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Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad
spectrum of heterogeneous neurological disorders. Here, we aim to examine the
impact on diagnosis, treatment and cost with early use of targeted WES in early-onset
epilepsy. WES was performed on 180 patients with early-onset epilepsy (<5 years)
of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6
months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an lon
Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy
genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost
and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely
pathogenic variants) was achieved in 59/180 patients (33%). Clinical management
changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all
patients. A possible diagnosis was identified in 21 additional patients (12%) for whom
supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was
faster when WES was performed early in the diagnostic process (mean: 145 days
Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged
$8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient
using WES. These results highlight the diagnostic yield, clinical utility and potential
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cost-effectiveness of using targeted WES early in the diagnostic workup of patients with
unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue
to improve. Advances in precision medicine and further studies regarding impact on
long-term clinical outcome will be important.

Keywords: targeted WES, early-onset epilepsy, diagnostic yield, cost estimation, Canada

INTRODUCTION

Epilepsy is a common pediatric neurological disorder associated
with an increased risk of developmental delay, autism and
psychiatric illness; and for which treatment is ineffective in 30-
40% of patients. High-throughput sequencing (HTS) has become
a widespread diagnostic tool in various genetic conditions,
including epilepsy (1), vastly improving molecular diagnosis. Its
clinical utility has been proven in epileptic encephalopathies and
in mixed epilepsy cohorts (2-11); and in neurodevelopmental
disorders (12-14) in which epilepsy is a comorbid feature. The
diagnostic yield ranges between 10 and 60%, settling around
25% in large studies with broader inclusion criteria, and with
comparable diagnostic rates between gene panels and WES
(1). A genetic diagnosis of epilepsy may enable more accurate
counseling regarding prognosis and recurrence risk, avoids
unnecessary medical investigations and may change care. It
also allows families to connect with the same genetic condition
and/or join support groups. Recent studies have demonstrated
the potential cost savings of WES in the diagnostic work-
up of children with suspected monogenic disorders (15-22).
However, in Canada, access to such technology in clinical
care is variable. In this British Columbia study, we assess
the effectiveness of using WES by comparing diagnostic yield,
time to diagnosis, and cost to current clinical practices.
The potential treatment impact of a genetic diagnosis is
also described.

METHODS

Patients

One-hundred and eighty patients with epilepsy (23) were
enrolled between December 2014 and September 2018. All had
seizure onset at <5 years of undefined cause after clinical
evaluation, EEG, brain MRI and chromosome microarray
investigations. Seizure types and electroclinical syndromes were
classified according to the International League Against Epilepsy
(ILAE) (24). Patients with self-limiting benign electroclinical
syndromes, such as Childhood Absence Epilepsy (onset >4
years), were excluded as they most likely have multifactorial
inheritance. Patients were classified as Retrospective (n = 127),
defined as an epilepsy diagnosis >6 months before study
enrollment with a standard clinical approach to genetic testing
(variable genetic tests which include gene-by-gene approach
using Sanger sequencing, small epilepsy gene panels using high-
throughput sequencing, and/or mitochondrial DNA sequencing;
or Prospective (n = 53), which included an epilepsy diagnosis
<6 months before study enrollment date and having limited to

no genetic testing. Varying degrees of screening tests for inborn
errors of metabolism; such as plasma amino acids, lactate and
ammonia, were also performed in both groups. Clinical data
was recorded using a secure Research Electronic Data Capture
(REDCap) (25) information system hosted at the Child and
Family Research Institute.

This study was approved by the BC Children’s Hospital and
University of British Columbia Ethics Board (protocol number
H14-01531). Informed consent and/or assent were obtained
before study inclusion in accordance with the Declaration
of Helsinki.

Whole-Exome Sequencing

Genomic DNA was extracted from peripheral blood lymphocytes
following standard protocols. Exonic regions were captured
using the Ion AmpliSeq Exome Kit (57.7 Mb) and WES was
performed on an Ion Proton™ according to manufacturers’
recommendations (Life Technologies Inc., CA) within 2
weeks of receiving samples. Reads were aligned against the
human reference genome hgl9. Variant annotation was
performed with ANNOVAR (26) integrating data from
PHAST PhyloP (27), SIFT (28), Polyphen2 (29), LRT (30),
and MutationTaster (31) algorithms, Combined Annotation
Dependent Depletion (CADD) scores (32), dbSNP (www.
ncbi.nlm.nih.gov/SNP/), the Genome Aggregation Database
(gnomAD; gnomad.broadinstitute.org) and ClinVar (33) (www.
ncbi.nlm.nih.gov/clinvar). Additionally, variants were compared
to an in-house database containing more than 900 exomes to
exclude platform artifacts and common variants not present in
public databases.

Analysis was restricted to 620 genes previously implicated
in epilepsy (Supplementary Table 1), using a gene-reporting
pipeline developed in-house. The gene list was compiled through
the combination of a comprehensive literature search (Pubmed,
OMIM) and clinically available epilepsy panels. Annotation
was limited to exonic non-synonymous and splicing (&5
bp) substitutions. Homozygous variants, potential compound
heterozygous variants (defined as genes with >1 variant locus
per individual) with a minor allele frequency (MAF) <1% and
heterozygous variants with MAF <0.01% were reported. All
samples were required to meet minimum quality standards, with
a WES average coverage >80X.

Sanger sequencing, performed as previously described (34),
was used on a case-specific basis in a few individuals with
very specific clinical phenotypes to complete regions of poor
coverage in genes related to the patients phenotype when no
candidate variants were identified, or when a heterozygous and
potentially pathogenic variant was identified in gene previously
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implicated in autosomal recessive disease. No additional variants
were identified though post-WES Sanger sequencing.

Variant Prioritization and Validation

Cases were reviewed at a bi-weekly meeting by a multi-
disciplinary genomic team. Variant prioritization was performed
based on: (1) frequency in public databases; (2) predicted protein
impact; (3) disease inheritance, and; (4) correlation of patient
phenotype and candidate gene literature. Up to 3 putative
causative variants were validated by Sanger sequencing in patient
and parental samples. Clinical Sanger sequencing confirmation
and interpretation in accordance with ACMG guidelines (35)
allowed disclosure to families and management adjustments
when indicated. Two time intervals were measured for the
first 50 patients: (1) from a clinical diagnosis of epilepsy to
Sanger validation of a putative pathogenic variant; and (2)
from enrollment with genetic counseling to Sanger validation of
the same.

Additional Analysis

Exome data was periodically reanalyzed in patients, if no genetic
diagnosis was identified in the initial analysis. Moreover, trio
WES was performed in 27 patients (22 Retrospective and 5
Prospective) with no diagnosis.

Genetic Counseling and Treatment

Implications

Pre- and post-test genetic counseling was performed for each
patient/family. As only a limited set of 620 genes related
to seizure disorders were annotated, and only in affected
probands, reporting related to incidental (secondary) findings
was uncommon (36). Genetic disorders with specific therapeutic
implications (47 genes) were defined as conditions in which
current literature supports a preferred antiepileptic medication
and/or approach (37-39).

Cost Estimation

For the first 50 patients, resource use data were retrospectively
acquired from electronic health records and medical charts.
Cost estimates in Canadian dollars were based on micro-
cost information from the British Columbia Provincial Medical
Service Plan Index (2015), Canadian Interprovincial Reciprocal
Billing Rates (2014/2015), Children’s and Women’s Health
Center of British Columbia Internal Fee Schedule (2015) and
the internal accounting system. Diagnostic costs included:
biochemical tests, imaging tests, genetic tests, neurophysiological
tests, and biopsies (a complete list of tests is provided
in Appendix 1). Academic and/or hospital pricing is used
throughout. Inpatient hospitalization costs, outpatient visits such
as clinic visits, and indirect costs such as parental time off
work for medical visits related to their child’s epilepsy were
not included. All categorical and quantitative variables were
analyzed using STATA (Release 13, College Station, TX).

TABLE 1 | Results: Demographics and diagnostic yield.

All Patients Prospective  Retrospective

(N =180) (N =53) N=127)
Age at Epilepsy Onset 18 (0.03-60) 16 (0.1-60) 18 (0.03-60)
(months)
average (range)
Males; Females 77,103 27,26 50;77
DIAGNOSIS
Definite/likely 59 (33%) 21 (40%) 38 (30%)
Treatment Implications 27 (46%) 15 (71%) 12 (32%)
Possible 21 (12%) 4 (8%) 17 (13%)

Patients highlighted in bold are those for whom a genetic diagnosis had treatment
implications.

RESULTS

Targeted WES was performed on 180 subjects and clinical
features are summarized (Supplementary Table 2-first 50
patients are indicated in bold). Detailed clinical information has
previously been reported for subjects 002, 013, 044, 073, and 144
(40-43). The average age of epilepsy onset was 18 months (range
0.03-60 months), 16 months for Prospective cases (n = 53) and
18 months for Retrospective cases (n = 127) (Tables 1, 2). Of the
620 genes, 87% had at least 80% of their consensus-coding region
sequenced with >20X coverage (Supplementary Table 1).

Diagnostic Yield

A molecular diagnosis was established in 59/180 patients
(33%) (Table 1). Pathogenic/likely pathogenic variants were
identified in 41 genes. The majority of the diagnosed patients
(41/59) had an autosomal-dominant disorder; of these 33 had
a de-novo variant and remaining inherited from an affected
parent and/or inheritance status unknown for one or more
parent. Five patients had an autosomal-recessive disorder and the
remaining 13 patients had an X-linked disorder (10 patients with
X-linked dominant variants and 3 male patients with maternally
inherited X-linked recessive disorders). In addition, a variant
of uncertain significance (VUS) possibly explaining the clinical
symptoms of the index patient was identified in 21 cases (12%)
(Supplementary Table 3).

The diagnostic yield was higher in the Prospective (40%)
than Retrospective group (30%). Patients in whom a diagnosis
was made had earlier onset epilepsy (mean 13.2 vs. 21.9
months), and an epileptic encephalopathy was more common
(Table 3). Of 82 patients with epileptic encephalopathy a
definite or likely pathogenic variant was identified in 36 (44%)
(Supplementary Table 4).

Treatment Implications

A genetic disorder with specific therapeutic implications was
diagnosed in 27 patients and management was influenced
and/or altered in 23 (12 Prospective and 11 Retrospective).
Clinical information, treatment changes, and impact are
summarized (Table 2).
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TABLE 3 | Clinical features in patients with and without a genetic diagnosis.

Genetic Mean AAO Males (%) EE (%) Treatment Resistant? (%) GDD/ID (%) Autism (%) MRI Abnormal (%)
Diagnosis? (range)

Definite or Likely 13.2 months 39 61 80 85 25 37

(n = 59) (0.03-60)

No Diagnosis 21.9 months 43 46 81 76 20 30

(n =100) (0.03-60)

aIndividuals with variants of unknown significance or a possible genetic diagnosis are excluded (8).
b Treatment resistant refers to failure to respond to 2 or more appropriate anti-seizure medications.
AAQ, Age at onset; EE, Epileptic Encephalopathy; GDD/ID, Global Developmental Delay/Intellectual Disability.

Comparative Time to Diagnosis in First 50

Patients

The mean time to genetic diagnosis from study enrolment with
genetic counseling to research validation of the variant was 38
days (20-70) for the Prospective group, 54 days (22-105) for the
Retrospective group, and 47 days (20-105) overall. The mean
time from epilepsy diagnosis to research validation of genetic
diagnosis was 145 days (42-242) for the Prospective group and
2,882 days (429-7,686) or ~8 years for the Retrospective group.

Cost Analysis in First 50 Patients

Point estimates and 95% confidence intervals based on
bootstrapped standard errors (1,000 times with replacement)
for each category of diagnostic test by cohorts were calculated
(Table 4). All cost estimates use rates effective for the 2014-2015
fiscal year. The mean total cost related to the diagnosis of epilepsy
was $4,524 (range $1,223-$7,852) for the Prospective cohort
and $8,344 (range $3,319-$17,579) for the Retrospective cohort.
Diagnostic imaging and electrophysiological tests comprise
>60% of total epilepsy-related diagnostic costs. The mean
for diagnostic imaging testing constituted $1,391 and $3,276,
for Prospective and Retrospective cohorts, respectively. The
mean for electrophysiological testing constituted $1,353 and
$2,731, for Prospective and Retrospective cohorts, respectively.
Our alternative scenario for diagnostic testing is MRI, EEG,
chromosome microarray (CMA) and WES testing with Sanger
sequencing validation, which amounts to $3,234 per patient
(Supplementary Table 5). The difference in mean total cost
related to the diagnosis of epilepsy for Prospective ($4,524) and
Retrospective ($8,344) groups, exceeds the cost of our diagnostic
alternative ($3,234). The potential average savings of targeted
WES in the diagnostic workup constitute $1,290 per Prospective
patient and $5,110 per Retrospective patient.

DISCUSSION

High-throughput sequencing has been proven to be a great
diagnostic tool in clinical practice in a variety of genetic
conditions, and if used early in the diagnostic workup can lead
to a reduction of costs associated with obtaining a molecular
diagnosis (22). Gene panel sequencing is often favored over
WES based on diagnostic yield, higher coverage and cost-savings
(1). However, direct comparisons of diagnostic yield and/or
costs of gene panel testing are limited. A comparative coverage

analysis restricted to disease-causing variants identified through
panels demonstrated that targeted WES detects >98.5% of those
mutations (44), and targeted WES has been recently shown to
have a higher diagnostic yield compared to gene panels (45). A
major advantage of WES over panels is the ability to sequence
the entire coding genome. Such comprehensive assessment can
facilitate re-analysis for novel genes as they are implicated. In the
course of this study several new epilepsy genes were identified by
other research groups and published in the medical literature. We
were able to go back to the original WES data and examine those
genes in patients without a diagnosis. Re-analysis of WES data
identified new diagnoses in eight patients (014, 044, 063, 071, 072,
073, 126, 152) and three additional diagnosis (013, 093, 144) were
identified by trio WES, overall increasing the diagnostic rate from
27 to 33%. Given its static nature, panel sequencing is unable
to include such contemporary targets. Newly discovered genes
cannot be added to the test without re-design and validation,
ultimately reducing the cost-effectiveness of gene panel testing.

The clinical utility of targeted WES with Sanger validation
(limited <3 variants/exome) is supported by the identification
of a definite or likely diagnosis in 59/180 (33%) patients and
a possible diagnosis in an additional 21/180 (12%) (Table 1).
A higher yield was found in the Prospective group with
new-onset epilepsy and supports earlier testing, though the
number of patients is small. However, this may also reflect
increased severity of the disease, survival and potentially some
bias in case referral. The Retrospective group had already
undergone extensive clinical testing that was non-diagnostic.
Nevertheless, our ability to still identify a genetic diagnosis
supports the technology’s superior resolution, while related data
on phenotypes, management and outcomes may yet inform
clinical practice.

The diagnostic yield in our study is comparable to previous
findings (2-11). Most variants were de-novo and the genetic
causes identified were heterogeneous. However, multiple variants
were identified in several genes with the most common being
SCNIA, followed by KCNQ2 and MECP2 (Table2). In a
comparable cohort, positive results were identified by WES
in 112/293 (38.2%) epilepsy patients (3). We concur that the
diagnostic yield is likely affected by the characteristics of the
group studied, sample size, platform used (gene panel or WES)
and the timing of the study, given ongoing gene discoveries in
epilepsy. In our study, patients with a genetic diagnosis were
younger and more likely to have an epileptic encephalopathy
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TABLE 4 | Average diagnostic investigation cost per patient.

Mean Bootstrap 95% CI Range
Std. Err. Min Max

COMBINED DIAGNOSTIC COST
Retrospective $8,344.27 $556.97 $7,252.61 $9,435.90 $3,318.50 $17,578.8
Prospective $4,5624.07 $497.57 $3,5648.85 $5,499.29 $1,223.18 $7,852
LAB TESTS
Retrospective $1,333.5 $83.71 $1,169.42 $1,497.56 $123.30 $3,129.91
Prospective $1,151.32 $135.14 $886.43 $1,416.19 $209.75 $1,959.19
GENETIC TESTS
Retrospective $1,179.55 $98.80 $985.90 $1,373.20 $2,279.34
Prospective $633.187 $144.27 $350.41 $915.96 $1,720
DIAGNOSTIC IMAGING
Retrospective $3,276.10 $214.10 $2,856.47 $3,695.74 $1,460 $6,836
Prospective $1,391.38 $150.26 $1,096.86 $1,686 $630 $2,290
ELECTROPHYSIOLOGICAL
Retrospective $2,731.22 $376.26 $1,993.75 $3,468.70 0 $8,460.45
Prospective $1,353.12 $315.64 $734.4 $1,971.78 $188.01 $3,5672.19

when compared to patients in which no genetic cause was
found. Similar to a prior study (3), patients with an epileptic
encephalopathies had a high rate of positive findings (44%).

Our results support the feasibility of targeted WES to rapidly
provide clinically-confirmed genetic diagnoses in early-onset
epilepsy. Time to Sanger sequencing validation from enrollment
averaged 7 weeks which is similar to the 6-8 week turn-around-
time quoted by most commercial testing labs. However, this
estimate did not include the additional time required to obtain
provincial government approval, on a case-by-case basis, to
fund WES.

A timely genetic diagnosis is important when considering
the potential for treatment impact and optimization of
patient outcomes. Twenty-seven of the fifty nine patients
with a genetic diagnosis (46%) had a disorder with specific
treatment implications; for 23 patients an immediate change
in medical management was made (Table2). The number
of genetic disorders identified to have specific treatments
implications is likely to grow with ongoing advances in
precision medicine.

In British Columbia, the average savings are estimated to be
between $1,290 and $5,110 per patient, depending on whether
they are new Prospective referrals or Retrospective. Of note,
price estimates reflect academic and/or hospital costs rather
than commercial costs which are 1-5X higher. The Canadian
sequencing costs cited are comparable to previous reports but
will decrease as even higher throughput sequencing technologies
become accessible (15-18). Current healthcare cost estimates are
also conservative as patients without a genetic diagnosis will
undoubtedly require additional clinic visits and inpatient hospital
stays, including epilepsy monitoring unit admissions related to
finding the cause of their condition. Of note, a targeted WES
approach did not lead to a substantial increase in referrals for
incidental findings. Overall, our findings show targeted WES may
provide an effective end to an otherwise invasive, time consuming

and costly diagnostic odyssey, with societal and economic
benefits. Our results also support WES implementation beyond
early-onset epileptic encephalopathies as we have examined a
larger and more diverse group of children (18).

Limitations and Strengths

Our study has several limitations including small sample size
although our diagnostic yield is comparable to previous studies.
Incomplete coverage of the 620 genes analyzed was partially
addressed as outlined in the methods. Proband-parent trio-based
WES analyses were not used primarily for financial reasons.
Analysis was restricted to 620 epilepsy genes, rather than the
entire exome, to identify a genetic diagnosis as quickly as possible
and to minimize secondary findings. Assessing relevance of
secondary findings and proving pathogenicity of variants in
novel candidate epilepsy genes is costly; thus, this approach
was taken to maximize patient care and minimize cost. WES
data from patients with initial negative results continues to be
periodically reviewed for variants in newly described epilepsy
genes. In subsequent WES trio analysis, a subset of families has
helped identify novel genetic etiologies (41). All rare variants
were considered however the Ion Proton™ sequencing platform
tends to make mis-leading variant calling errors with small
in/dels and homo-polymer stretches, with an excess of between
58 and 76% false positive calls (46). We have also identified
instances of negative calls. Illumina sequencing platforms have
better performance but assessing exon dosage from exome
data is challenging at this sequencing depth. Panel sequencing,
designed for more uniform coverage and greater depth, would
be advantageous if the candidate gene was included or whole
genome sequencing given the ability to detect all variants
albeit for greater cost at lower coverage. Limited demographic
information was provided for on the majority of patients and
may be helpful in assessing variant frequencies in specific ethnic
groups. Unfortunately, the ability to infer ancestry information
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from exome data is rather limited, in contrast to high-density
SNP arrays, and not entirely reliable.

Although a significant number of genetic diagnoses had
potential treatment implications, the long-term impact on
clinical outcome following genetically-informed therapeutic
interventions is unknown. Early diagnosis and early intervention
are important, but advances in precision medicine are
also required.

The methods employed for cost analysis cannot replace
a prospective randomized controlled trial (RCT) and may
not have accurately assessed or included all healthcare costs
related to an epilepsy diagnosis. However, an RCT assessing
the effect of WES testing on healthcare costs is not yet a
practical consideration. Our estimates are not a perfect or a
complete description of the current diagnostic work-up, as test
records are scattered across different electronic health records
systems and paper charts. Data collation within an accessible
unified health electronic record would help identify where
additional savings are possible. In this study, indirect costs,
and the psychosocial impact on the child and family were
not measured.

CONCLUSION/SUMMARY

Targeted WES with limited Sanger sequencing validation is
a rapid and minimally invasive test with potential to save
costs within the Canadian healthcare system. An early genetic
diagnosis may improve a patient’s clinical outcome and quality
of life. Further research on larger cohorts is warranted to
inform diagnosis, clinical outcome and precision medicine.
Acknowledging the limitations of our study, targeted WES
with Sanger sequencing validation substantially improves
current practice and is recommended as the dominant
diagnostic strategy in early onset epilepsy. Minimally, as
high-throughput sequencing costs continue to fall, trio-based
whole exome sequencing reporting (and potentially re-reporting
if negative), averting the need for Sanger validation for de novo
variants, should be implemented as a first-line test strategy in
British Columbia.
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APPENDIX

List of Relevant Tests:

Laboratory Services/Tests:
Bloodspot acylcarnitines
Plasma amino acids

Plasma total homocysteine
Serum ceruloplasmin

Serum copper

Ammonia Serum

Lactate Serum/plasma

Lactate whole blood
Acylcarnitine Serum
Homocysteine total from Plasma
Plasma amino-acids

Serum copper

Serum coeruloplasmin

Plasma very long chain fatty acids
Plasma cholesterol

Urine creatine metabolites
Urine glycosaminoglycans
Urine oligosaccharides

Urine organic acids

Urine purines and pyrimidines
Amino acids-urine

Urine creatine metabolites
Urine mucopolysaccharides
CSF Protein

CSF Protein

CSF Glucose

CSF Cell

CSF Lactate

CSF Amino-Acids

CSF Neurotransmitters
Plasma Vit B12

Genetic Tests:

Chromosome microarray
Fluorescence in situ Hybridization
Single Gene testing

Gene Panel/HTS testing
Mitochondrial DNA analysis
Diagnostic Imaging Tests:
MRI

CT

PET

PET/CT

Ultrasound Electrophysiological Tests:
EEG

EMG

Biopsies:

Skin biopsy

e Muscle biopsy
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