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Background: The development of evidence-based interventions for delaying or

preventing cognitive impairment is an important challenge. Most previous studies using

self-report questionnaires face problems with reliability and consistency due to recall

bias or misclassification among older people. Therefore, objective measurement of

lifestyle components is needed to confirm the relationships between lifestyle factors and

cognitive function.

Aims: The current study examined the relationship between lifestyle factors collected

with wearable sensors and cognitive function among community-dwelling older people

using machine learning.

Methods: In total, 855 participants (mean age: 73.8 years) wore a wristband sensor

for 7.8 days on average every 3 months. Various lifestyle parameters were measured,

including walking steps, conversation time, total sleep time (TST), sleep efficiency, time

awake after sleep onset, awakening count, napping time, and heart rate. Random

forest (RF) regression analysis was used to examine the relationships between total daily

sensing data and Mini-Mental State Examination (MMSE) scores. Confounding factor

analysis was conducted with models that were adjusted and unadjusted for demographic

and vascular risk factors, and selected variables were assessed as risk and protective

factors using partial dependence plots (PDPs).

Results: Lifestyle data were collected for 31.3 ± 7.1 days per year using wristband

sensors. RF regression analysis adjusted for age, gender, and education levels selected

four variables, including number of walking steps, conversation time, TST, and heart rate.

Moreover, walking steps, conversation time, and heart rate remained after RF regression

analysis adjusted for demographic and vascular risk factors. Number of walking steps,

conversation time, and heart rate were categorized as protective factors, whereas TST

was categorized as a risk factor for cognitive function. Although PDPs of number of

walking steps and heart rate revealed continuously increased MMSE scores, those of

conversation time and TST and revealed that the tendency in the graph was reversed

at the boundary of a particular threshold (321.1min for conversation time, 434.1min

for TST).
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Conclusions: Lifestyle factors, such as physical activity, sleep, and social activity

appear to be associated with cognitive function among older people. Physical activity

and appropriate durations of sleep and conversation are important for cognitive function.

Keywords: cross-sectional study, lifestyle factors, cognitive function, wearable sensor, mini-mental state

examination, random forest regression analysis

INTRODUCTION

Dementia is a major public health issue worldwide, with a
serious burden for patients, caregivers, and society, as well as
substantial economic impacts (1). Although the prevalence of
late-life cognitive impairment and dementia are expected to
increase in future, effective disease-modifying treatments are
currently unavailable. Therefore, understanding the modifiable
risk factors and developing evidence-based interventions for
delaying or preventing cognitive impairment is an important
challenge. Numerous observational studies have reported a
range of potentially modifiable risk factors for dementia,
including lower levels of education, midlife hypertension, midlife
obesity, diabetes mellitus, smoking, and late-life depression,
as well as social isolation, physical inactivity, and hearing
loss (2–6). Depression, physical inactivity, and social isolation
are particularly important predictors of late-life cognitive
impairment (4, 7). Sleep disturbance is also prevalent among
older people, representing a risk factor for cognitive impairment
(8–11). However, most previous studies have used self-report
questionnaires, which can have problems with reliability and
consistency due to recall bias or misclassification, particularly
among older people, or those with mild cognitive impairment
(12–15). Moreover, physical activity questionnaires are not able
to capture non-exercise physical activity, which accounts for
most total activity energy expenditure among older people and
social relationship questionnaires regarding social network size
or social engagement cannot accurately measure the duration of
contact with family members or friends (16). Therefore, objective
measurement of lifestyle components is needed to confirm the
relationships between lifestyle factors and cognitive function.
Recently, wearable sensors have been used to evaluate lifestyle
factors such as physical activity and the sleep-wake cycle in
large epidemiological studies (12–15, 17–21). Wearable sensors
are non-invasive and cost-effective, and can record total daily
movement and the sleep-wake cycle continuously and objectively
24 hours/day without recall bias. In the present study, we
developed a wristband sensor enabling quantification of the
conversation time for assessing social contact in addition to
physical activity and the sleep-wake cycle. Moreover, random
forest (RF) regression analysis was conducted to identify risk
and protective factors of the lifestyle components associated
with Mini-Mental State Examination (MMSE) scores. RF is an
ensemble learning method for classification, regression and other
functions, which operates by constructing amultitude of decision

Abbreviations: BMI, body mass index; CI, confidence interval; MMSE, mini
mental state examination; PDP, partial dependency plot; RF, random forest; RMSE,
root mean squared error; TST, total sleep time; WASO, wake after sleep onset.

trees at training time, and outputs the class that is the mode of the
classes or mean prediction of the individual trees (22). Machine
learning techniques can shorten the time required for big data
analysis, and can identify patterns in complex scenarios that
are impossible for humans to identify (23). Therefore, machine
learning has been applied in disease diagnosis, development
of prediction models and identification of risk factors (23–26).
The current study aimed to examine the relationship between
lifestyle factors collected by wearable sensors and MMSE scores
in community-dwelling older people using machine learning.

METHODS

Participants
We have been conducting a community-based observation
study focusing on lifestyle risk and preventive factors related
to dementia in Usuki city, in southern Japan, since 2015. The
proportion of the population over 65 years old in Usuki city
has reached 38%, compared with 27.3% of the nationwide
population in Japan. In the present study, public servants carried
out public relations initiatives to recruit participants aged 65
or older without dementia from the entire city using electronic
and paper-based media because the lifestyle factors such as
physical activity and social isolation are closely related to late-life
cognitive impairment (1, 7). From August 2015 to March 2016, a
total of 1,020 community-dwelling people agreed to participate
in our prospective cohort study examining risk and protective
lifestyle factors for dementia among older people. For inclusion,
participants met the following criteria: (1) 65 years and older;
(2) living in Usuki city; (3) healthy physical and psychological
condition; (4) MMSE score 20 points or more and absence of
dementia diagnosis or administration of dementia medication;
(5) independent function in activities of daily living. The
exclusion criteria included a history of other neurological and
psychiatric disorders including Parkinson’s disease or epilepsy,
severe head trauma, alcoholism, severe cardiac failure, and severe
hepatic or renal dysfunction, undergoing treatment for cancer,
and walking difficulty due to stroke sequelae. All participants
underwent a physical examination, evaluation of cognitive
function and medical interview at baseline. Height and weight
were measured and body mass index (BMI) was calculated
as weight in kilograms divided by height in m². We collected
information about demographic characteristics, including age,
gender, education level, and smoking status as well as alcohol
consumption and medication history via interviews conducted
by trained medical staff at baseline. Moreover, history of chronic
disease was defined as a prior diagnosis of stroke, cardiac disease,
and hepatic or renal disease as well as cancer. Assessment of
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vascular risk factors, such as hypertension, diabetes mellitus, and
hypercholesterolemia were based on a detailed clinical history
and information of medicine (antihypertensive, antidiabetic, or
anticholesterol medication). Because the MMSE is widely used
for dementia screening tool, cognitive function was evaluated
using the MMSE. The results of MMSE were reviewed by
neurologist and clinical psychologist for the primary screening
for dementia. Participants were considered to have possible
dementia was when they scored <20 points on the MMSE
(27). Moreover, we collected the further information regarding
dementia diagnosis or administration of dementia medication
in the local hospital, and daily living decline due to cognitive
impairment from participants and their closest relatives in
the face-to-face clinical interview. Diagnosis of dementia was
made according to the criteria of the Diagnostic and Statistical
Manual of Mental Disorders-5 (28) by a neurologist who
used all cognitive and clinical data. Of 1,020 participants,
seven participants had other neurological disorders, and one
participant had severe renal dysfunction. Four participant had
difficulty walking without assistance. Although we recruited
participants without dementia via electronic and paper-based
media, 13 participants with dementia were identified based on
interviews at the first examination. A total of 25 participants
with other neurological disorders, severe renal dysfunction,
difficulty walking, or dementia were excluded from the present
study. The remaining 995 participants were asked to wear a
wristband sensor on the wrist for 7–14 days on average every 3
months (total study period 56 days). To eliminate measurement
error due to seasonal differences in lifestyle because previous
studies using actigraphy measured physical activity and sleep
data for a maximum of 3 days (14, 20). Therefore, average
annual data were used to examine the relationships between
lifestyle factors and cognitive function. A total of 42 participants
refused to wear the wristband sensor during the first cycle, and
98 participants had inadequate sensing data for analysis. Thus,
the final sample consisted of 855 participants (317 men and 538
women, mean age 73.8 ± 5.8 years, education years 11.8 ± 2.1)
with cognitive assessment and valid sensing data (Figure 1). The
mean age of our participants was rather high, which might reflect
the increasing population aging rate in Usuki city. Similarly,
previous studies investigated the relationship between sleep or
physical activity and cognition in the very elderly people (13, 21).
The excluded participants had 1.7 year older (75.5 ± 6.9 years,
p = 0.0097), slightly lower education years (11.3 ± 1.7, p =

0.0076), and lower MMSE scores (median 28, p= <0.0001) than
855 participants who were included in our analysis. However,
two groups did not differ in the gender distribution (42 men and
98 women, p = 0.1061), smoking states (ever smoker 7.4%, p =

0.1338), alcohol consumption (ever drinker 38.9%, p = 0.6168),
and history of chronic diseases (hypertension 55.8%, p = 0.2651,
diabetes mellitus 13.4%, p = 0.9861, hypercholesterolemia
27.3%, p = 0.2374, respectively). This prospective study was
conducted in accordance with the Declaration of Helsinki,
and was approved by the local ethics committee at Oita
University Hospital (UMIN000017442). Written informed
consent to participate in the study was obtained from
all participants.

Wearable Sensor Data
All participants were asked to wear a wristband sensor (SilmeeTM

W20, TDK Corporation Tokyo, Japan) on the wrist, except while
bathing. We excluded data if the heart rate count indicated
that the wristband sensor had been removed. Sixteen of 98
participants who had inadequate sensing data (16.3%) did not
wear wristband sensor during sufficient period for analysis. Our
wearable sensor measured various lifestyle parameters, including
heart rate, walking steps, conversation time, total sleep time
(TST), sleep efficiency, time awake after sleep onset (WASO),
awakening count, and napping time. These parameters were
calculated by summing sensing data each day and averaging this
over the whole measurement period.

Physical Activity
Physical activity data were detected by a 3-axis accelerometer,
which enabled measurement of acceleration in three
perpendicular axes. The evaluation circuitry converted the output
of a micromechanical acceleration-sensing structure, according
to the differential capacitance principle. The accelerometer
generated physical activity data regarding walking steps with
composite acceleration of 3-axis measurement every time
the wearable sensor was moved, and data were captured
continuously and summarized in 1min intervals. Walking steps
were identified by capturing frequency bands ranging from 2 to
3Hz, which synthesized acceleration by the accelerometer. The
number of walking steps was calculated by summing the number
of steps for each day and dividing this by the number of days of
lifestyle data measurement. Therefore, the number of walking
steps was represented as the average number of steps per day.

Sleep
Sleep-wake parameters were assessed by the magnitude of
synthesized acceleration of the 3-axis accelerometer and
cumulative energy. The data were confirmed and adjusted
by qualified technicians using visual inspection. Time in bed
between bedtime and waking time was determined by the activity
count recorded by the wristband sensor. Sleep parameters such
as TST, WASO, and sleep efficiency, as well as the awakening
count were measured from 18:00 in the evening to 5:59 the
following morning (Figure 2). Sleep Start was defined as the
clock time associated with the beginning of the first 20-min
block of sleep without movement (20, 21). TST was defined
as the average total number of minutes slept per day. Sleep
fragmentation was evaluated by WASO, sleep efficiency, and
awakening count. Nocturnal awakening was defined as 20min
of continuous movement from sleep onset to the end of sleep
(20, 21). Therefore, WASO and awakening count were calculated
by averaging the total number of minutes awake and the number
of minutes of sleep per day. Sleep efficiency was calculated as
the percentage of TST over the time spent in bed. Although a
sleep dairy was not used in this study, the total time in bed
between bedtime and getting up was determined by TST and
WASO. Nap time was defined as resting without movement on
the wearable sensor from 6:00 in the morning to 17:59 in the
evening (Figure 2).
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FIGURE 1 | Flow of participant recruitment.

FIGURE 2 | Indices of wearable sensor.

Heart Rate
Heart rate was detected by photoplethysmography. Pulse
photoplethysmography is a simple and useful method for
monitoring heart rate. Using this method, pulse measurement
is based on the irradiation of 573 nm wavelength light, and the
conversion of the intensity of reflected light to an electrical signal.
The heart rate was calculated by summing pulses permin for each
day and dividing this by the number of days in the lifestyle data
measurement period. Therefore, heart rate was represented as the
average number of pulses per day.

Conversation Time
Ourwearable sensor could not detect the content of conversation,
but could detect utterances of the participant wearing the
wearable sensor, and utterances of nearby people. Sound data
were captured continuously during the presence or absence of
a conversation every minute. Although the utterances of other
individuals were included in the sound data, participating in the

conversation was considered to be important for social activity in
this study.

Principle of detection
Sound data were collected by a microphone on the wearable
sensor, and analyzed to evaluate the conversation time. Our
wearable sensor detected sound pressure, which was produced
by utterance within a 2-meter radius from the device. The sound
pressure range was from 55 to 75 dBA at this distance. The
conversation time was defined as the frequency components
included in conversation data extracted by signal processing.
In detail, the wearable sensor extracted a frequency band
corresponding to a human voice from the sound data within
the sound pressure range as a sound frame. Conversation was
defined as more than four sound frames per minute, during
a 1-min period. It is possible that the sound of television
viewing or radio listening was detected as conversation due
to the detection method based on the sound pressure and
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frequency. Therefore, we also quantified the detection rate of
television viewing.

Verification of Detection Accuracy

Physical activity
The accuracy of walking step detection was verified by comparing
the sensing data and video observation data. Walking steps
were simultaneously collected for 9min by wristband sensor and
continuous video monitoring in twenty healthy participants aged
60–80 years (11 men and 9 women). Significant correlation was
found between walking steps measured by wristband sensor and
those from video observation (r = 0.9869, p < 0.0001, Pearson
correlation, Supplemental Figure 1).

Sleep detection
The accuracy of sleep duration detection was verified by
comparing the sensing data and video observation data. Sleep
duration was simultaneously collected during night time by
wristband sensor and continuous video monitoring in five
healthy participants aged 20–60 years (5 men). Significant
correlation was found between sleep duration from wristband
sensor and that from video observation (r = 0.9995, p < 0.0001,
Pearson correlation, Supplemental Figure 2).

Conversation time
The accuracy of conversation time detection was verified by
comparing the sensing data and self-report data regarding
conversation time. Sound data were captured for 50 h in
healthy participants aged 30–40 years and analyzed in terms of
precision, recall, and F-Measure (Supplemental Table 1). The
results revealed values of 0.698 for precision, 0.774 for recall, and
0.734 for F-Measure. The false detection rate was calculated to
evaluate the false detection of sounds other than conversation,
such as television, noise during commuting, or noise during
office work. The results of the false detection rate analysis are
shown in Supplemental Table 2. Furthermore, we verified the
false detection rate of sounds, including clothing noise, wind,
breath, train, motor vehicles, guitar, piano, violin, cat, dog, bird,
vacuum cleaner, tooth brushing, washing machine, dishwasher,
and dish-washing, which were likely to be erroneously detected
as a conversation. We adjusted each sound to a 55–75 dBA sound
pressure range in front of themicrophone on the wearable sensor,
and input each sound for 100min continuously to verify the false
detection rate. The total false detection rate in the same sound
pressure environment was 4.5% (sum of each time)/(number
of items ∗100min). These results indicate that the conversation
time detected by the wearable sensor could be used as a reliable
indicator of human conversation time. Moreover, the accuracy
of conversation time detection in twenty healthy participants
aged 60–80 years was verified by comparing the sensing data and
video observation data. Conversation time was simultaneously
collected for 9 minutes by wristband sensor and continuous
video monitoring in twenty healthy participants aged 60–80
years (11 men and 9 women). Significant correlation was found
between conversation time from wristband sensor and that from
video observation (r = 0.8512, p < 0.0001, Pearson correlation,
Supplemental Figure 3).

Statistical Analysis
RF regression analysis was used to examine the relationships
between total daily sensing data and MMSE score. RF is an
ensemble learning method that operates by constructing decision
trees using bootstrap aggregation, and computes node impurity
for every variable. This analysis can be used to rank the
variables based on their predictive importance, such as %IncMSE
and IncNodePurity. Moreover, confounding factor analysis was
performed to build an unadjusted model (model 0), a model
adjusted for demographic factors (model 1), and amodel adjusted
for demographic and vascular risk factors (model 2). The selected
variables were used to assess the risk and protective factors for
cognitive function using partial dependence plots (PDPs).

RF Regression Analysis
RF was conducted using R (version 3.4.1) and an RF package for
Windows 10 (6, 22, 29, 30). The inbuilt bootstrap aggregation
procedure of the RF algorithm enables the learning algorithm
to be limited to a random sample of features to search. This
drastically reduces the variance and avoids the problem of
overfitting. The tree was grown on a bootstrap sample (“the bag”)
by placing two-thirds of the cases in the bag and the remaining
one-third “out-of-bag” (OOB) (28). Default values of 500 for the
ntree (a hyper parameter to define the number of trees to grow
in the model) and p/3 (p indicates the number of predictors)
for mtry (a hyper parameter used by the algorithm to determine
the count of variables to be randomly sampled for search during
each split point) were set. The p/3 value is the default mtry value
recommended by the algorithm inventors. The hyper parameters
ntree and mtry were not tuned for the variable selection
process. Assessment of variable importance was performed
using IncNodePurity (a variable importance measure). High
IncNodePurity values indicated high importance. A total of
855 samples were used to rank the variables by importance.
The selection of top N variables was determined by prediction
performance of a model built using 90% of the total 855 samples,
assessed by the root mean square error (RMSE) using 10% of the
total 855 samples. By applying this rule, the top N variables were
selected for which the RMSE value was lowest (Figure 3). Table 1
shows all 17 variables. The adjusted model 1 used 11 variables,
including age, gender, education year, and eight wearable sensor
variables, whereas the adjusted model 2 used 17 variables for the
variable selection process in the RF regression analysis using daily
sensing data.

Confounding Factor Analysis
Potential confounding factors included age, gender, education
levels, and BMI, alcohol consumption, smoking status, and
vascular risk factors, which may affect both lifestyle factors
and cognitive function (6). Therefore, the present study used
RF regression analysis unadjusted (model 0), adjusted for
age, gender, and education year (model 1), and adjusted for
all confounding factors (model 2). Multiple linear regression
analysis (R version 3.4.1 for Windows 10) was used to identify
the effects of confounders and adjust for potentially confounding
variables in the model (31). The confounding analysis procedure
was conducted in R (30). Multiple linear regression models were
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FIGURE 3 | Top N variables selection process.

TABLE 1 | All variables for RF analysis.

Variables

Age (years)

Gender (0; Male, 1; Female)

Education (years)

BMI (kg/m2)

Smoking status (0; Every day, 1; None, 2; Sometimes)

Alcohol consumption (0; Every day, 1; None, 2; Sometimes)

Hypertension (0; No, 1; Yes)

Diabetes mellitus (0; No, 1; Yes)

Hypercholesterolemia (0; No, 1; Yes)

Walking steps (steps/day)

Conversation time (mins/day)

Heart rate (counts/mins/day)

TST (mins/day)

WASO (mins/day)

Sleep efficiency (%/day)

Awakening time count (counts/day)

Nap time (mins/day)

TST, Total sleep time; WASO, time awake after sleep onset, mins; minutes

built for models 0, 1, and 2 to identify the variables influenced
by the confounding factors. The regression coefficients of
independent variables were calculated in models 0, 1, and 2
(Table 2). The confounding effects on the independent variables
were measured by the percentage changes in the estimated
regression coefficients as follows: 100 × (adjusted coefficient—
unadjusted coefficient)/(unadjusted coefficient). The influenced
independent variables were defined as the conditions in which
regression coefficient values in model 1 and 2 were increased
by more than 200%, decreased by more than 200%, or cases in

TABLE 2 | Confounding factors in model 0, 1, and 2.

Model 0 Model 1 Model 2

Unadjusted Adjusted for age,

gender, education

year

Adjusted for age, gender, education year,

BMI, hypertension, diabetes mellitus,

hypercholesterolemia, alcohol

consumption, smoking status

BMI, Body mass index.

which the independent variable sign was reversed or independent
variable was newly added compared with themodel 0. Finally, the
independent variables influenced by confounding factors were
excluded from the adjusted model 1 and 2.

Risk and Protective Factor Analysis
The variables in model 1 identified by RF and confounding factor
analysis were assessed for risk and protective factor analysis.
In black box methods like RF analysis, functional relationships
between each independent variable and the response variable
are assessed using PDP (32). PDP is a simple technique for
visualizing partial relationships between the outcome and the
predictors. PDP enables visualization of relationships between y
and one or more predictors, xj, as detected by RF analysis. In this
method, xj is the predictor of interest, X–j represents the other
predictors, y is the outcome, and ∧f(X) is the fitted forest. The
partial dependence algorithm functions as follows:

1. For xj, sort the unique values V = {xj}iǫ{1,...,n} resulting in
V∗, where |V∗|=K. Create K newmatrices X(k)= (xj=V∗k,
X–j), ∀k= (1,...,K).

2. Drop each of the K new datasets, X(k) down the fitted forest
resulting in a predicted value for each observation in all K
datasets: ∧y(k)= ∧f(X(k)), ∀k= (1,...,K).
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3. Average the predictions in each of the K datasets, ∧y∗ k = 1
nPN I= 1 ∧y (k) i, ∀k= (1,...,K).

4. Visualize the relationship by plotting V∗ against ∧y∗.

PDPs are generated from the RF model and used to define the
variables as risk and protective factors for MMSE scores. The
marginal prediction data were extracted from the PDP for all the
variables in the RF model. The correlation value was calculated
between each independent variable and MMSE score, using
the marginal prediction data. Variables with positive correlation
values were defined as protective factors, whereas those with
negative correlation values were defined as risk factors.Moreover,
PDPs for each selected variable were used to determine risk and
protective factors.

Contribution and Significance of Risk and

Protective Variables
The variables in model 1 identified by RF and confounding factor
analysis were applied inmultiple linear regression for quantifying
the contributions of individual risk and protective variables. ∗P<

0.05 were considered statistically significant.

Model Prediction Accuracy
Moreover, the model prediction accuracy was verified by linear
regression and RF analyses. The training models, including linear
regression and RF algorithms, were built using the data set with
the variables walking steps, conversation time, TST, heart rate,
age, gender, and years of education, and were evaluated with the
test data. The performance of the model was evaluated by the
prediction RMSE with the lowest value. We used 90% of the 855
samples for training, and 10% of the 855 samples for testing.

RESULTS

Clinical and Demographic Characteristics
of Participants and Wristband Sensor Data
Table 3 summarizes the sociodemographic factors, cognitive
function, and lifestyle factors of all participants. Participants’
mean age was 73.8 years, and 62.9% of participants were female.
Lifestyle data were collected from participants for 31.3 ± 7.1
days per year (7.8 days on average every 3 months) using the
wristband sensor.

RF Regression Analysis Using Daily
Sensing Data
Selecting Important Variables
RF regression analysis using sensing data revealed that the five
variables (walking steps, conversation time, TST, and WASO as
well as heart rate) in model 0 were selected. Moreover, the top
10 variables (walking steps, conversation time, TST, and WASO,
sleep efficiency, awakening time count, naptime, heart rate as well
as age and education years) in model 1 were selected based on the
lowest RMSE value (1.6).

Confounding Factor Analysis
In model 1, three variables, including sleep efficiency, awakening
time count, naptime were newly selected and WASO exhibited a
<200% decrease in the estimated parametric values (−440.91%).

TABLE 3 | Summary of demographic characteristics and wearable sensor data of

participants.

CHARACTERISTICS

Age (years) 73.8 ± 5.8

Gender (M:F) 317:538

Education (years) 11.8 ± 2.1

BMI (kg/m2) 23.2 ± 3.1

Median MMSE scores 29 (20, 30)

Ever smoker 36 (4.2%)

Ever drinker 354 (41.4%)

PAST HISTORY

Hypertension 429 (50.2%)

Diabetes mellitus 114 (13.3%)

Hypercholesterolemia 281 (32.9%)

WEARABLE SENSOR DATA

Walking steps (steps/day) 5452.9 ± 2778.0

Conversation time (mins/day) 219.7 ± 86.3

Heart rate (counts/mins/day) 64.7 ± 6.3

TST (mins/day) 408.4 ± 69.1

WASO (mins/day) 22.1 ± 14.1

Sleep efficiency (%/day) 1.0 ± 0.0

Awakening time count (counts/day) 0.5 ± 0.3

Nap time (mins/day) 48.7 ± 39.3

M, Male; F, Female; BMI, Body mass index; MMSE, Mini-Mental State Examination; TST,

Total sleep time; WASO, time awake after sleep onset; (20, 30), the range of MMSE value

is from 20 to 30; mins, minutes.

Therefore, these variables were excluded for next step analysis.
Finally, four variables (walking steps, conversation time, TST and
heart rate) were included in model 1 for risk and protective factor
analysis. The IncNodePurity value of each variable is 313.7 in
walking steps, 258.8 in TST, 225.1 in heart rate, and 220.3 in
conversation time (Figure 4). The variables regarding physical
activity were the most important lifestyle factors associated
with cognitive function. In model 2, TST exhibited a sign
change in the multiple linear regression models. Therefore, the
number of walking steps, conversation time, and heart rate
remained significant after the RF regression and confounding
factor analysis.

Risk and Protective Factor Analysis
Four variables in model 1 were assessed in the protective and
risk factor analysis. The number of walking steps, conversation
time, and heart rate exhibited positive correlations with MMSE
score and were categorized as protective factors for cognitive
function, whereas TST was categorized as a risk factor. PDPs
of walking steps and heart rate revealed continuously increased
MMSE scores. The inclination of the graph, however, began
to reverse by the boundary of the specified threshold in the
PDP of conversation time and TST (Figure 5). The specified
threshold was 321.1min for conversation time and 495.1min for
TST. Therefore, conversation time and TST were not conclusive
risk factors, and appeared to become protective or risk factors
according to the length of time. An appropriate duration of
sleep for preventing cognitive impairment was 291.6–495.1min,
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FIGURE 4 | Variable importance measure. The IncNodePurity value of each

variable is 313.7 in walking steps, 258.8 in TST, 225.1 in heart rate, and 220.3

in conversation time.

whereas sleep duration of more than 434.1min exerted a negative
effect on cognitive function. Similarly, an appropriate duration of
conversation time for preventing cognitive impairment was 80.8–
321.1min, whereas conversation time of more than 321.1min
exerted a negative effect on cognitive function. In addition, the
relationship between conversation time and physical activity
was investigated to determine why conversation time beyond
the specified threshold was identified as a risk factor. Linear
regression analysis was performed after transforming the data
to the normal distribution. The results revealed that the
walking steps was not correlated with conversation time in
participants exhibiting <1.125min (transformed value, mapping
value: 320min) of conversation (p = 0.181, Figure 6), but was
negatively correlated with conversation time in participants
exhibiting more than 1.126min (transformed value, mapping
value: 321min) of conversation (p= 0.0117, Figure 6).

Contribution and Significance of Risk and

Protective Variables
To quantify the individual risk and protective variable
contributions, multiple linear regression was performed
using only the selected four variables (walking steps, TST, heart
rate, and conversation time) after transforming the data to the
normal distribution (Table 4). The results revealed that walking
steps, heart rate, and conversation time were categorized as
protective factors for cognitive function (contribution value:
0.4116, 0.1071, and 0.0612, respectively), whereas TST was
categorized as a risk factor (contribution value: −0.1128). The
walking steps was highly significant.

Model Prediction Accuracy
The prediction accuracy in the RF model was better than that in
the linear regression model (Table 5).

DISCUSSION

The present study evaluated lifestyle components, including
physical activity, sleep, and conversation, as well as heart rate,
using a wearable sensor in a large sample of community-dwelling

older people, and constructed a machine learning model to
predict cognitive impairment. RF regression analysis adjusted
for age, gender, and education years identified four significant
variables: walking steps, conversation time, TST, and heart
rate. Specifically, walking steps, conversation time, and heart
rate remained significant after the RF regression analysis was
adjusted for demographic and vascular risk factors.Moreover, the
walking steps, conversation time, and heart rate were identified
as protective factors for cognitive function, whereas TST was
categorized as a risk factor for cognitive function. PDPs of
walking steps and heart rate revealed continuously increased
MMSE scores. TST and conversation time, however, indicated
that the tendency in the PDP graph was reversed at the boundary
of a specified threshold. Thus, these variables tended to have a
protective effect on cognitive function within a particular range
of time, whereas longer periods of time exceeding a particular
threshold were risk factors for cognitive function. Because RF
regression analysis and PDP graph cannot quantify individual
variable contribution, multiple linear regression analysis was
performed to quantify individual contribution of the selected
variables and also to find its statistical significance. Although
the multiple linear regression showed that only the number of
walking steps was significant, both RF and linear regression
analysis revealed similar results regarding the risk and protective
factors for cognition. Moreover, the PDP graph exhibited a
reversal at the boundary of a specified threshold in TST and
conversation time, which was not detected by linear regression.
Therefore, we selected four lifestyle variables related to MMSE
scores by RF regression analysis and risk and protective factor
analysis of each variable were performed using PDPs. The current
findings highlight the importance of physical activity, sleep,
and conversation in preventing cognitive impairment among
community-dwelling older people.

Numerous studies have examined the beneficial effects of
physical activity on cognitive function among older people.
A meta-analysis of 15 prospective cohort studies reported
protective effects of vigorous exercise against cognitive decline
(hazard ratio 0.62, 95% CI 0.54–0.70) (33). Another meta-
analysis of 16 studies reported a lower risk ratio of dementia
(0.72, 95% CI 0.60–0.86) in the highest physical activity group
compared with the lowest physical activity group (34). Moreover,
several cross-sectional and prospective studies using actigraphy
reported that greater daytime movement was protective against
cognitive impairment and dementia (12–15). The results of
our cross-sectional study were consistent with previous studies
regarding the relationship between total daily movement and
cognitive function, and suggested that non-exercise physical
activity, such as movement around the house and fidgeting
is important for delaying cognitive impairment among older
people. Several potential mechanisms have been suggested to
explain the beneficial effects of physical activity on cognitive
function. Physical activity may reduce brain amyloid deposition
and increase brain function by decreasing vascular risk factors,
including obesity, hypertension, and diabetes (35–37).

Sleep is important for brain plasticity and memory
consolidation (38) and sleep disturbance is a common problem
for older people as well as patients with mild cognitive
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FIGURE 5 | Partial dependency plot for the actinography data. The number of walking steps (A), heart rate (B), and conversation time (C) showed a positive

correlation with MMSE score and were categorized as protective factors for cognitive function (correlation values: 0.71, 0.547, and 0.396, respectively). TST (D)

showed a negative correlation with MMSE scores, and was categorized as a risk factor for cognitive function (correlation value; −0.245). The inclination of the graph

began to reverse by the boundary of specified threshold in the PDP of conversation time and TST (321.1min and 495.1min, respectively). MMSE, Mini-Mental State

Examination; TST, tonal sleep time.

FIGURE 6 | Correlation analysis between the number of walking steps and

conversation time. The daily number of walking steps was not correlated with

conversation time in participants exhibiting <1.125min (transformed value,

mapping value: 320min) of conversation, and decreased with increasing

conversation time in participants exhibiting more than 1.126min (transformed

value, mapping value: 321min) of conversation.

impairment and dementia (8–10, 39). Several cross-sectional
or prospective studies reported that shorter and longer sleep
duration may be important risk factors for subsequent cognitive
impairment (8, 10, 19). The current results indicated that
an appropriate duration of sleep was important for delaying
cognitive impairment, whereas longer sleep duration (more than

TABLE 4 | Risk and protective variables contribution.

Estimate SE t-value P-value

Walking steps (steps/day) 0.4116 0.0722 5.702 1.63e−08*

TST (mins/day) −0.1128 0.0731 −1.542 0.123

Heart rate (counts/mins/day) 0.1071 0.0726 1.476 0.140

Conversation time (mins/day) 0.0612 0.0721 0.849 0.396

SE, Standard error; TST, Total sleep time; mins, minutes *P < 0.05.

TABLE 5 | Model accuracy.

Training model Prediction model

R2 value MSE RMSE R2 value MSE RMSE

Linear

regression

0.119 3.155 1.776 0.175 2.955 1.719

RF

regression

0.775 0.796 0.892 0.759 0.863 0.929

RF, Random forest; MSE, Mean Squared Error; RMSE, Root mean squared error.

434.1min) exerted a negative effect on cognitive function in
older people. One prospective study of the relationship between
sleep duration and the risk of dementia reported that the risk
of dementia was increased among individuals with particularly
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long sleep durations (8 and more than 9 h), compared with
those with normal sleep durations (6 and 7 h). These results
suggested that longer sleep duration might be a risk factor for
cognitive impairment among older people. The sleep-wake cycle
is associated with the clearance of brain amyloid-β protein (40),
while shorter sleep duration was associated with greater brain
amyloid burden on amyloid positron emission tomography (41).
However, the mechanisms underlying the relationship between
longer sleep duration and dementia remain unclear. Longer
sleep duration may increase the risk of dementia, function as
an early symptom of dementia, or be associated with sleep
disorder-related breathing and smoking habits (10).

The present findings identified daily heart rate as a protective
factor for cognitive function among community-dwelling older
people. To our knowledge, no previous reports have examined
the relationship between heart rate and cognitive function. A
previous study reported relationships between resting heart rate,
depression, and cognitive impairment in patients with ischemic
stroke, and relationships between reduced heart rate variability
and cognitive impairment among older women (42–44). Further
studies are needed to confirm the influence of heart rate on
cognitive function among older people.

Importantly, the current results revealed that conversation
time was an important predictive factor for MMSE score. Social
isolation and subjective loneliness are increasingly recognized
as risk factors for cognitive impairment and dementia among
older people (7, 16). A meta-analysis of social activity reported
that the risk of developing dementia was increased in individuals
with less social participation (relative risk 1.41, 95% CI 1.13–
1.75) and less social contact (relative risk 1.57, 95% CI 1.32–
1.85) (16). An intervention study reported that active social
engagement, including contact with family and friends and
positive social support and engagement in leisure activities
have beneficial effects for preventing cognitive impairment and
dementia (45). In present study, we quantified communication
by detecting participants’ utterances, using conversation time
as a surrogate parameter of social isolation. Few previous
studies have examined the relationship between conversation
time and cognitive function. Although an appropriate duration of
conversation time tended to have a protective effect on cognitive
function, we found that longer durations of conversation time
(more than 321.1min) exerted a negative effect on cognitive
function among older people. One possible explanation is related
to the different effects of conversation time on cognitive function
according to the length of time, because longer conversation
time was associated with a decreased number of walking steps.
Therefore, our results suggest the importance of balance between
the duration of conversation and the duration of physical
activity. The current results were consistent with previous
studies regarding the relationship between communication and
cognitive function, highlighting the importance of spending an
appropriate proportion of time engaging in conversation. The
mechanisms underlying social activity and cognition support the
cognitive-reserve hypothesis, which suggests that participation
in intellectual, social and physical activities stimulates brain
function, resulting in the prevention of dementia (46). In animal
studies, mice raised in an enriched environment have been

reported to exhibit greater neurogenesis and increased synaptic
density, and amyloid precursor protein transgenic mice have
been found to exhibit decreased brain amyloid-β deposition in
enriched environments (47, 48). Another potential mechanism is
that social contact or social support may lead to decreased stress
and increased motivation to perform health-related behaviors,
resulting in the prevention of dementia (7).

The present study has several limitations that should be
considered. First, the study could not determine the causal
direction of the association between lifestyle factors and cognitive
function because of its cross-sectional design. Second, we were
unable to exclude factors influencing cognitive reserve, such
as past, or current occupation and engagement in cognitive
and social activity, which may affect lifestyle and cognitive
function. Third, cognitive function was evaluated only by MMSE
and information regarding depression was not collected. The
MMSE is a very crude measure of cognition and questionable
accuracy for detecting dementia. Although we collected the
clinical information to define the present or absence of dementia,
the patients with possible dementia could not be excluded
completely from participating in the current study. Therefore,
further studies assessing a broader range of cognitive domains
should be needed to confirm our results. Forth, it is possible that
the sound of television viewing or radio listening was detected
as conversation due to the detection method based on sound
pressure and frequency. Therefore, further studies are needed
to improve the reliability of our sensing data. Conversation
time may have included sleep or nap time during television
viewing or radio listening. The relationship between conversation
time and sleep or nap time, however, suggested that the
possibility of sleeping being included in the daily conversation
time was only 6.4%, which would not be expected to influence
the results.

In conclusion, the current study revealed that lifestyle
factors such as physical activity, sleep, and social activity were
associated with global cognitive function among older people.
Physical activity and heart rate were positively associated with
cognitive function. Moreover, an appropriate balance between
the durations of sleep and conversation appears to be important
for cognitive function. These results may contribute to the
development of new evidence-based interventions for preventing
cognitive impairment and improving health and wellbeing
among older people.
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