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The electroencephalogram (EEG) is one of the oldest technologies to measure neuronal

activity of the human brain. It has its undisputed value in clinical diagnosis, particularly

(but not exclusively) in the identification of epilepsy and sleep disorders and in the

evaluation of dysfunctions in sensory transmission pathways. With the advancement

of digital technologies, the analysis of EEG has moved from pure visual inspection of

amplitude and frequency modulations over time to a comprehensive exploration of the

temporal and spatial characteristics of the recorded signals. Today, EEG is accepted as a

powerful tool to capture brain function with the unique advantage of measuring neuronal

processes in the time frame in which these processes occur, namely in the sub-second

range. However, it is generally stated that EEG suffers from a poor spatial resolution that

makes it difficult to infer to the location of the brain areas generating the neuronal activity

measured on the scalp. This statement has challenged a whole community of biomedical

engineers to offer solutions to localize more precisely and more reliably the generators

of the EEG activity. High-density EEG systems combined with precise information of the

head anatomy and sophisticated source localization algorithms now exist that convert

the EEG to a true neuroimaging modality. With these tools in hand and with the fact

that EEG still remains versatile, inexpensive and portable, electrical neuroimaging has

become a widely used technology to study the functions of the pathological and healthy

human brain. However, several steps are needed to pass from the recording of the EEG to

3-dimensional images of neuronal activity. This review explains these different steps and

illustrates them in a comprehensive analysis pipeline integrated in a stand-alone freely

available academic software: Cartool. The information about how the different steps are

performed in Cartool is only meant as a suggestion. Other EEG source imaging software

may apply similar or different approaches to the different steps.

Keywords: EEG, pre-processing, source localization, head model, inverse model

INTRODUCTION

The electric potential differences between electrodes placed on distinct scalp positions is due to
the propagation of current flow induced by synchronized post-synaptic potentials of pyramidal
neurons in the head according to Poisson’s equations (1). However, this propagation is not
homogenous. The current flow is strongly attenuated by the skull due to its high resistivity.
This attenuation has to be properly modeled when solving the so-called forward problem, i.e.,
determining the potential at each scalp electrode generated by a known source in the brain (2).
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Since the thickness of the skull is not homogeneous across the
head, it is highly recommended that the individual anatomical
information derived from the MRI is used to determine the
skull thickness and thus the local conductivity properties. Also,
the shape of the head is not spherical and thus the distance
of the electrodes to the center of the head is variable. The
exact position of each electrode on the individual head should
therefore be known. These properties (local skull thickness and
3D electrode position) are then incorporated in the lead field,
which determines how the electric activity at a certain electrode
is related to the activity of the different sources in the brain.
The more precise and anatomically correct this lead field is
determined, the more precise the source localization will be (3).

Once the proper head model has been built and the lead
field is constructed, the second step consists in solving the
inverse problem, i.e., determining the intracranial sources that
generate a given EEG potential measurement on the scalp. This
inverse problem is a fundamental challenge because a very large
number of different source distributions can produce the same
potential field on the scalp (4). Due to this non-uniqueness, a
priori assumptions need to be incorporated (5). They can be
purely mathematical or include neurophysiological, biophysical
and anatomical knowledge about the distribution of neuronal
activity in space and in time. It must be made very clear that no
matter how sophisticated these assumptions and constraints are,
the provided source solution remains an estimation that depends
on how well-genuine sources conform to these assumptions (6).
This holds for the EEG as well as for the MEG.

Localization of a limited number of equivalent dipoles is
the most classical approach to solve the inverse problem (7).
The a priori assumption in this solution is that only one or a
few active areas in the brain generated the scalp potential field.
Under this constraint, non-linear multidimensional optimization
procedures allow to determine the dipole parameters that best
explain the observed scalp potential measurements in a least-
square sense (8, 9). The maximal number of dipoles that can
be reliably localized depends on the number of scalp electrodes
and is further limited by the non-linear complexity of the search
algorithms with multiple sources (5). The number of dipoles
can be increased by searching for the best solutions of dipoles
with time-varying strength over a certain time period and by
decoupling the linear and non-linear part of the estimation
[BESA, (10), MUSIC, (11)]. It is important to be aware of
the fact that if the number of dipoles is underestimated the
source localization is biased by the missing dipoles. On the
other hand, if too many dipoles are assumed, spurious sources
will be introduced. Nevertheless, dipole source localization can
produce reasonable results under some particular conditions
(12), in particular in localizing the irritative zone in focal epilepsy
(13–15) or the localization of primary sensory areas in evoked
potentials, such as the sensorimotor cortex in surgical candidates
(16). Dipole source localization is still widely used in the MEG
community for these clinical applications (17).

Recent development in brain source imaging has offered more
exciting options to localize brain sources from scalp EEG signals
and have largely replaced the dipole source localization approach.
These so-called distributed source localization methods do not

make a priori assumption with respect to the number of
dipoles. The most popular distributed source models currently
used in the EEG community are modifications of a solution
initially proposed by Hämäläinen and Ilmoniemi (18), called
the Minimum Norm Solution (MN). The constraint introduced
in this solution is that the current distribution over all
solution points has minimum energy (minimizing the least-
square error, i.e., the L2-norm) and that the forward solution
of this distribution optimally explains the measured data. MN
solutions are biased toward superficial sources because of their
spatial vicinity to the sensors. Therefore, weighting parameters
have been introduced to mitigate this bias, leading to the so-
called weighted minimum norm (WMN) solutions (19–21).
A variation of WMN is the low resolution electromagnetic
tomography (LORETA) in which the norm of the second-
order spatial derivative of the current source distribution is
minimized to ensure spatial coherence and smoothness (22).
This constraint has been justified by the physiological plausible
assumption that activity in neighbored voxels are correlated.
Another modification has been suggested by Grave de Peralta
Menendez (23), called LAURA (Local AUtoRegressive Average).
It incorporates the biophysical law that the strength of the source
falls off with the inverse of the cubic distance for vector fields.
LAURA integrates this law in terms of a local autoregressive
average with coefficients depending on the distances between
solution points. The general communality of all these linear
inverse solutions is that they provide a distribution of the current
density in the whole brain volume that is described as a 3D grid of
discrete solution points. In each of these solution points, a current
dipole with a certain orientation and strength is estimated.
Usually, the space of these solution points is restricted to the
gray matter (24). Several other linear and non-linear source
localization algorithms have been described in the literature. This
review focuses on the pre-processing steps that are needed for
source localization and not on the characteristics of the different
inverse solutions. For detailed discussions we refer to previous
comprehensive review articles (3, 25–28).

In the following, we describe the different steps that are
needed to get to these source localizations by illustrating
them with the implementation in our freely available academic
software package Cartool, a stand-alone program for the spatio-
temporal analysis of EEG and evoked potentials (29), https://
sites.google.com/site/cartoolcommunity/. The purpose of this
concrete illustration is to explain in detail the points that
are important to consider in each processing step and how
they are implemented in Cartool. Several other powerful
commercial or academic software packages for EEG source
imaging exist that have implemented similar or alternative
strategies. A comprehensive overview of different academic
software applications can be found in a special issue of the Journal
Computational Intelligence and Neuroscience (30), where
programs such as BrainStorm (31), EEGLAB (32), FieldTrip (33),
NUTMEG (34), SPM (35), andCartool (29) are described.Widely
used commercially available software packages for EEG/MEG
source localization are BESA, Curry, GeoSource, and BrainVision
Analyzer. Table 1 gives a summary of some of the most often
used software packages and the source localization methods that
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TABLE 1 | Non-exhaustive list of academic and commercial software packages that offer EEG source localization tools.

Name Website Inverse models

ACADEMIC SOFTWARE PACKAGES

Brainstorm https://neuroimage.usc.edu/brainstorm Dipole modeling, Beamformer, sLORETA, dSPM

Cartool https://sites.google.com/site/

cartoolcommunity/

Minimum Norm, LORETA, LAURA, Epifocus

EEGLab https://sccn.ucsd.edu/eeglab/index.php Dipole modeling

Fieldtrip http://www.fieldtriptoolbox.org/ Dipole modeling, Beamformer, Minimum Norm

LORETA http://www.uzh.ch/keyinst/loreta.htm LORETA, sLORETA, eLORETA

MNE https://martinos.org/mne/stable/index.html MNE, dSPM, sLORETA, eLORETA

NUTMEG https://www.nitrc.org/projects/nutmeg Beamformer

SPM https://www.fil.ion.ucl.ac.uk/spm/ dSMP

COMMERCIAL SOFTWARE PACKAGES

BESA http://www.besa.de/products/besa-research/

besa-research-overview/

Dipole modeling, RAP-MUSIC, LORETA, sLORETA,

LAURA, SSLOFO

brainvision analyzer https://www.brainproducts.com/ LORETA

BrainVoyager https://www.brainvoyager.com/ Beamformer, Minimum Norm, LORETA, LAURA

GeoSource https://www.usa.philips.com/healthcare/

solutions/neuro/neuro-research-applications

Minimum Norm, LORETA, sLORETA, LAURA

CURRY https://compumedicsneuroscan.com/curry-

source-reconstruction/

Dipole modeling, MUSIC, Beamformer, Minimum

norm, sLORETA, eLORETA, SWARM

they implemented. Whatever software is used, it is crucial that
the user is aware and informed about the implementation of
the different processing steps. In view of recent efforts to setup
best practice guidelines of reporting EEG/MEG studies (https://
cobidasmeeg.wordpress.com/), having access to the information
of how the steps are done in the different software packages and
reporting this information in the publications is important to
ensure reproducibility and replicability.

BASIC REQUIREMENTS

EEG Pre-processing
Raw EEG data are contaminated by artifacts from many
non-physiological (power line, bad electrode contact, broken
electrodes, etc.) and physiological (cardiac pulse, muscle activity,
sweating, movement, etc.) sources. These artifacts have to be
carefully identified and either removed or excluded from further
analysis. This is a cumbersomework and should be done by visual
inspection of the raw data by experienced electrophysiologists.
However, with the increasing availability of public EEG databases
and the desire to analyze large datasets, the need for and the
usage of automatic artifact detection and removal software is
on the rise. Blindly applying such programs is problematic,
because the type of artifacts is manifold and can vary in different
experimental conditions. It is therefore recommended that if
automatic artifact detection and correction methods are used,
they should still be followed up by visual inspection of the data
(36). In the following we describe the pre-processing pipeline
implemented in Cartool.

Temporal Filtering
Most studies first apply a temporal filter to the data in
order to remove frequencies that are considered to be non-
physiological and/or non-relevant for the study at hand. Since
there is no consensus regarding the relevant frequency range

and an increasing recognition of physiological relevance of
frequencies below and above the conventional EEG frequencies
[infraslow frequencies in resting state activity (37), high
frequency oscillations in normal and pathological brains (38)],
the range of the band-pass filter is driven by the study question.
Resting-sate EEG is often filtered between 1–40Hz, while evoked
potential data usually considers broader frequency ranges (0.1–
100Hz). Filtering the data can have important effects on the
time-courses and the phases of the data (39, 40), as well as
on the localization of the waveforms’ local extrema. This is of
particular relevance in evoked potential studies, time-frequency
analysis and connectivity measures. The exact characteristics of
the filter that has been used should be described in the study
report (36). In Cartool, we implemented a non-causal, Infinite
Impulse Response (IIR) Butterworth filter of 2nd order, known
for its optimally flat passband response, which limits the artificial
introduction of new local maxima (41). Both Butterworth low-
and high-pass filters have a−12 db/octave roll-off, and are
computed linearly with forward and backward passes, which
eliminates any phase shifts. This ensures that the local maxima
will remain at their expected positions, irrespectively of their
frequency content. In the specific case of Butterworth high-pass
filtering, the D.C. value is explicitly removed beforehand, as very
high baselines could cause IIR filters to become instable.

Down-Sampling
After filtering, it is often useful to down-sample the data
as most of the frequencies higher than the low-pass cutting
frequency should be gone. It can dramatically reduce thememory
requirements for the subsequent processing, without losing
any information. The Nyquist theorem would require down-
sampling not lower than twice the highest remaining frequency.
In practice, though, because the filters’ cut-offs are never perfectly
sharp, and in order to keep some additional time resolution,
the final sampling frequency should be chosen to be about four
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times the highest remaining frequency after low-pass filtering. In
Cartool and for integer down-sampling ratios, down-sampling is
done with a Cascaded Integrator-Comb (CIC) filter (42), which
in practice is quite easy to compute in off-line applications.
Other software packages, such as for example EEGLAB (32) apply
antializing filters to reduce the sampling frequency.

Electrode Interpolation and ICA
In Cartool, data inspection is performed semi-automatically.
The user scrolls through the data and the program detects and
visualizes electrodes with amplitudes above a certain range. If
the user decides that a given electrode is an outlier due to bad
contact, this electrode is marked and ignored in the subsequent
independent component analysis (ICA).

The ICA is used to detect and correct artifacts, particular
eye movements, eye blinks and cardiac pulse artifacts (43). It is
important that the time course of the ICA components that are
considered to reflect one of these artifacts is inspected together
with the raw EEG data and it is assured that they indeed spatially
(topography) and temporally correlate with the appearance of
these events. Once this is assured, the data are back-projected
by excluding these components. At the time of publication, ICA
is not fully implemented in Cartool. An often used software for
artifact removal using ICA is EEGLAB (44).

After ICA correction, the bad electrodes detected in the first
step are interpolated using a 3D or spherical spline algorithm
(45). In order to do that, the 3-dimensional position of each
electrode needs to be known (see section Determining the
Solution Points in the Gray Matter.).

Spatial Filtering
The precursor of EEG source imaging is the scalp potential
map (5). Therefore, visualizing and inspecting the quality of the
topography of the maps is as important as the inspection of
the waveforms. Even after interpolation of artifacted electrodes
and removing irrelevant ICA components, transient events can
corrupt a few electrodes for a short time period. They can be seen
on the potential map displays as isolated “islands” within the local
neighborhood. Such outlier electrodes will have dramatic effects
on source localization as the steep gradients will lead to local
maxima beneath the electrode [see Figure 4.7. in (46)].

Here we describe a spatial filter that we designed and
implemented in Cartool. It is an instantaneous filter which
removes local outliers by spatially smoothing the maps without
losing its topographical characteristics.

The spatial filter is designed in the following
way (see Figure 1A):

• For each electrode, the values of the 6 closest neighbors are
determined, plus the central electrode value itself.

• The 7 data points are sorted.
• Theminimal andmaximal values are removed by dropping the

first and last items of this list.
• The remaining 5 values are then averaged, with weights

proportional to the inverse distance to the central electrode.
The central electrode is given a weight of 1.

This is very similar to an Interquartile Mean (IQM), but cutting
the Cumulated Density Function into 7 intervals instead of 4, so
we technically have an Inter Septile Weighted Mean. For each
electrode e:

SpatialFilter(e) =

(

∑i=5

i=1

vi

di

)

/

(

∑i=5

i=1

1

di

)

(1)

With vi being the 5 remaining voltage values from the 6 nearest
neighbors of electrode e, plus the central value, each being at
distance di. An example of the effect of the spatial filter on
the waveforms (Figures 1B,C), but more importantly on the
topography, can be seen in Figures 1D,E.

Detecting Bad Epochs
Hopefully, at this stage the EEG data is clean enough for further
processing. Still, transient artifacts may remain (muscle artifacts,
sweating, remaining eye blinks, etc.) that none of the steps above
successfully removed. It is therefore strongly recommended that
the “cleaned” data are visually inspected and that bad epochs
are marked. In Cartool, we have implemented a tool that helps
to identify these bad epochs. It is based on a set of simple
statistics on the tracks and then estimates how much each track
deviates from its own individual baseline. The statistics is based
on instantaneous values (absolute value, variance, skewness and
kurtosis among electrodes at a given time point) and on short
time periods by computing the cross-convolution, which is a
convenient way to estimate the noise in a signal. All these outlier
estimators are merged together to a single compound estimator
and the highly suspicious time periods are highlighted. By visual
inspection, the user can then decide whether these periods should
be marked as “bad” or not. These bad epochs will be conveniently
used in later processing, as many toolboxes of Cartool allow to
skip them.

CONSTRUCTING THE HEAD MODEL

The head model is the model for which the EEG forward solution
is calculated. The forward solution determines how much a
given electrical source in the brain will impact each electrode
on the scalp. It provides the lead field matrix from which the
inverse problem will be solved. It is strongly recommended
to use the individual MRI of the participant to construct the
head model, particularly in clinical studies where the source
localization is used to guide surgery as for example in epilepsy or
in functional mapping of eloquent cortex. If this is not available,
a template MRI can be used (for example the MNI brain), but
the source localization will be less precise, as shown in Brodbeck
et al. (47) in a large patient cohort. The MRI needs several
pre-processing steps in order to get to a proper delineation
of the gray matter in which the source activity is estimated,
and to describe the different compartments of the head (skin,
skull, CSF, brain) that have different conductivity parameters.
Since the electric field that spreads from the sources to the
scalp surface is attenuated by these compartments (particularly
by the skull), a proper incorporation of the head shape and
the conductivity parameters in the head model is essential for

Frontiers in Neurology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 325

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Michel and Brunet EEG Source Imaging

FIGURE 1 | Illustration of the spatial filter implemented in Cartool. (A) Determination and removal of the maximal and minimal value of the 6 nearest neighbor of a

given electrode. (B) Illustration of the waveforms and the map (C) at a given time point before filtering. (D) Illustration of the effect of the spatial filter on the waveforms

and maps (E).

EEG source reconstruction. Once the MRI is pre-processed, the
electrodes have to be positioned on the head corresponding to
how they were positioned during the recordings. It is obvious
that if the position of the electrodes does not correspond to the
real position from which the signal was recorded during the
experiment, the source localization will not be correct.

MRI Processing
The head model for EEG source imaging is based on the MRI. As
mentioned above, whenever possible the individual MRI should
be used. It gives information about the shape of the head, the
thickness of the skull and the volume of the gray matter within
which the solution points for the source localization are defined.
Several processing steps are needed in order to properly extract
this information. This includes re-sampling and re-orientation,
skull stripping, Bias Field correction and separation of gray and
white matter. These processing steps are fairly standard and
offered in many different software packages, most well-known in
the SPM toolbox (48). While Cartool allows to read MRI images
and gray masks that have been processed by other software
programs, it also has an integrated MRI processing toolbox. It
takes particular care of points that are crucial for a proper layout
of the solution points, such as assuring that no holes appear
in the gray matter mask and that the sagittal plane is properly
determined to assure symmetry of the left and right hemisphere.
In the following, the way these processing steps are implemented
in Cartool are described:

Re-sampling and Re-orientation
Depending on how the MR scanner performed the acquisition
and how the participant lied in the scanner, re-sampling
and re-orientation of the MRI is needed as a first step.
In Cartool, the following geometrical transformations are all
built into a 4 × 4 affine transform matrix, which stacks
efficiently the successive steps described below, all of them being
mathematically linear.

If the acquisition was anisotropic, as is often the case, voxel
sizes are not equal in all three dimensions (Figure 2A). This is

very detrimental for any further 3D processing, like filtering, and
needs to be addressed as a very first step. In Cartool this is done by
simply up-sampling the lowest resolution axes with some linear
rescaling, to end up with the highest resolution in all 3 axes. Once
the MRI is made isotropic, the axes have to be re-oriented in a
standard way to improve readability and compatibility with other
software. As a default, Cartool transforms the MRI to the Right-
Anterior-Superior (“RAS”) orientation for the three axes X, Y, Z
(right-hand system) similar to the MNI template brain. This is
done by appropriate 90 degrees rotations (Figure 2B).

Once the main axes have been set, adjustments are performed
to further improve readability and comparison across subjects,
or comparison with the MNI template. First, an optimal sagittal
cutting plane is determined by adjusting 2 rotations values, on
the Y and Z axes, and 1 translation value on the X axis, until
the two halves defined by this plane are most symmetrical. This
is of utter importance for the later stage when laying out the
solution points in the brain, because it keeps an anatomically
realistic balance between the left and right hemispheres. Once the
optimal sagittal plane has been found, the best transverse plane
is determined. This is highly recommended as the placement
of the participant in the MR scanner varies. A tilted head is
normalized in Cartool by adjusting 1 rotation value on the X
axis, and 2 translation values in Y and Z. The optimal transverse
adjustment is the one that gives a mid-sagittal plane that is
most similar to the corresponding mid-sagittal plane of the MNI
head. This is done by tilting the head and setting the origin
above the anterior commissure. Note that these two steps partly
solve the co-registration from a given head to the MNI template
(Figure 2C). Only a final rescaling (3 parameters) is needed
to achieve the ultimate 9 parameter co-registration. The last
geometrical transform is to resample theMRI to reach the desired
target voxel size, which is usually 1 mm3.

All the steps above are then applied at once on the original
MRI, through a 4 × 4 affine transform matrix. Interpolation
between the voxels is done with a Lanczos filter, with kernel
of size 3, which considers a neighborhood of 216 voxels for
each value to be interpolated. The target MRI size is optionally
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FIGURE 2 | Illustration of the MRI processing pipeline. (A) Original anisotropic MRI. (B) Result of up-sampling and re-orientation, with red, green, and blue axis

pointing, respectively to X, Y, Z. (C) Adjustment of the cutting planes and setting of the AC origin. (D) Result of the skull-stripping to isolate the brain. (E) Brain slices

which exhibit the Bias Field of the original MRI. (F) Same brain slices post-Bias Field Correction. (G) Extraction of the Gray matter.

optimized to include only the transformed head, plus some
margin, and drop any useless empty spaces.

Skull-Stripping and Bias Field Correction
At this point, we should have a standardized individual head.
The next step in the pipeline is the skull-stripping to separate
skull, CSF and brain (Figure 2D). Two methods are available
in Cartool, one mainly based on morphological operators, the
other one on region growing. Both methods were designed for
T1 MRIs, but appear to be resilient enough to work on T2 or
MP-RAGE images.

MRI scans usually have inhomogeneities in space, called Bias
Field. Without correcting for it, a given brain tissue like the
gray matter will have different values depending on its physical
position in the scanner (Figure 2E). This is definitely a non-
desired property which will hamper the segmentation of the brain
into its constituent tissues. Cartool corrects for the Bias Field
of the segmented brain by iteratively equalizing the histogram
of the white matter across all 3D directions. Since the white
matter has the highest intensity values, it is a good marker for
inhomogeneities. Any variations across a given axis are attributed
to the Bias Field and are corrected (Figure 2F). By repeating
this process across all directions, a global approximation of the
Bias Field is determined. The validity of this method is reassured

by the final histogram of the brain, which shows very clear-cut
tissue separation.

Gray Matter Segmentation
The final step of the MRI processing is the separation of white
and gray matter. This is needed because EEG source localization
usually restricts the source space to the gray matter that contains
the synapses where postsynaptic potentials can be generated.
Cartool extracts the gray mask by estimating the global intensity
distributions of the gray and white matter and the CSF with
a Mixture of Gaussians. It classifies each voxel by weighting
the Gaussian probabilities, based solely on the voxel intensity,
with some neighborhood likelihood (for a given voxel, the
greyer the neighbors, the higher the chance to be gray, too).
Finally, morphological smoothing operators are applied to fill any
possible holes in the graymask. Note that the produced graymask
is therefore slightly thicker than the actual gray matter, which can
be quite thin in some brain areas. The smoothing assures that no
gray matter parts are missed (Figure 2G).

Determining the Solution Points in the
Gray Matter
The volume that has been obtained through the gray matter
extraction is called the solution space, and constitutes the volume
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in which the electric activity will be allowed to be localized.
The solutions space will typically contain 3000–6000 individual
solution points and is thus basically a down-sampled version of
the gray mask. Because of the Nyquist theorem, down-sampling
should be done with some prior smoothing to prevent aliasing
effects. Otherwise, this would result in missing solution points or
discontinuities in areas where the spatial frequency is higher than
the down-sampled spatial frequency.

In Cartool, finding the optimal solution point distribution is
done in the following way, given a number of solution points
to attain:

1) An initial down-sampling factor is estimated.
2) The gray mask is down-sampled by the current factor, while

remaining centered on the optimal center. This keeps the left
and right parts as symmetrical as possible.

3) Solution points with <8 neighbors out of a neighborhood of
26 are removed, repeatedly for 3 times.

4) The remaining solution points are counted.
5) If the count is close enough to the requested amount of

solution points, the process is stopped. Otherwise, the down-
sampling factor is up- or down- regulated according to the
current numbers, and the process is repeated.

The solution point extraction is an important step of source
localization, very often overlooked, if not totally ignored in the
literature. Here are some points that have to be considered:

1) Left-right distribution
As described above, the MRI has to be realigned to the

mid-sagittal plane. That means that the geometrical center
of the MRI is going through the YZ plane that cuts the
brain in two optimally symmetrical parts. When down-
sampling the gray matter into the solution points, the new
down-sampled center has to remain in this plane. This will
ensure that the resulting solution points will be equally
distributed between the left and right hemisphere. Having
an asymmetrical distribution of solution points will have an
impact on the source localization by giving more weights to
one side of the brain and attributing sources to the wrong side.
Obviously, a real asymmetrical (pathological) brain will have
its mid-sagittal plane set according to its anatomy, and will
have an asymmetrical distribution of solution points.

2) Minimum neighborhood
The inverse process will later need the computation of a

discrete Laplacian in the Solution Space. To be able to do that
correctly, each solution point has to have enough neighbors. In
Cartool, a quite conservative minimum of at least 8 neighbors
out of 26 is chosen. Solution points that have less neighbors
will be removed.

3) Continuity
The solution points should cover the whole gray matter

without missing points on the thinner parts. It is obvious
that source activity cannot be reconstructed on non-existent
solution points, leading to a lack of precision for some brain
areas. Another risk of missing solution points in some gray
matter parts is that neuronal activity coming from this area
would be attributed to the solution points closest to the

missing part. In order to avoid such effects, Cartool smoothens
the gray matter mask as described above to assure continuity
of the solution points (Figure 3). This is a desired property
and not a defect.

4) Number of Solution Points
The number of solution points is defined by the user,

with a recommended range between 3000 and 6000. There
are obvious pros and cons for both low and high number of
solution points (Table 2).

While computer speed is nowadays only a marginal problem,
memory limitations can still be an issue. Numerical precision
issues come from the fact that inverting large matrices will
cumulate more errors than smaller ones. The spatial resolution
(grid spacing) and accuracy (to be spot-on) is a sensitive problem.
More points meanmore spatial resolution because of smaller grid
spacing. This increases accuracy but only up to a limit. Accuracy
will stop improving after a given number of solution points (i.e.,
the inverse solution is not “getting better”) due to the fact that
the quantity of information that is put into the system remains
the same, and is set by the number of electrodes. Also, the matrix
inversion process can intrinsically provide only a limited level
of accuracy.

NUMBER AND POSITIONING OF
THE ELECTRODES

Electrode Layout
What is the minimal number of electrodes needed for reliable
source localization? This question is often asked, particularly
from the clinical community that intends to apply EEG source
localization to the EEG that is routinely recorded with the
standard 10-20 system, i.e., with only 19 electrodes. Several
studies have demonstrated that this low number not only leads
to blurring of the solution, but also to incorrect localization (49)
compared the effective spatial resolution of different electrode
montages (19-129 electrodes) and concluded that “the smallest
topographic feature that can be resolved accurately by a 32-
channel array is 7 cm in diameter, or about the size of a lobe of
the brain”. Simulation studies as well as subsampling studies in
epileptic patients with known epileptic focus clearly showed that
electrode arrays with <32 sensors lead to severe mislocalizations
and blurring (3, 28). The significant increase in localization
precision has been demonstrated by Brodbeck et al. (47) in a large

TABLE 2 | Pros and Cons of the number of solution points in the inverse space.

Lower number of solution points Higher number of solution points

(+) Faster to compute the matrices (–) Longer to compute the matrices

(+) Less memory (–) More memory

(+) Less numerical precision issues (–) More numerical precision issues

(+) Smaller matrices and faster display (–) Larger matrices and slower display

(–) Less spatial resolution (+) More spatial resolution

(–) Less spatial accuracy (+) Somewhat more spatial accuracy

(–) Less neighbors around each solution

point

(+) More neighbors around each

solution point
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FIGURE 3 | Illustration of the distribution of the solution points in the gray matter.

group of epileptic patients where sensitivity and specificity were
compared between high-density (128–256 channels) and routine
clinical (19–21 channel) EEG. In a cohort of patients with focal
ischemic stroke, (50) demonstrated that more than 64 electrodes
were needed to avoid mislocalizations of the affected regions.
Recent studies showed that the detection and localization of high
frequency oscillations, which are potential markers of epileptic
areas, are better detected and localized with high- as compared
to low-density EEG (51, 52). Also, localization of seizure onset
zone using connectivity analysis in the source space was shown
to be more precise with high- compared to low-density EEG (53).
The fact that the skull resistance is much lower than previously
assumed (see section The LSMAC Head Model), additionally
supported the notion that high-density EEG is needed to avoid
spatial aliasing, that then leads to mislocalization (54, 55). As the
skull is much thinner in babies, even more electrodes are needed
in this population (56, 57).

Nevertheless, these results do not necessarily mean that
imperfect spatial sampling precludes source localization.
Even with <32 electrodes, source localization allows to gain
valuable insight about the underlying sources, particularly in
applications with well-defined focal activity such as epileptic
spikes (15, 58–60).

Besides the number of electrodes, their positioning in terms
of coverage of the head plays an important role too. The
standard 10–20 system does not include electrodes over the
inferior part of the head which disfavors the proper recording
of activities in the inferior-basal and anterior part of the
temporal lobe where activity originating or propagating from
the mesial temporal structures is maximal (61, 62) (Figure 4B).
Missing these electrodes can lead to mislocalization of activities
originating from the mesial temporal lobe (60, 63). It has
therefore been recommended that at least 3 inferior electrodes
on each side should be added to the standard 10–20 system in
clinical routine (64).

3D Electrode Positions
The correct positioning of the electrodes on the surface of
the head of the participant’s MRI is an important point.

Ultimately, the position should correspond to the reality,
i.e., to the actual position of the electrodes during the
recording, as this has a direct impact on the stability of the
source localization.

There are different levels of knowledge of the electrode
positions during the recordings. Nowadays, EEG caps or nets
are usually used, with the advantage of fixed spacing between
electrodes. Many studies rely on these fixed positions determined
by the manufacturer and the names of the electrode according
to the 10-10 coordinate system. A template 3D-array (often
provided by the manufacturer) is then used and it is assumed that
the EEG cap is placed and adjusted according to some fixed points
(Inion, Nasion, preauricular points, Vertex, etc.). It is crucial
that this placement is done correctly and it is recommended
that photographs are taken to later assure correspondence of the
electrodes to these fixed points when landing the electrode array
on the MRI head. A more advanced and recommended method,
if available, is to measure the actual position of each electrode
for each participant using a 3D digitizer or a photogrammetry
system (65). The obviously most accurate method is to put
the participant in the scanner with the cap on the head and
afterwards mark the artifacts induced by the electrodes on the
MR images (Figure 4A). This last method bypasses the co-
registration procedure described below. However, as it requires
an MRI scanner close to the EEG recording room and MRI-
compatible EEG caps, this method is rarely possible, except in
simultaneous EEG-fMRI studies.

Co-registration of the Electrodes on the
MRI Head
In Cartool, the co-registration of the 3D electrode array is done
interactively by displaying and manually adjusting the global 3D
shape of the electrode array to the shape of the head. This is
a way to make use of all the available geometrical information,
instead of relying only on a few fiducial positions. The method
can adapt to all cases and allows to co-register either an individual
or a template electrode array to either an individual or a template
MRI head.
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FIGURE 4 | (A) Example of the location of 256 electrodes on the head determined by the artifacts that the electrodes create on the MRI image by wearing the EEG

net in the scanner. (B) Location of the electrodes with respect to the brain: Blue: 256 electrode net. Red: Positions of the 19 electrodes of the standard clinical 10–20

system. The zoomed-in regions show the bad coverage of the frontal, basal temporal and midline areas with the 19 electrodes as compared to the 256 electrodes.

In detail, the following steps are performed interactively:
Both the processed (resampled and reoriented) MRI and the
electrode array are displayed on the screen. The operator
then virtually adjusts the electrode array on the MRI head,
mimicking the way the physical electrodes were set on
the subject’s head. This is done by shifting the electrode
positions in any direction, rotating and stretching them
until they convincingly look like the reality. Photographs
taken during the recording can help to properly adjust
the positions.

Once this adjustment is done, Cartool provides a last useful
feature: virtually “gluing” the electrodes on the head. For many
reasons, like a template electrode array being used on a real MRI
head, and no matter how much care is devoted to the previous
steps, many electrodes can end up either being below or above the
scalp surface. This in turns will be detrimental to the Lead Field
computation by biasing the distances from any given electrode
to the brain. By activating this virtual gluing, all electrodes will
be perfectly projected perpendicularly on the nearest position on
the scalp (Figure 5).

CALCULATING THE LEAD FIELD

In order to calculate the lead field, a head model has to be created
that incorporates as realistically as possible the shape of the head
and the conductivity parameters of the different tissues between
the current sources in the brain and the potential on the scalp.
There have been substantial advancements in the construction
of realistic head models. Still, even the most sophisticated
methods are simplified descriptions of the complex organization
of head tissues. The often-used realistic models are the Boundary
Element Model (BEM) and the Finite Element Model (FEM).
Their superiority compared to 3-shell spherical head models has
been demonstrated in simulations (66–68) as well as real data
(69, 70). The downside of these sophisticated head models is
an increased computational load because numerical solutions
have to be applied. They are also more sensitive to any mishap
happening during the brain and gray matter extraction, as more
brain tissues and more parameters are involved. In Cartool, we
implemented a method that we called Locally Spherical Model
with Anatomical Constraints (LSMAC, see below). It tries to
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FIGURE 5 | Original position of a template electrode layout with respect to the head of the subject (left) and the corrected positions after manual rotation and

translation and the final automatic “gluing” on the scalp.

counteract the computational cost of the BEM and FEM models
by using analytical equations while still keeping the realistic
aspect of the head geometry and the local variability of the
thickness of the skull. Birot et al. (71) compared the LSMAC
model with a BEM and a FEM model in a dataset of 38
epileptic patients in whom high-density scalp EEG, intracranial
EEG and localization of the resection brain area that rendered
the patient seizure-free was available. LSMAC, BEM and FEM
were computed from the individual MRI of the patients and
source localization was performed on averaged interictal epileptic
discharges. Similar source location accuracy with respect to the
intracranial recordings and the resected zone was found for
all three head models. It was concluded that in such clinical
applications, the use of highly sophisticated and difficult to
implement head models is not a crucial factor for accurate
source localization.

The LSMAC Head Model
The Locally Spherical Model with Anatomical Constraints
(LSMAC) (29) is an adaptation of the SMAC head model
introduced by Spinelli et al. (24). The LSMAC Lead Field
calculation requires the pre-processed full head and the gray
mask MRIs, the co-registered electrodes and the location of
the solution points. Under each electrode, the inner and outer
borders of the skull are then automatically determined and the
global resistivity value is locally corrected. This decreases the
sources of error in EEG inverse modeling. The borders of the
skull are determined by analyzing the gray levels of a radial line,
going from the center of the brain to the electrode on the scalp.
Since the skull is barely visible in T1 MRI scans, it shows up as
dark voxels in contrast to the scalp and the brain. Consequently,
the beginning and end of the skull can be identified as borders
between light and dark voxels on the line. By measuring these
borders repeatedly with slight offsets on the scalp, uncertainty
pertaining to noise, low voxel intensities and bone structure

FIGURE 6 | Illustration of the determination of the skull thickness under each

electrode. A sagittal cutting plane is shown with the electrodes (in blue) located

on the scalp surface, the radius lines (in yellow) extending from the center to

each electrode, and on each line three dots showing where the skull and scalp

limits are determined.

variability is adjusted. Figure 6 shows an example of the skull
radii estimation on 3 electrodes.

These skull radii estimate still has some uncertainty due to
the nature of the MRI T1 images. To further increase their
precision, Cartool requests the user to provide a target age of
the subject. Using thickness values described in the literature for
different age ranges (72, 73) and linear interpolation of missing
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values, a curve of the estimated mean thickness for each age
was built (Figure 7A). The radii determined from the MRI are
then globally rescaled to reach the estimated mean thickness for
the given age. This adjustment allows a better estimation of the
Lead Field in children, or in the difficult case of newborns. A
second advantage of this adjustment is to allow the computation
of a Lead Field for any specific age from a fixed template, if the
individual MRI was not available.

The skull resistivity has been shown to be much lower than
previous literature suggested. The resistivity ratio between the
brain and the skull is around 1:10 to 1:30 (74–76), rather
than 1:80, as previously assumed (77). Also, the skull resistivity
increases with age. Cartool thus has a second built-in curve
that gives the relative conductivity of the skull compared to
the adjacent tissue (brain, CSF, scalp) as a function of age.
The curve is based on a few reported resistivity measures
of living tissue (78, 79). According to these reports, the
conductivity ratio varied between 1:9.80 (11 years old) to
1:25 (50 years old). An additional estimated value of 1:50
for 100 years old was added to be able to extrapolate the
curve past 50 years old, basically following the decreasing
trend. When the age of the subject is entered in Cartool, the
conductivity value is adapted to this age according to the curve
shown in Figure 7B.

CALCULATING THE INVERSE SOLUTION

The inverse problem has no unique solution and a priori
assumptions have to be incorporated to derive to a unique
assumption of the distribution of neuronal activity in the brain
that lead to a certain potential field on the scalp. As explained in
the Introduction, a number of solutions of the inverse problem
have been proposed, incorporating different constraints based
on a priori information about the desired source characteristics
or on physiological assumptions [for comprehensive reviews see
(3, 25–28)]. In Cartool, we implemented three linear distributed
source models: the weighted minimum norm solution (21) the
low resolution electromagnetic tomography [LORETA; (22)],
and the Local AUtoRegressive Average [LAURA; (23)], all being
modifications of the minimum norm (NM) solution (18). We
validated these implementations in several experimental and
clinical studies by comparing them with intracranial recordings,

electrocortical stimulation, fMRI, and clinical outcome after
surgery [e.g., (47, 80–84)].

Regularization Optimization
Tikhonov regularization is typically used in the case of under-
determined system of equations, such as when inverting the
Lead Field. Simply put, it factors in the equations a level of
EEG noise, and enforces a level of smoothness in the inverted
results. The more regularization, the smoother the results and the
less the sensitivity to noise. However, too much regularization,
by over-smoothing the results, will degrade the accuracy of
the localization. We wish to use the most precise amount of
regularization despite the fact that the amount of noise is
not known in advance, and will vary from case to case. To
handle all cases, Cartool computes 13 matrices with increasing
regularization factors from 0 (none) to 12 (for very noisy data)
times a constant∝, which depends on the selected inverse model.
The stack of 13 matrices is then saved into a single file. Later on,
when applying an actual EEG to the inverse matrix, its noise level
will be evaluated, and the optimal matrix will be chosen.

The general equation for the inverse problem with Tikhonov
regularization can be written as:

J = W.Kt .(K.W.Kt
+ ∝R .I)

+
.8 (2)

With J being the source density, 8 the electric field, K the
Lead Field, W some specific inverse weighting factors and I the
identity matrix.

The regularization factor ∝R is set the following way, for R
varying from 0 to 12:

∝R = R. ∝

∝ =
max ( Eigenvalues

(

K.W.Kt
)

)

20000
(3)

The optimal regularization for a given EEG is defined as the L-
corner of the norm of the solution points as a function of the
regularization factor R. When Cartool applies the inverse matrix
to the data, it automatically defines this L-corner over the whole
dataset and uses this optimal regularization factor for all time
points. Alternatively, the user can specify a certain regularization
factor for each dataset.

FIGURE 7 | Age correction of skull thickness and skull conductivity. (A) Estimated average skull thickness across age. (B) Estimated skull conductivity ratios across

age.
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FIGURE 8 | Source localization normalization. (A) Time series of 3 solution points showing the difference in mean amplitude (norm) between them. (B) The same time

series as in (A) but after normalization, showing that the 3 solution points now have the same amplitude range. (C) Histograms of these 3 solution points, showing that

the background activity is the left-most mode of the distribution. (D) Histogram after normalization, showing that all the background activity has been centered to 1.

(E) Histograms for all solution points (vertical axis), with the red color coding for the highest source amplitude probability. (F) Histogram of source amplitude probability

for each solution point after normalization, showing that all solution points now have a background range from 0 to 1, while retaining their respective highest activities.

Normalization of the Inverse
Solution Result
When inspecting the estimated current density at each solution
point across time in ongoing (non-averaged) EEG it appears that
substantial variability of power is observed across solution points.
These variations are supposed to come from geometrical and
mathematical approximations that are done during the different
steps of the inverse matrix calculation. It is thus necessary to
find a way to correct for this power variability, in order to
reliably estimate the fluctuations of brain activity over time in
individual subjects and to compare them between subjects. In
Cartool, we implemented a normalization approach by using the
background activity of the norm of the inverse solution over time
to estimate a baseline and a scaling factor for each solution point.
In order to have a robust estimation, a large enough time sample
should be used, preferably the whole pre-processed and artifact-
excluded data of a given subject. Still, the correction factors can
be satisfactorily computed on as little as a thousand time points,
as long as no solution point remains in the same stable state
more than half of the sampled time, which might be problematic

for example in averaged epileptic spikes or in evoked potentials
restricted to the time period of sensory processing or motor
responses. The normalization should therefore be applied to non-
averaged raw data transformed to the source space. A recent
study where this normalizationmethod has been used on resting-
state EEG to determine the sources of the EEG microstates in
task-induced, self-initiated thoughts, showed that this method
reveals brain networks that overlap with those derived by fMRI
in the same subjects (85).

Here is a step-by-step description of this
specialized normalization:

Given a 3D dipole
(

spx, spy, spz
)

at a given solution point sp,
we define spχ as the squared value of its norm:

spχ = spx
2
+ spy

2
+ spz

2 (4)

The noisy part of the data therefore follows a Chi-square
distribution of degree 3.
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FIGURE 9 | Illustration of the actual vectorial results (top left, in 3D) of the distributed sources, and their corresponding amplitude values (top right, in 3D, and bottom

as transverse slices).

The variable spχ can be approximated to a normally
distributed variable spN by (86):

spN = spχ
0.2887 (5)

Having now a normal distribution, spN can be standardized into
spZ by using the regular z-transform:

spZ =

(

spN − µspN

)

σspN
(6)

However, the values of µ and σ used for the z-transform
have to be calculated only on the noisy part of the data—the
background activity from the Chi-square i.e., the lowest values of
the probability density function. Hence µ is estimated from the
left-most Mode of the spN distribution:

µspN = M̂odeleft(spN) (7)

For the same reason, σ is estimated from the Median of Absolute
Deviation (MAD), centered on the previously estimated µ, and
computed only with the values below µ:

σspN = M̂ADleft(spN) (8)

Both the Mode and the MAD being computed on the left part of
the probability density function is key here. In this way it ignores
any activity above noise level that might be present in some brain
areas while not in others. Rescaling using the actual activities
would be incorrect, as it would basically transform them into the
baseline. On the other hand, noise can be seen on all solution
points and its level is a good estimator of the rescaling that has to
be applied. Implementation-wise, these estimators are computed
multiple times on random sub-samplings of the data, and the two
respective medians of all these estimators are finally taken.

Finally, because we started with positive data (the norm of a
dipole), we also wish to end upwith positive data in order to avoid
any confusion due to having signed results. We define spZ+ as spZ
shifted by 3 standard deviations to the right, then divided by 3 so
that the background mode is finally aligned to 1.

spZ+ = max(
(

spZ + 3
)

/3, 0) (9)

After this standardization procedure, the power of the current
density is comparable across all solution points, and its noisy
component is normally distributed (Figure 8).
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FIGURE 10 | Illustration of the visualization of the data and the results of the different analysis steps as implemented in Cartool. All windows can be independently

manipulated in 3D. The screen shot shows a visual evoked potential (face presentation) recorded with 256 electrodes, the corresponding potential map at 188ms

post-stimulus and the estimated sources located in the mesial temporal lobes and the fusiform gyrus.

Results of Inverse Solution: Vectorial
vs. Scalar
The output of the inverse matrix multiplication with the EEG
results in equivalent dipoles located on each solution point. As
each dipole is a 3D vector, it is described as an amplitude in
the x-,y-, and z- directions. In most applications, this vectorial
information is not relevant and only the norm (amplitude) of the
dipoles is saved, i.e. scalar values. This results in positive values at
each solution point as displayed in Figure 9.

APPLICATIONS OF EEG
SOURCE LOCALIZATION

High-density EEG recordings have become standard in many
experimental as well as clinical laboratories, given that most
manufactures readily provide such systems and that the
application of many electrodes has become fairly easy. It
therefore does not come as a surprise that EEG source localization
is increasingly used to infer to the areas in the brain that
generated the activity observed on the scalp (87–89). Concerning
clinical applications, the undoubtedly most intense use of EEG
source localization is in epilepsy, with the intention to localize the
epileptic zone in pharmaco-resistant focal epilepsies (3, 90). The

added value of this method in the pre-surgical assessment of these
patients has been demonstrated repeatedly, not only for focus
localization, but also for localization of eloquent cortex (3, 47, 83,
91–93). Besides the clinical significance, EEG source localization
in epilepsy also gives the unique possibility to evaluate the
performance and precision of different head- and source-models
because intracranial recordings or the outcome after surgery
can serve as “gold-standard” (71, 82, 94, 95). The most direct
way to evaluate EEG source localization is the simultaneous
recording of scalp- and intracranial EEG. A recent study with
high-density (256-channel) scalp EEG recorded simultaneously
with intracranial local field potentials from deep brain structures
in patients undergoing deep brain stimulation demonstrated that
EEG source localization is able to sense and properly localize
spontaneous Alpha activity generated in the thalamus or the
nucleus accumbens (84). This demonstration opens new doors
in the use of high-density EEG source imaging, as it shows that
source localization is not restricted to the cortex only.

In experimental studies, EEG source imaging has become
standard to localize different brain areas involved in sensory,
motor, and cognitive functions, most often applied to event-
related potentials (89, 96). However, EEG source imaging is
also increasingly used to define large-scale network dynamics
by applying connectivity measures (97–99). Because of the high
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temporal resolution of EEG, functional connectivity measures
such as Granger Causality methods are used to study directional
connectivity of large-scale networks in the healthy (100–102)
and in the pathological (103, 104) brain. It has thereby become
clear that such connectivity measures have to be applied in
source space and not on the level of the scalp electrodes,
since volume conduction and reference-dependency make the
interpretability of sensor-based connectivity measures difficult
(105–110). Therefore, EEG source imaging is a pre-requisite
for functional connectivity analysis [for a recent tutorial paper
on EEG connectivity measures see (111)]. It is thus of utmost
importance that the source localization is done properly and
that the steps described in this review paper are understood and
correctly applied.

CONCLUSIONS

This review describes in detail the different steps that are needed
to derive from a multichannel scalp EEG recording to the
estimation of the distribution of the underlying neuronal sources.
It explains the logic underlying each step and the requirements
that need to be fulfilled to perform them. It illustrates how these
steps are implemented in one particular stand-alone software:
Cartool. While this might occasionally give the impression of a
software manual rather than a review paper, we do not intend to
claim that this software is the only one that allows to perform
these steps adequately. Several other stand-alone or open-source
software packages exist, commercially or freely available, that
have implemented these analysis steps in similar or slightly
different ways (30); Table 1. We here use the example of Cartool
to illustrate the implementation and the usage and to provide a

reference for those who use Cartool. In view of the increasing
practice of source localization in EEG andMEG applications, it is
important that the user well-understands how the software that
he/she is using implement the different steps. We also consider
it of crucial importance that the data and the results of the
analysis are visualized and that the user inspects the data carefully
in all different steps and assures that the results make sense
(Figure 10).

This review also intends to make the user aware of the
obstacles and limitations of each step of the analysis and the
choices that have to be made. Basic knowledge of the underlying
reasons for these choices and how it is implemented in a given
software is mandatory to avoid misinterpretation of the results
and to properly describe the methods in a publication. Finally,
we hope that this review contributes to the global awareness
that EEG source imaging is feasible and doable even for non-
engineers and provides information about the function of the
human brain that cannot be achieved by analysis restricted to the
scalp level.
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