
ORIGINAL RESEARCH
published: 28 May 2019

doi: 10.3389/fneur.2019.00358

Frontiers in Neurology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 358

Edited by:

Jorge Matias-Guiu,

Complutense University of Madrid,

Spain

Reviewed by:

Ester Moral,

Hospital of Sant Joan Despí Moisès

Broggi, Spain

Luis Brieva,

University Hospital Arnau de Vilanova,

Spain

*Correspondence:

Bibiana Bielekova

bibi.bielekova@nih.gov

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Multiple Sclerosis and

Neuroimmunology,

a section of the journal

Frontiers in Neurology

Received: 13 January 2019

Accepted: 25 March 2019

Published: 28 May 2019

Citation:

Boukhvalova AK, Fan O,

Weideman AM, Harris T, Kowalczyk E,

Pham L, Kosa P and Bielekova B

(2019) Smartphone Level Test

Measures Disability in Several

Neurological Domains for Patients

With Multiple Sclerosis.

Front. Neurol. 10:358.

doi: 10.3389/fneur.2019.00358

Smartphone Level Test Measures
Disability in Several Neurological
Domains for Patients With Multiple
Sclerosis
Alexandra K. Boukhvalova 1†, Olivia Fan 1†, Ann Marie Weideman 1†, Thomas Harris 1,

Emily Kowalczyk 1,2, Linh Pham 1, Peter Kosa 1 and Bibiana Bielekova 1*

1Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and

Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States, 2Department of Computer
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Our long-term goal is to employ smartphone-embedded sensors to measure various

neurological functions in a patient-autonomous manner. The interim goal is to develop

simple smartphone tests (apps) and evaluate the clinical utility of these tests by

selecting optimal outcomes that correlate well with clinician-measured disability in

different neurological domains. In this paper, we used prospectively-acquired data from

112 multiple sclerosis (MS) patients and 15 healthy volunteers (HV) to assess the

performance and optimize outcomes of a Level Test. The goal of the test is to tilt the

smartphone so that a free-rolling ball travels to and remains in the center of the screen.

An accelerometer detects tilting and records the coordinates of the ball at set time

intervals. From this data, we derived five features: path length traveled, time spent in

the center of the screen, average distance from the center, average speed while in

the center, and number of direction changes underwent by the ball. Time in center

proved to be the most sensitive feature to differentiate MS patients from HV and had

the strongest correlations with clinician-derived scales. Its superiority was validated in

an independent validation cohort of 29MS patients. A linear combination of different

Level features failed to outperform time in center in an independent validation cohort.

Limited longitudinal data demonstrated that the Level features were relatively stable

intra-individually within 4 months, without definitive evidence of learning. In contrast to

previously developed smartphone tests that predominantly measure motoric functions,

Level features correlated strongly with reaction time and moderately with cerebellar

functions and proprioception, validating its complementary clinical value in the MS

app suite. The Level Test measures neurological disability in several domains in two

independent cross-sectional cohorts (original and validation). An ongoing longitudinal

cohort further investigates whether patient-autonomous collection of granular functional

data allowsmeasurement of patient-specific trajectories of disability progression to better

guide treatment decisions.
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INTRODUCTION

There is a need for simple, but reliable, testing of diverse
neurological functions to identify neurological disability

in situations where a neurologist is absent (e.g., third world
countries or rural areas), to track the disability of patients
longitudinally, and to produce reliable outcomes for drug
development. For the reasons outlined below, our long-term

goal is to develop an integrated collection (i.e., Multiple Sclerosis
[MS] suite) of simple tests (apps) that reliably measure disability
in several/most neurological domains, using smartphone

embedded censors in a patient-autonomous manner. This goal is
approached via several interim aims: (1) To develop individual
simple digital tests and to develop/optimize quantitative
outcomes derived from the smartphone sensors/time values;

(2) To validate clinical utility of developed outcomes by
comparing them to the clinical gold standard represented by
clinician-generated disability scores in specific neurological
functions in cross-sectional cohort(s); (3) To integrate validated
outcomes from multiple apps into a combined clinical score
that correlates highly with existing, clinician-derived disability
scores and that is also optimized for change in time, measured in
longitudinal cohort(s).

Neurological scales currently used for drug development
in complex neurological diseases, such as MS, fall into two
categories: clinician-derived scales, such as the Expanded
Disability Status Scale [EDSS; (1)], and non-clinician collected
“functional scales,” such as the timed 25-foot walk (25FW),
9-hole peg test (9HPT), paced auditory serial addition test
(PASAT), and symbol digit modalities test [SDMT; (2)]. Because
traditional clinician-derived scales are insensitive and prone to
bias, and each functional scale measures only selective domain(s)
of neurological functions, the most recent trend in clinical trial
methodology is to combine clinician-derived and functional
scales into more accurate composite scales, such as EDSS-plus (3)
or Combinatorial weight-adjusted disability scale [CombiWISE;
(4)]. Unfortunately, time and expense constraints preclude
collecting these optimized outcomes in routine clinical practices.

Current non-clinician collected functional tests can be
replaced by simple tests amenable to autonomous collection by
patients via smartphones, such as finger and foot tapping,
without significant loss of accuracy (5–8). We recently
demonstrated that digitalizing these tests offers additional
benefits: not only can the test be performed by patients in
frequent intervals outside of clinic (i.e., granular collection),
but input from smartphone sensors and internal clocks can be
assembled into novel, secondary outcomes. For example, the
application can be used to measure motor fatigue based on
declining test performance across time (9).

In neurological diseases, where pathological processes are
widespread across the central nervous system (CNS), many
or potentially all neurological functions are affected. This
makes functional tests that utilize several neurological functions
simultaneously (e.g., in the case of 9HPT, vision, reaction
time, strength, and cerebellar functions) slightly more sensitive
in comparison to simpler tests, such as finger tapping (9).
The ceiling effect and high variability are natural drawbacks

of these more complex functional tests. Additionally, while
increased sensitivity is desired when the test is used as an
outcome in clinical trials, identification of affected neurological
domains becomes impossible for a test that integrates many
neurological functions. We hypothesized that disability in
specific neurological functions may be decoded from an assembly
of multiple simple tests using statistical learning. We tested this
hypothesis in the first two simple tests (apps) we implemented in
the MS suite, and we observed that, when comparing outcome(s)
from a test that focuses exclusively on motoric functions (i.e.,
finger tapping) with a test that employs also the visual system
and reaction time (i.e., balloon popping), we were able to identify
patients with cognitive or visual dysfunction exceeding motoric
disability (9).

The current paper describes the Level Test, a third, simple,
functional test of upper extremities in the MS test suite. Patients
were instructed to direct a free-rolling ball to the center of the
screen with the shortest possible time/path and keep the ball
there for the remainder of the test. The Level Test emphasizes
cerebellar and proprioceptive functions as well as cognitive
reaction time.

METHODS

Application Development
The Level Test was written in Java using the Android Studio
integrated development environment. It underwent iterative
development and optimization following beta testing with
developers and then clinical trial testing with patients and healthy
volunteers. The test is an Android Package (APK) downloaded by
a different APK that served as a front-end (Figure 1), which could
be installed over email or a direct USB connection with Android
Studio. This front-end collected user information such as their
testing ID, birth month and year, gender, and dominant hand. It
also read “prescriptions” from a cloud-based spreadsheet, which
configured the Level Test for each user, tailored to their disability
level. Installation and initial testing were originally completed
on a variety of personal Android phones, with no particular
specifications. Testing in the clinic with patients was done with
Google Pixel XL (2017) phones running the Android 8.1 Oreo
operating system that were kept fully up to date.

Patient Populations
This study was approved by the Combined Neuroscience
Institutional Review Board of the National Institutes of Health
(NIH), and all participants signed either a paper or digital
informed consent.

Patients were enrolled in one of two protocols: Targeting
Residual Activity by Precision, Biomarker-Guided Combination
Therapies of Multiple Sclerosis (TRAP-MS; clinicaltrials.gov
identifier NCT03109288) and Comprehensive Multimodal
Analysis of Neuroimmunological Diseases of the Central
Nervous System (NCT00794352). Most healthy volunteers (HV)
participated in a healthy volunteer sub-study of NCT00794352
to obtain normative data for the smartphone applications. There
were no inclusion/exclusion criteria because the sub-study
recorded no personally identifiable information (PII), so all
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FIGURE 1 | MS test suite user-interface for Level Test. (A) This interface allows the operator to enter practice mode, switch users, access help tutorials, visualize a

patient’s trend with time, and submit feedback regarding application bugs. (B) The suite currently contains nine different tests, which can be accessed in Practice

Mode (shown here) or Trial Mode. These tests refresh daily, and the clinician can change a patient’s prescription to assign difficulty Levels 1 (easiest) −3 (most difficult)

or to skip an appendage. (C) The Level Test interface displays a countdown and instructions on how to complete the test. The time remaining is displayed in a blue

bar across the top of the screen. The user controls the red ball, which is randomly generated at a point 450 pixels (px) from the center of the screen. As the ball moves

across the screen, the nearest concentric circle is highlighted in green. The goal of the test is to tilt the phone so that the red ball travels to and remains in the green

center of the screen.

participating subjects were self-declared as not having any
known neurological deficit.

Data was collected from 112MS patients and 15 HV, for
a total of 494 and 448 individual trials in the left and right
hand (prior to outlier removal), respectively, for the full/main
cohort. Tables 1, 2 display the demographics and clinical features
for data used in the analyses. After outlier removal (see Data
Analysis), of the subjects from themain cohort, 15 HV and 32MS
patients satisfied the longitudinal criteria (at least 3 sittings) with
a mean/median of 9.3/7 sittings (range of 6–23) in the HV cohort
and mean/median of 8.1/3.5 sittings (range of 3–25) in the MS
cohort. To be classified as a sitting, the trials must have occurred
on different days.

Data was collected from 29MS patients, for a total of 186 and
185 individual trials the left and right hands (prior to outlier
removal), respectively, in an independent validation cohort.
Supplementary Table 1 displays the demographics and clinical
features for data used in the validation.

Patient Instructions
Trained laboratory personnel administered the test to patients
during their first session (i.e., cross-sectional cohort). Interested
MS patients were able to take a phone home (i.e., longitudinal
cohort) to complete the tests at least once per week. Patients with
phones at home were instructed to bring the phones to another
in-clinic visit for necessary updates after 6 months.

Patients were given the following set of instructions
when they were first administered the Level Test (see

Supplementary Video). As these instructions were explained,
laboratory personnel demonstrated how to correctly perform the
test. These instructions were also displayed on the screen at the
beginning of testing.

1. You will complete two trials with your left hand and two trials
with your right hand.

2. Hold the phone steady through the 3-s countdown. The test
will begin after the countdown.

3. The goal of this test is to tilt the phone so that the red ball rolls
to the green circle in the center of the screen.

4. Once the ball is in the green circle, keep the ball there for as
long as possible until the 10-s timer is finished.

5. Youwill be given the option to cancel and retake the trial if you
are not satisfied with your results. Otherwise, you may submit
your results for the clinician to review.

Patients were allowed to complete the tests on practice mode
before completing the recorded exam.

Derivation of Level Test Features
A simplified example of a single trial of the Level Test is given in
Figure 2A. Point 0 represents the starting position and point 4
the final position of the ball. The smartphone app recorded two
precalculated features: the path length traveled (Figure 2B) and
the amount of time spent within 45 px of the center of the screen
(Figure 2C). The test also recorded the Euclidean coordinates of
the ball’s position on the screen at intervals of 16ms. Using these
coordinates, we derived three new features: average distance from
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TABLE 1 | Baseline demographics for the cross-sectional MS participants whose

data were used in computing correlations.

Demographics Cross-sectional MS (N = 93)a

PPMS (n = 38) SPMS (n = 19) RRMS (n = 35)

Age—year

Mean ± SD 58.8 ± 7.8 60.0 ± 8.2 50.0 ± 10.2

Median 58.8 60.7 49.5

Range 28.2–70.8 41.9–71.9 30.2–77.2

Gender—no. of patients (%)

Female 52.6 57.9 54.3

Male 47.3 42.1 45.7

Other clinical characteristics

Disease duration—year

Mean ± SD 15.7 ± 8.3 26.8 ± 11.2 12.4 ± 10.1

Median 14.6 29.4 9.0

Range 4.2–44.2 5.0–48.9 1.1–43.4

NeurExb

Mean ± SD 94.0 ± 61.8 119.0 ± 68.9 35.1 ± 35.6

Median 79.9 102.4 24.2

Range 10.7–308.4 24.4–263.1 2.5–171.7

EDSSb

Mean ± SD 5.7 ± 1.3 6.0 ± 1.1 3.3 ± 1.6

Median 6.0 6.5 3.0

Range 2.5–8.0 3.5–7.5 1.0–6.5

SNRSb

Mean ± SD 56.5 ± 11.2 54.1 ± 10.2 74.4 ± 12.3

Median 59.0 54.0 74.0

Range 29.0–85.0 39.0–74.0 41.0–98.0

CombiWISEb

Mean ± SD 48.1 ± 13.4 50.5 ± 12.1 27.1 ± 11.5

Median 46.6 53.6 26.0

Range 18.6–80.6 27.7–73.8 8.4–55.9

SDMTb

Mean ± SD 39.7 ± 11.9 39.5 ± 12.3 49.5 ± 14.7

Median 42.0 42.0 49.0

Range 17.0–61.0 9.0–60.0 23.0–84.0

MSFCb

Mean ± SD −1.2 ± 2.2 −0.9 ± 1.6 0.2 ± 0.6

Median −0.2 −0.5 0.3

Range −6.8–0.9 −0.63–0.9 −1.1–1.0

9HPTb

Mean ± SD 49.1 ± 59.0 44.4 ± 44.3 22.9 ± 6.4

Median 26.8 26.7 21.6

Range 18.6–274.2 18.2–166.2 15.8–52.2

25FWb

Mean ± SD 38.7 ± 59.5 30.4 ± 40.9 5.7 ± 2.7

Median 8.5 15.1 4.8

Range 4.0–179.9 3.7–179.9 3.6–15.6

(Continued)

TABLE 1 | Continued

Demographics Cross-sectional MS (N = 93)a

PPMS (n = 38) SPMS (n = 19) RRMS (n = 35)

PASATb

Mean ± SD 44.5 ± 13.7 47.7 ± 12.4 46.7 ± 12.3

Median 48.5 51.0 50.0

Range 6.0–60.0 14.0–60.0 22.0–60.0

Patients were split by MS disease subtype into primary progressive MS (PPMS),

secondary progressive MS (SPMS), and relapsing remitting MS (RRMS). Data are

represented as sample size (%) or mean ± standard deviation, median and range.

Percentages do not always sum to 100 due to rounding error. NeurEx is obtained from

an app-based documentation of the neurological exam (10). EDSS (1) denotes Expanded

Disability Status Scale. SNRS (11) denotes Scripps Neurologic Rating Scale. CombiWISE

(4) denotes Combinatorial Weight-Adjusted Disability Score. SDMT (2) denotes Symbol

Digit Modalities Test. MSFC (12) denotes Multiple Sclerosis Functional Composite. 9HPT

denotes 9-Hole Peg Test. 25FW denotes 25-Foot Walk Test. PASAT denotes Paced

Auditory Serial Addition Test. Only demographics for patients with valid clinical scores

at the first test sitting were summarized in this table (thus, N = 93 instead of N = 112),

as patients could only be used in computing correlations if these clinical scores were

available.
aMS patients without valid clinical scores were excluded from the tabulation. Cross-

sectional cohort includes one additional patient with unknown MS subtype not

summarized in table.
bDescriptive statistics were calculated by excluding missing data.

TABLE 2 | Demographics for full cohort.

Cohort N Female

(%)

Average disease

duration (year)

Average

NeurExa
Average

EDSSa

HEALTHY VOLUNTEERS

18–29 5 60.0 − − −

30–39 2 0.0 − − −

40–49 2 50.0 − 12.9 1.5

50–59 3 100.0 − 18.0 1.5

>60 3 33.3 − 32.2 2.0

MS PATIENTS

18–29 2 50.0 11.1 251.5 5.5

30–39 7 85.7 5.7 28.6 1.9

40–49 25 64.0 10.2 80.3 3.6

50–59 40 50.0 15.0 123.9 4.5

>60 38 60.5 20.7 160.4 5.5

Patients are divided into healthy and MS cohorts stratified by age. Average disease

duration and clinical scales are calculated where applicable. Percentages do not

always sum to 100 due to rounding error. NeurEx (10) is obtained from an app-

based documentation of the neurological exam. EDSS (1) denotes Expanded Disability

Status Scale.
aDescriptive statistics were calculated by excluding missing data.

the center, average speed while within 45 px of the center, and
number of directional changes undergone throughout the trial.
The average distance from center (Figure 2D) was calculated
by plotting distance from the center at each time point and
dividing the area under curve (AUC) by the total time of the
trial. The average speed in center (Figure 2E) was calculated by
plotting the speed of the ball if it was within 45 px of the center
at each time point and dividing the AUC by the amount of
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FIGURE 2 | Explanation of the five Level Test features. (A) Simplified example of a Level Test trial over 4 s, with each second labeled in a black point. The ball crosses

into the center, highlighted in green, at t = 1 s and 3 s, and crosses out of the center at t = 2 s. The center is defined as a circle of radius 45 px. Two direction changes

are labeled in red points, and the angle changes are denoted in blue. The angle changes are measured as the deviation from the original path along a straight line. (B)

Graph of the path length of the ball corresponding to the trial in (A). The sections where the ball is outside of and inside the center are labeled in black and green,

respectively. (C) Graph of the time in center of the ball corresponding to the trial in (A). When the ball is not in the center, the time in center is unchanging (indicated by

horizontal black lines), and when the ball is outside of center, the time in center increases (indicated by green lines). (D) Graph of the distance from center of the ball

corresponding to the trial in (A). The average distance from center is calculated by dividing the area under the curve (gray shaded region) by the total time of the trial.

(E) Graph of the speed of the ball while in the center corresponding to the trial in (A). The average speed from center is calculated by dividing the area under the curve

by the time in center of the ball. The ball was outside of the center between 0–1 and 2–3 s (white space) and inside of the center between 1–2 and 3–4 s (gray shaded

regions).

time the ball spent within 45 px of the center. The number of
directional changes (see legend in Figure 2A) was calculated by
first “smoothing” the path of the ball by only taking time points
at intervals of n/200 (rounded to the nearest integer), where n
represents the original number of time points. In doing so, we
retained approximately 200 time points while using a constant
interval. From the modified set of time points, we considered
each consecutive triple of coordinates and calculated the angle
change from 180 degrees (i.e., a straight line). If the angle change
was >45 degrees, and the ball was not within 90 px of the center
at all three coordinates, we counted the instance as a direction
change. We chose these criteria after attempting combinations
of 25/100/200 time points, 30/45 degrees, and 45/90 pixels and
then optimizing for correlations with established clinical scales
and specific neurological functions.

Clinical Data
Traditional clinical scales, such as EDSS (1), Scripps Neurological
Rating Scale [SNRS; (11)], 25FW, 9HPT, and the cognitive
scales Symbol Digit Modalities Scale [SDMT; (2)] and Paced
Auditory Serial Addition Test (PASAT) were collected at each
clinic visit by MS-trained clinicians and laboratory investigators
and inputted in real-time to the Neuroimmunological Diseases
section (NDS) research database. The composite scales, MS
Functional Composite [MSFC; (12); combines 25FW, 9HPT, and

PASAT] and Combinatorial Weight-Adjusted Disability Scale
[CombiWISE; (4); combines EDSS, SNRS, 25FW and non-
dominant hand 9HPT], were computed automatically by the
database from inputted data.

NeurEx scores (10) were computed from an app that divides
the standard neurological examination into 17 functions systems,
each one displayed on a single iPad page, where a clinician
conveniently documents his/her findings using touch gestures
on human body diagrams that display features in real spatial
distribution. NeurEx integrates this spatial information with
fully quantitative (e.g., vibration sense) or semi-quantitative (i.e.,
mild, moderate, and severe) grading of observed neurological
deficit to derive a final score for each subsystem. Because
all aspects of the examination are digitized in NeurEx, it
is easy to derive side or limb-specific subscores for each
neurological function.

Data Analysis
We partitioned the data into two cohorts: cross-sectional (N =

127, 112MS+ 15 HV; Table 1) and longitudinal (N = 47, 32MS
+ 15 HV; Table 2). The cross-sectional cohort consisted of trials
completed by all patients during their baseline visits, while the
longitudinal cohort consisted of all trials completed by patients
with trials over at least three distinct dates. An independent
cross-sectional cohort consisting of subsequently acquired 29MS
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patients was used for validation (Supplementary Table 1), and
again, consisted of trials completed only during the baseline visit.
We removed outliers intra-individually (within patients) in a
two-step process. First, we removed all trials with path length
> Q3 + 1.5IQR (where Q3 is quartile three and IQR is the
interquartile range) or time in center < Q1 – 1.5IQR (where
Q1 is quartile one). This removed outliers from the longitudinal
dataset. Then, for cross-sectional data (comprised of two trials
per patient from the baseline visit), we excluded all initial trials
that were at least two times worse than the second trial based on
path length or time in center. Specifically, we excluded one of the
two trials if the path length of the first trial was more than twice
as long as the second trial or if the time in center was less than
half as long as the second trial.

Correlation coefficients presented in the text were calculated
using Spearman’s rank correlation and denoted by rs. The
p-values associated with these correlations were adjusted
column-wise for multiple comparisons using false discovery
rate (FDR). Differences between the groups for the cross-
sectional data were determined using a Wilcoxon rank-sum
test, a non-parametric test which counts the number of times
an individual HV score is greater/less than each MS score.
Differences between the groups for the longitudinal data were
determined by performing analysis of variance on a mixed-
effects model. The latter controls for repeated measures by using
the following:

Feature = Group+ Days+ (Days|Patient ID) (1)

where feature represents one of the five Level Test features,
group is MS or HV, and days is the number of days since
the first test sitting. The second fixed-effects term (Days)
controls for any potential learning that could occur during
the initial test sittings. The random-effects term (Days|Patient
ID) allows for a distinct slope and intercept across time for
each patient.

To create a linear combination of the best features, we
employed a genetic algorithm (GA) using the GA package (13)
in the statistical software R (14). This search algorithm uses the
principles of natural selection to select the fittest features over the
weakest features, and then each of these features are assigned a
weight according to their relative importance to the model. We
ran the GA in parallel utilizing the computational resources of
the NIH HPC Biowulf Cluster (http://hpc.nih.gov).

RESULTS

Correlations Between Level Test Features
and Clinical Scales
In the cross-sectional data, we analyzed spearman correlations
between clinical scales and the five Level Test features for
the dominant and non-dominant hands (Figure 3A). Those
features that correlate positively with clinical scales are colored
in red, and those that correlate negatively with clinical scales
are colored in blue. Overall, we observed the strongest
correlations with traditional disability scales for two of the
Level Test features: time in center and average distance

from the center. The strongest correlations were observed
for tests of cognitive disability (i.e., SDMT but also PASAT)
and for a composite disability scale, MSFC. Time in center
also correlated with traditional clinical scales that are biased
toward motoric functions and gait, such as EDSS, 9HPT,
and 25FW, as well as with the statistical-learning-optimized
Combinatorial Weight-adjusted clinical scale, CombiWISE (4).
These correlations were generally stronger for the non-
dominant hand.

These observations were verified in a smaller independent
validation cohort (Supplementary Figure 1), attesting to their
robustness and reproducibility.

Correlations Between Level Test Features
and Components of the Neurological Exam
Specific neurological systems, derived from the digitalized
documentation of neurological examination [i.e., NeurEx App;
(10)] performed byMS-trained clinicians, were examined against
all Level Test features (Figure 3B, Supplementary Figure 2).

Again, we observed the strongest correlations for time in
center and average distance from center Specifically, time
in center and average distance from center were moderately
correlated with cerebellar dysfunction (Figure 3B, column 4) in
the dominant hand (rs = − 0.34, p = 0.003 and rs = 0.34, p =
0.003, respectively) and all features were moderately correlated
with cerebellar dysfunction in the non-dominant hand. We also
observed correlations between time in center and the stance
and gait subdomain and average distance from center and the
stance and gait subdomain of the neurological examination
(Figure 3B, Column 5). It is likely that correlations with stance
and gait resulted from cerebellar dysfunction and proprioceptive
loss in both upper and lower extremities in the most disabled
MS patients.

With the remaining relevant functions, we observed a
clear dichotomy between dominant and non-dominant hands
(Figure 3B). For the dominant hand, we observed moderate

correlations between all Level features and the quantitative
vibration sense in corresponding hands, indicating that, for
the dominant hand, proprioception plays an important role
in Level Test performance. Time in center had the strongest

and most significant positive correlation with vibration in
the fingers (rs = 0.40, p = 0.00052). In contrast, for
the non-dominant hand, we observed moderate correlations

between motoric domains of the corresponding hand, such as
muscle strength and muscle atrophy, for most of Level Test
features. Specifically, the features time in center, average distance
from center, and average speed in center were moderately
correlated with the non-dominant upper extremity strength,
lower extremity strength, and muscle atrophy (Figure 3B,
columns 1–3), with the highest correlations between time in
center (rs = −0.42, p = 0.00022 and rs = −0.42, p =

9.8e − 5, respectively) and average distance from center (rs =

0.38, p = 0.00067 and rs = 0.49, p = 7.4e − 6, respectively).
This dichotomy is obvious when one compares correlations of
global motor and sensory functions with Level Test features
(Figure 3B, last columns).
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FIGURE 3 | Correlation matrices against clinical scales and neurological functions. (A) Spearman correlations of the Level features against eight clinical scales:

Expanded Disability Status Scale [EDSS (1)], Scripps Neurological Rating Scale [SNRS; (11)], Combinatorial Weight-Adjusted Disability Score [CombiWISE; (4)],

Symbol Digit Modalities Test [SDMT; (2)], Multiple Sclerosis Functional Composite [MSFC; (12)], 9-Hole Peg Test (9HPT), 25-Foot Walk (25FW), Paced Auditory Serial

Addition Test (PASAT). The 9HPT scores use the dominant/non-dominant hand score. (B) Spearman correlations of the Level features against neurological features.

The Stance and Gait scores use the entire body score. The following functions use the dominant/non-dominant side score: Upper Extremities Strength, Lower

Extremities Strength, Muscle Atrophy, Cerebellar Functions, Vibration in Fingers, and Vibration in Wrist. For all correlations red colors correspond to positive

correlations, and blue colors correspond to negative correlations. All p-values are adjusted column-wise using false discovery rate and are categorized as ***p <

0.0001, **p < 0.001, *p < 0.01. The time in center and average distance from center, for both dominant and non-dominant hands, had strong, significant correlations

with all 8 analyzed clinical scales. The strongest correlations were observed for cognitive scales SDMT and PASAT and the composite scale MSFC. The remaining

Level features also correlated with cognitive scales and MSFC, even though the strengths were overall lower. The correlations with clinical scales were comparable for

dominant and non-dominant hands.

Level Features Discriminate Between HV
and MS Patients Cross-Sectionally
The best performing Level Test features, listed in order,
were time in center, average distance from center, and
direction changes. Non-dominant hand time in center
most significantly differentiated MS patients from HV
(p = 2.1e − 7, Wilcoxon rank− sum test), followed closely
by average distance from center for the non-dominant hand
(p = 8.6e−7, Wilcoxon rank− sum test, Figure 4A). Dominant
time in center and non-dominant direction changes had similar
discriminatory power (p = 1.7e− 5 and p = 1.1e− 5, Wilcoxon
rank-sum test, Figure 4A). When examining each feature
individually, the non-dominant hand always outperformed the
dominant hand.

Again, this hierarchy of outcomes was preserved in the small,
independent validation cohort, affirming the robustness of our
conclusions (Supplementary Table 3, Supplementary Figure 3).

To explore whether we could derive a composite feature
(based on an optimized linear combination of features) from
Level Test features with enhanced clinical utility, we performed

a genetic algorithm (GA) by optimizing the difference between
the MS and HV cohorts (see Methods). The GA determined
that the relative weight of non-dominant time in center was
approximately 1,000-fold higher than the relative weights of
all remaining Level Test features (Supplementary Table 2).
Thus, inclusion of the remaining nine features in a model to
differentiate between the groups would only add variance without
enhancing performance.

Level Test Features Discriminate Between
HV and MS Patients Longitudinally
Ultimately, as described in the introduction, our goal is to
optimize app-generated outcomes for measuring progression of
neurological disability in time, ideally by integrating validated
outcomes from several/all developed apps. We do not have
sufficient longitudinal data for this aim collected thus far. Instead,
we used limited longitudinal data available to: (1) Validate the
clinical utility of the most discriminatory features identified in
the cross-sectional cohort in the setting of granular collection
of data in patient-autonomous manner (i.e., outside of the
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FIGURE 4 | Boxplots of the Level features, separated by dominant/non-dominant hand and HV/MS cohort. (A) Cross-sectional data shown consists of the average of

the two trials from the baseline visit. Differences between the groups were determined using a Wilcoxon rank-sum test. (B) Longitudinal data shown consists of the

average of all scores within each patient. Differences between the groups for the longitudinal data are determined by performing analysis of variance on a

mixed-effects model (see Equation 1 in Methods) using all scores for each patient. The number of trials for each group is denoted above each boxplot. Differences

between the sample sizes of the groups across dominant/non-dominant hands are due to both inconsistent completion of the Level Test as well as outlier removal.

The significance of the ability of each feature to discriminate between the HV (blue) and MS (orange) patients are calculated with a mixed-effects model with ***p <

0.0001, **p < 0.001, *p < 0.01. Lower scores for path length, average distance from center, average speed in center, and direction changes correspond to better

performance, while higher scores for time in center correspond to better performance.

clinic, in patients’ homes); and (2) Assess the level of intra-
individual variability of the best-performing Level Test features
in short-term granular acquisition. This short-term data could
also demonstrate the presence of a “learning” effect.

As was seen in the cross-sectional data, the best performing
features for the full cohort, in order, were time in center, average
distance from center, and direction changes. However, non-
dominant time in center far out-performed any other feature
(F = 71, p = 5.8e− 13, Figure 4B) in differentiating MS from
HV across time.

Once we have gathered enough longitudinal data, we would
like to use Level features (likely in combination with other App-
based outcomes as a single composite scale) to track disability
changes with time. In the absence of disease progression, the
features useful for accurate tracking of disability progression
must have relatively low variance, i.e., the values shouldn’t widely
vary from one testing session to another. The test should not be
constructed in a way that requires the patient to practice more
to perform better; otherwise, the points that fall on this learning
curve would have to be removed before analyzing the data.

To investigate intra-individual stability, we chose to examine
path length against time in center data, as these were primary
features derived by the application (Figure 5). Each color/shape
combination corresponds to a specific patient and is matched
across dominant and non-dominant hands. The 100% marks

denoted in gray lines indicate the HV median values of both
features; values that fall in the upper left quadrant are considered
below normal. Within the time-interval available (up to 4
months) we observed no evidence of improvement with time on a
group level. While severely-disabled patients had higher variance
between individual time-points, the overall performance of the
Level Test was intra-individually stable.

DISCUSSION

In this study, we developed and tested the clinical utility of
another simple test of upper extremities neurological functions
in our smartphone MS suite, the Level Test, from which
we derived five features of putative clinical relevance. By
using a digitalized neurological examination, we were able to
determine that the Level Test is quite different from previously
developed/published smartphone tests of finger tapping (8) and
balloon popping (9) because its performance is less dependent
on motoric dysfunction (i.e., pyramidal signs and motor fatigue,
upper extremities strength and muscle atrophy) and more
dependent on cerebellar functions (both hands), proprioception
(i.e., vibration in upper extremities for dominant hand) and
especially reaction time. Thus, the Level Test fulfilled our goal
of diversifying neurological functions necessary for successful
performance of individual smartphone tests. This diversification
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FIGURE 5 | Intra-individual stability plots of Level scores. The path length scores are plotted against the time in center scores for dominant (A) and non-dominant (B)

hands in the longitudinal cohort. Each patient is assigned a distinct color within the HV and MS cohorts. The initial scores of each patient are circled in gray. The

median path length and time in center scores of the HV are indicated with gray lines (100% marks) to divide the plots into quadrants. The best scores are in the lower

right quadrant and the worst are in the upper left.

will hopefully allow us to recreate the neurological examination
in its entirety by integrating features derived from multiple
smartphone tests.

Out of the five Level Test-derived features, time in center
and average distance from center outperformed all others
in both cross-sectional cohorts (original and validation).
However, high correlations between all Level Test features
(Supplementary Figure 4), and the inability to develop a
composite score that would outperform single best performing
feature (i.e., time in center for the non-dominant hand)
using statistical learning, indicate that the features we derived
measure mostly overlapping neurological functions. Therefore,
their integration does not seem to provide additive (or
synergistic) value, at least in the cross-sectional comparison
of MS patients and HV. We will explore additive value
of these features in the longitudinal paradigm once we
acquire sufficient longitudinal cohort (i.e., at least 1 year
of follow-up).

The observed, reproducible dichotomy between dominant
and non-dominant hands in the neurological functions
involved in test performance is reminiscent of what was
observed previously for simpler smartphone tests such as
finger tapping and balloon popping (9) and 9HPT. These
cumulative results indicate that the performance of precision
movements by the non-dominant hand are more strongly
dependent on motoric functions than analogous performance
by the dominant hand, where cerebellar and proprioceptive
systems may compensate for the motoric dysfunction. This
is probably a consequence of compensatory mechanisms
evoked by daily usage of the dominant hand irrespective of
underlying motoric disability. Consequently, the disability in
complex functional tests becomes apparent in the dominant
hand only if multiple neurological systems (i.e., motoric,
cerebellar, and proprioceptive) are affected. Because this
compensatory mechanism lacks on the non-dominant hand
side, the majority of functional tests are more sensitive
on the non-dominant hand to detect subtle neurological

deficits and maximize differences between MS and HV
cohorts (8).

The observed strong correlations with cognitive scales SDMT
and PASAT emphasize the importance of the reaction time for
the successful completion of the Level Test. This interpretation
is supported by low correlations between Level Test features and
cognitive subdomains of NeurEx (10), which focuses on executive
functions and memory rather than the reaction time, which is a
strong component of SDMT and PASAT.

We will continue development of additional simple tests of
neurological functions, including testing of lower extremities
with apps such as foot tapping (8) and walking, to derive
an integrated view of neurological disability in individual
patients, necessary to achieve our long-term goal of an
optimized, data-driven, global outcome that can measure
progression of neurological disability in time. Such an outcome
will be useful, not only in drug development, but also in
monitoring the efficacy of administered treatments in broad
clinical practice.

In conclusion, the Level Test is a simple, easily-performed
smartphone test that correlates strongly with all traditional MS
disability scales, is sensitive to measure differences in disability
between MS and HV cohorts, and measures partially distinct
neurological domains in comparison to motoric smartphone
tests such as finger and foot tapping (8). Only by employing
longitudinal data that spans at least 1 year will we be able to
determine if the Level Test is sensitive for measuring intra-
individual disability progression and whether its integration with
other smartphone tests will yield a composite feature(s) with
higher clinical value.

DATA AVAILABILITY

The Level Test datasets for the main cohort and validation
cohort with associated data dictionary can be found in
Supplementary Files.
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