoiding others will be crucial for
improving the clinical effect and limiting stimulation induced
side-effects. New evolving technologies are turning away from
classical cylindrical electrodes toward directional stimulating
leads. The VANTAGE study, a multi-center study investigating
the benefits of using segmented electrodes and multiple-source
axially asymmetric directional DBS could show that such an
approach leads to similar therapeutic effects as the standard
approach without steering. A follow up study reports that axially
asymmetric current can reduce adverse effects as well as efficacy
thresholds in a highly individual manner, while also expanding
the therapeutic window as compared to ring-mode DBS (33).

New software now allows for a patient-specific reconstruction
of DBS leads based on MRI and post-operative CT imaging,
the reconstruction of nuclei and fiber tracts adjacent to
stimulation sites and the mapping of intra- and perioperative
electrophysiological recordings (34, 35). For instance, Lead-
DBS, now available in version 2.0, is a semi-automated toolbox
to model deep brain stimulation electrode locations based on
structural and neurophysiological imaging (34, 36). This toolbox
now contains PaCER, a fully automated tool for electrode
trajectory and contact reconstruction (37). Lauro et al. provide
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the open source software systems DBSproc and DBStar for
clinical research which co-register CT andMR data for individual
target localization and diffusion tractographic analysis from
automatically detected DBS contacts (38, 39). On the industry
side, Boston Scientific bought Cicerone DBS (40), a platform for
stereotactic neurosurgical planning, recording, and visualization
for DBS initially developed by the McIntyre lab and turned
it into the commercial available software GUIDE. Medtronic
initially offered comparable software called Optivize and recently
replaced it with its sequel, SureTune 3. The company Brainlab,
which has recently partnered with Boston Scientific to develop
GUIDE XT, also offers a DBS surgery planning software called
ELEMENTS which enables displaying target structures, fiber
tracts as well as electrode trajectories.

The VTA is a concept to model the spatial dimension of
stimulation for a given set of stimulation parameters (12, 41–
43). It can be calculated from individual therapeutic impedance
and stimulation energy (total electrical energy delivered, TEED)
(44). With a 3D brain atlas and MRI data, the VTA can provide
an approximate reconstruction of brain structures surrounding
the DBS electrode as a 3D activate/non-activate image. A clinical
application of the prediction of the spatial extent of VTA was
reported to be helpful in optimizing DBS parameter settings
in PD patients (45). However, the application of VTA remains
limited due to a lack of impedance calculation in the model
and differential strength-duration curves of the response of
axons with different diameters because VTAs are derived from
volume conductor models with a homogenous and isotropic
tissue medium and the axonal trajectories are assumed to be
perfectly straight and perpendicular to the electrode shaft, as for
example in DBSproc and DBStar (38, 39).

As the electric fields generated during multi-contact
stimulation become more complex, new approaches are needed
minimize the prediction error for VTA and to quantify axonal
and pathway responses in patients-specific models (46, 47).
The clinical software StimVision provides another algorithm
to calculate the VTA using the artificial neural network
technique to facilitate tractography-based DBS targeting (48).
Tractography is a modeling technique used to visually represent
nerve tracts in 3D space using data collected by diffusion
MRI (49). Results from tractography can be combined with
post-operative computational modeling to determine the VTA
based on electrode contacts, as the implanted electrodes can
influence activity not only in gray matter structures but might
also influence activity in surrounding white matter structures,
thereby potentially influencing networks (50–52). The influence
of fiber pathways in DBS has been shown with blood flow,
glucose metabolism and blood oxygenation level dependence
(BOLD) imaging techniques in multiple studies (53–55),
supporting the hypothesis that DBS affects larger neuronal
networks with subsequent downstream axonal activation.
Sweet and colleagues combined results from tractography with
post-operative computational modeling in patients with tremor-
dominant PD identifying that the most efficient VTA stimulates
the dentatothalamic fiber tract. As mentioned above, this tract
probably plays an important role in the occurrence of tremor in
PD and targeting it may alleviate tremor symptoms (43).

Advancements in imaging methods, such as ultra-high field
MRI and new learning algorithms (34, 56–59) promise to refine
our conception and understanding of different neural structures
and their wiring in health and disease and will support the
investigation of personalized target structures, thus possibly
individualizing DBS surgery.

NEW SENSING DEVICES AND
FEEDBACK SIGNALS

Today, DBS systems stimulate in an open-loop manner, meaning
that stimulation parameters are pre-programmed and are not
responsive to changes in the patient’s clinical symptoms or
in the underlying physiological activity. Although open-loop
stimulation is state of the art, limitations like overall efficiency,
reduction of efficiency over time or side-effects have become
more obvious with growing clinical experience. DBS therapy
adjustment also remains time-consuming, requiring clinicians
to evaluate numerous combinations of stimulation parameters
in order to achieve the optimal outcome. Selecting the right
combination among many possibilities can have a major impact
on the therapeutic effect (60). DBS practice currently requires
patients to follow-up for months post-operatively to optimize the
clinical effect of DBS. Disease and patient specific biomarkers
could ideally help optimize therapy and help finding the right
DBS parameter.

Medtronic now offers the implantable and rechargeable
neurostimulator Medtronic R© ACTIVA RC + S, a research
system following the Activa PC + S system, which records
electrophysiological signals from the implanted DBS electrodes
and also offers inertial measurements. New miniature implants
(61) with names like Neural dust (62) or Neurograins (63)
will push the boundary of signal collection even further and
ultimately promise to provide read and stimulation capabilities
with a far greater spatial and temporal detail than available
at present. There now are several companies actively pursuing
brain computer interface technology by developing new neural
implants, ranging from traditional medical device manufacturers
likeMedtronic, St. JudeMedical or Boston Scientific to tech start-
ups like Neuralink, Kernel or Cortera, which in part work in close
cooperation with several research institutes and are driven by
funding from the DARPA program.

Looking forward, adaptive closed-loop stimulation
systems that integrate feedback signals will ideally be able
to rapidly respond to real-time patient needs and make human
programming unnecessary (64). NeuroPace (California, USA)
for example already provides a responsive neurostimulation
system (RNS) for closed-loop cortical stimulation with FDA-
approval in patients with drug-resistant epilepsy. It is capable
of continuously sensing electrocorticography (ECoG) potentials
(65). When recognizing a seizure-related pattern, the stimulator
is activated to stop the seizure and store the ECoG potentials,
date and time of seizure occurrence.

Optimally, biomarkers for adaptive closed loop DBS should
be usable continuously after DBS implantation to make them
applicable for clinical practice. Local field potentials and network
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connectivity measures based on electrophysiological signals with
their high temporal resolution can already be measured with
sensing DBS electrodes or other implanted neural sensors and
hold great promise as biomarkers.

Biomarkers and Control Mechanisms
Regarding closed loop adaptive DBS, a distinction has to be
made between feedback signals (biomarkers) and mechanisms of
control. A biomarker describes a correlative or causal relation to a
clinical symptom. Adaptive control mechanisms then define how
to adjust stimulation based on the evolution of biomarkers.

Biomarkers

Electrophysiological measurements
Recordings of LFPs in the basal ganglia of PD patients show
oscillations at several frequencies, including oscillations at low
frequencies in the delta and theta band (1∼7Hz), alpha and beta
band (8–35Hz), gamma band (35–200Hz) and high frequency
oscillations (>200Hz). It has been demonstrated that the beta
activity amplitude is correlated with motor symptom severity
without medication (66–68). Moreover, it has been reported
that the reduction of rigidity and bradykinesia is correlated
with a decrease in beta activity (69, 70). In line with this, STN
DBS and dopaminergic medication has been shown to attenuate
beta activity locally (71–75), while the degree of beta activity
suppression has been shown to correlate with improvement in
Parkinsonian motor symptoms (71, 76). Whereas, exaggerated
beta activity is associated with bradykinesia and rigidity,
dyskinesia symptoms are reported to be linked to increases
in low (4–8Hz) and gamma frequencies (60–90Hz) (77, 78),
akin to oscillatory activity observed during normal movement
(79–82). High frequency oscillations (HFO), which are reported
to be coupled to the phase of beta oscillations, are another
promising biomarker associated with Parkinsonian symptoms,
such as bradykinesia, rigidity as well as tremor, even in the ON
medication state (83–85). They are typically found at ∼250Hz,
while not being attenuated by dopaminergic medication, but
rather shifted toward higher frequencies at 350 Hz (84–86).

Early approaches using local field potentials (LFP) as feedback
signals for adaptive DBS incorporated the beta frequency
amplitude as a mechanism to trigger the stimulation (87)
demonstrated clinical improvement of symptoms compared to
standard DBS. An approach by Meidahl et al. targets potentially
pathological long beta bursts sparing supposedly functionally
important short-term beta bursts (88, 89). Several other
oscillatory biomarkers, such as pathological cross-frequency
coupling (85, 90) or pathological coherence of neural activity
between cortical and subcortical structures (91) have been
reported to correlate with clinical symptoms and are discussed
as potential feedback signals. Despite early success, challenges
have yet to be overcome. Beta power in the STN for example
correlates with rigidity and bradykinesia, but not with tremor (92,
93), which is linked to field potentials at tremor frequency. PD
patients for example often show heterogenous clinical symptoms,
a single, one-dimensional feedback signal might be only useful
to a certain degree. Body measurements using electromyography
or kinematic sensors allowing for the assessment of symptom

severity and behavior could be a promising additional feedback
source for adaptive DBS. For instance, Cagnan and colleagues
stimulated patients with essential tremor and thalamic electrodes,
while recording tremor amplitude and phase with inertial
sensor units. They report that the amplitude of the tremor was
modulated depending on the phase relative to the tremor cycle,
at which stimulation pulses were delivered (94). Most neural
biomarkers like beta frequency oscillations are multifaceted and
not only linked to clinical symptoms, but also modulated during
normal behavior like movement or cognition (95, 96) and are
associated with medication (71, 97). Although biomarkers like
beta activity seem to be stable months after DBS surgery (98, 99),
it is also conceivable that they evolve with disease progression, as
they are correlated with symptom severity (67), which naturally
increases over time in neurodegenerative diseases.

The use of electrophysiological biomarkers in aDBS is also
restricted due to an often unfavorably low signal-to-noise ratio
and interference with external artifacts like movement, speaking
and cognition (100). Also, stimulation can lead to artifacts when
sensing is done near the site of stimulation, e.g., the sensing of β-
bands in the STNwith e.g., Activa PC+ S can be contaminated by
stimulation. This may be avoided by using ECoG sensing (101).
ECoG is another invasive electrophysiological biomarker which
directly records electrical potentials associated with brain activity
from the cortex. When using ECoG as a biomarker in aDBS the
sensing strip is implanted subdurally over the primary motor
cortex during the same procedure as the electrode implantation
subcortically. Gamma band activity (60–90Hz) for example is
associated with dyskinesia in PD patients and can therefore be
used as a feedback signal to trigger stimulation (101).

For a detailed overview of oscillatory features related to
pathological and physiological states in DBS patients, see
Neumann et al. (102).

Neurochemical sensing
Neuronal sensor devices that detect local alterations in
neurotransmitter release in response to DBS have been
developed. The stimulation-evoked changes that resemble
physiological neurotransmitter release are associated with the
therapeutic effect of DBS (103). Grahn et al. developed a device
that detects changes in dopamine concentration in rodents to
adapt stimulation parameters (104). Lee et al. have developed
a wirelessly controlled device, WINCS Harmoni R©, which can
measure in vivo neurotransmitter concentration across multiple
anatomical targets using implanted neurochemical sensors.
These devices provide real-time neurochemical feedback for
closed loop control (105). Until now, the method has been used
in preclinical DBS studies, but it is a promising tool for a better
understanding and future improvement of a clinical application
of closed loop DBS.

External mechanistic sensors
External wearable devices, such as accelerometers or EMG
sensors can be used to infer symptoms and symptom severity
like rigidity, bradykinesia and gait disorders (106, 107). Studies
show that the measurement of tremor with accelerometers that
adjust the stimulation frequency to tremor frequency lead to a
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better clinical result than conventional stimulation in patients
with essential tremor (52, 94). In PD, the severity of motor
dysfunction can be measured with a wireless external sensor
device which is integrated into a smart glove containing two
touch sensors, two 3D-accelerometers and a force sensor to
assess tremor, rigidity and bradykinesia of hand and arm (108).
Heldman et al. devised software to automatically optimize
stimulation settings based upon objective motion sensor-based
motor assessments. To assess symptom severity, a motion sensor
was placed on the index finger of the more affected hand. The
software then guided a procedure during which stimulation on
each contact was iteratively increased. This was followed by an
automated assessment of tremor and bradykinesia severity. After
completing assessments at each setting, a software algorithm
determined stimulation settings, leading to improved tremor and
bradykinesia scores by an average of 35.7% (107, 109).

Control Mechanisms

Beta threshold targeting
One of the earliest approaches to adaptive closed loop DBS
was beta threshold targeting. When the amplitude of oscillatory
activity in the β-band exceeds a defined threshold, stimulation
is turned on. It has already been shown that this approach can
improve the therapeutic effect compared to standard DBS (87).
Alternatively to threshold targeting, excessive β-synchronization
in PD patients may selectively be regulated via aDBS by targeting
pathological long β bursts while leaving possibly functionally
relevant short bursts of β activity unaffected (88). However, as
described above, one problem of this approach is that not only
beta oscillations but also beta oscillatory characteristics, such as
burst length are not only related to symptom severity, but also to
medication and behavior (75, 110).

Noise cancellation
Cagnan et al. suggest a tool to detect the patient’s tremor with an
accelerometer attached to the affected hand, as described above.
Using the effect of noise cancellation, a control mechanism based
on this external mechanistic sensor switches on the thalamus
stimulation in specific phases of the essential tremor (52). In
this work the modulation of tremor turned out to depend on
the phase of stimulation relative to the tremor cycle. However,
only stimulation during the first half of the tremor cycle resulted
in a reduction of tremor whereas during the second half of the
tremor cycle harmonics in tremor were inducted (52). Also in
PD patients, the effect of noise cancellation was used to cancel
cortical oscillations within the tremor network with non-invasive
transcranial alternating current stimulation (tACS) which can
reduce the amplitude of resting tremor by 50% (111).

Stimulation on demand
Measuring biomarkers in real-time can be used for stimulation
on demand in aDBS. Herron et al. used cortical electrodes sensing
β-band desynchronization in ET patients when a movement was
started. This desynchronization then triggered the stimulation to
reduce the tremor while stimulation was switched off in resting
state (112). Due to a delay in stimulation initiation, tremor at the
beginning of a movement could not be prevented. One way to

improve this would be if one is able to predict movement before
it occurs.

Coordinated reset stimulation
An alternative stimulation protocol is the temporal stimulation
pattern coordinated reset stimulation for research application
(113). Abnormal neuronal synchrony in neurological diseases
can be addressed by coordinated reset stimulation that delivers
brief high-frequency pulse trains through different stimulation
contacts of the DBS lead to reset abnormal synchronization. In
PD the basal ganglia structures STN and GPe are known to
generate rhythmic synchronized oscillations which are associated
with PD symptoms(114). Coordinated reset stimulation can
decrease these abnormal synchronous beta oscillations and hence
improve bradykinesia and rigidity (115).

LIMITATIONS AND FUTURE
PERSPECTIVES

Moving From Invasive to Non-invasive DBS
Although the implantation of DBS electrodes is a well-established
procedure in movement disorders, it comes along with surgical
risks and complications. Thus, a non-invasive approach could be
a future direction. Non-invasive aDBS is proposed by Grossman
et al. who have developed an experimental strategy in mice
to target deeply situated neurons without manipulating the
overlying cortex by applying high-frequency oscillating fields
in different locations outside the brain (116). The interference
between two applied fields cancels out the high-frequency
activity, while an oscillation of low frequency corresponding to
the difference between the two frequencies can emerge. With this
low frequency neurons situated deeply in the hippocampus can
be activated. The suggested approach is limited by the size of
human brain that is much bigger than mouse brain and hence,
more difficult to target deeply located structures, and by whether
neural networks in the stimulation paths remain unaffected
also in a larger brain (117). Another non-invasive approach
is optogenetic stimulation, which was developed over the last
decade. Optogenetics can selectively activate neurons deep in
the rodent brain by using light to control neuronal ion channels
in vivo. Thus, neural circuits can be manipulated by precise
excitation and inhibition of specific circuit elements, moving
from invasive toward non-invasive DBS (118, 119). Currently,
optogenetics still require a chronically implanted optical fiber,
hence, it is not yet a completely non-invasive technique.

However, the non-invasive approaches still need to be
investigated much further. So far they have only been studied in
animal models.

Future Perspectives
Most existing approaches to adaptive DBS so far have in common
that they are carefully engineered based on a core principle
and allow for a specific action given a certain signal. However,
these approaches do not allow for learning optimal individual
signal properties and control algorithms. In addition, each
biomarker and control mechanism has its specific drawback as
discussed above.
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FIGURE 1 | Schematic of general adaptive closed loop DBS for adaptive adjustment of deep brain stimulation (DBS) parameters based upon real time patient

measurements, such as electrophysiological signals (e.g., LFP, ECoG, EMG), neurochemical parameters and behavioral measurements and machine learning. First,

latent features from different possible signal sources are learned using machine learning approaches to extract behavioral (clinical) states (e.g., bradykinesia, rigidity,

tremor) and corresponding and predictive latent neural states (e.g., beta and high frequency oscillations). Then, actual states are compared with ideal states to

compute a reward and stimulation parameters (e.g., VTA, stimulation frequency, etc.) adjusted and finally learned via reinforcement learning (Q-Learning is shown as

an example). In this closed-loop paradigm, the stimulation parameters (actions) are adjusted within clinical limits based on the reward and the extracted latent states.

As a future direction, latent features derived from different
signal sources could be used in parallel to establish a feedback
driven stimulation algorithm based on the analysis of behavioral
and physiological data and a suitable control mechanism.
By integrating parameters derived from different sources,
such as kinematic and electrophysiological measurements and
other sensor like electromyography, patient state and disease
symptoms severity and underlying neural activity could be
ultimately learned and classified end to end (102, 120–122), using
machine learning algorithms (Figure 1).

In case that physiological and behavioral features, describing
the neural and clinical state of the patient, can be reliably decoded
and ideally predicted from measurements, reinforcement
learning could be another option to learn and optimally
control stimulation paradigms and optimize the clinical state
(Figure 1). Reinforcement learning can provide optimal control
in an environment with unknown transition probabilities
(123). In reinforcement learning, an agent, in this case
the DBS stimulation controller interacts with an uncertain
environment, i.e., stimulating a mixture of neural structures
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with certain stimulation parameters with the goal to maximize a
numerical long term reward, in this case the (long term) clinical
improvement of the patient. Through the learned policy after
training the controller ideally has identified the right stimulation
action in every state (124).

A simple version of this idea could be realized in patients
with tremor dominant PD. The amplitude of the tremor can
be measured with kinematic sensors and then be used to
describe the clinical state of the patient. Such a signal could
then serve as a reward signal for reinforcement learning,
with the reward simply being the difference between optimal
clinical state (no tremor amplitude) and actual clinical state
(actual tremor amplitude). With such an approach, the optimal
stimulus could be learned and adjusted based on feedback
signals, closing the loop. Alternative stimulation protocols and
parameters (such as electrode contact, VTA, pulse-frequency, -
width, -amplitude, -shape, timing relative to neural activity, etc.)
could then be evaluated within a clinically acceptable range of
stimulation energy. However, the vast amount of free parameters
in DBS programming introduces a potentially very large search
space to evaluate during reinforcement learning, even when
constraining the search space to clinically acceptable parameters.
Algorithms for reinforcement learning are commonly either
model-free or model-based. While in model-free learning, the
agent simply relies on trial-and-error experience to learn a policy
that optimizes immediate and future reward, in model-based
learning, the agent exploits previously learned lessons (125).
Although model-free deep reinforcement learning algorithms
are suited for learning a wide range of applications, they
often require millions of training iterations to achieve good
performance (126, 127), rendering this approach inappropriate
for adaptive DBS trials in humans. Inmodel-based reinforcement
learning, experience is used to construct a model of the
world, describing the transitions between states and associated
outcomes, while suitable actions are chosen by searching or
planning in this world model (128). To learn such models
in the first place, however, a large number of training trials
would also likely be required. Possibly animal models could
help pioneering such an approach (129). Ultimately, only
interventional studies can prove causal relationships and in
this case the effects of adaptive deep brain stimulation on
the clinical and overall state of the patient. However, applying

countless experimental perturbations, which are necessary to
gather enough observational data to learn from, can be costly and
time consuming, even when done in animal models. Inferring
the causal structure of brain networks from neuroimaging data
is an important goal in neuroscience (130, 131) and various
methods, such as Granger causality (132, 133), dynamic causal
modeling (134, 135), structural equation modeling (136, 137)
and causal Bayesian networks (138, 139) have been developed
to infer causal relations from brain imaging data. Recently, van
Wijk et al. applied dynamic causal modeling to explore the
cortical-basal ganglia-thalamus loop in patients with PD and
to study pathways that contribute to the suppression of beta
oscillations induced by dopaminergic medication (140). Also
recently, Bogacz et al. described a coupled oscillator model to
predict the effects of deep brain stimulation (141). Ideally, causal
inference methods based on i.e., causal Bayesian networks could
also help give testable predictions on the effects of external
manipulations (142), such as the effects of deep brain stimulation.
In this way, different adaptive approaches could be explored
or learned in silico and the number of interventional studies,
that are required to establish an approach, could be reduced
substantially (143).

SEARCHING STRATEGY

This review is based on expert opinions and does not follow a
systematic searching strategy.
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