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Recent advances in vascular risk management have successfully reduced the prevalence

of Alzheimer’s Disease (AD) in several epidemiologic investigations. It is now widely

accepted that cerebrovascular disease is both directly and indirectly involved in

AD pathogenesis. Herein, we review the non-pharmacological and pharmacological

therapeutic approaches for AD treatment. MIND [Mediterranean and DASH (Dietary

Approaches to Stop Hypertension) Intervention for Neurodegenerative Delay] diet is an

important dietary treatment for prevention of AD. Multi domain intervention including diet,

exercise, cognitive training, and intensive risk managements also prevented cognitive

decline in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and

Disability (FINGER) study. To confirm these favorable effects of life-style intervention,

replica studies are being planned worldwide. Promotion of β-amyloid (Aβ) clearance has

emerged as a promising pharmacological approach because insufficient removal of Aβ

is more important than excessive Aβ production in the pathogenesis of the majority of

AD patients. Most AD brains exhibit accompanying cerebral amyloid angiopathy, and

Aβ distribution in cerebral amyloid angiopathy closely corresponds with the intramural

periarterial drainage (IPAD) route, emphasizing the importance of Aβ clearance. In view of

these facts, promotion of the major vascular-mediated Aβ elimination systems, including

capillary transcytosis, the glymphatic system, and IPAD, have emerged as new treatment

strategies in AD. In particular, the beneficial effects of cilostazol were shown in several

clinical observation studies, and cilostazol facilitated IPAD in a rodent AD model. The

COMCID (Cilostazol for prevention of Conversion from MCI to Dementia) trial, evaluating

the efficacy of cilostazol for patients with mild cognitive impairment is currently ongoing in

Japan. Such therapeutic approaches involving maintenance of cerebrovascular integrity

and promotion of vascular-mediated Aβ clearance have the potential to be mainstream

treatments for sporadic AD.
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INTRODUCTION: ALZHEIMER’S DISEASE
AND CEREBROVASCULAR DISEASE

The pathogenesis of cognitive impairment in Alzheimer’s disease
(AD) cannot be simply explained by the neurodegeneration
induced by amyloid β (Aβ) and tau accumulation,
although they are the most established characteristics
of AD pathology (1, 2). Because these characteristics
are detectable by pathological examination, and do not
always correlate with cognitive function, antemortem
clinical diagnosis of AD is often denied by postmortem
diagnosis, while individuals clinically diagnosed as cognitively
intact are occasionally found to have AD pathology at
postmortem (3).

Accumulating evidence suggests that cognitive impairment
in AD patients, especially in elderly subjects, is attributed to
both neurodegeneration and cerebrovascular disease (CVD) (4–
6). Mixed AD/CVD pathology is commonly seen in patients
with clinically diagnosed AD (7, 8). CVD itself impairs
cognitive function, increasing the risk of progressing to clinically
defined dementia (9–11). More importantly, recent studies
indicate that vascular lesions are directly involved in AD
pathogenesis (12). One of the mechanisms linking CVD to
AD is decreased cerebral blood flow (13), which modulates
amyloid precursor protein (APP) cleavage enzymes, such
as β- and γ-secretase, leading to increased Aβ production
(14). Chronic cerebral hypoperfusion also accelerates tau
pathologies (15). Further, in a transgenic AD mouse model, the
majority of parenchymal Aβ plaques were deposited adjacent
to cerebral blood vessels, implying the involvement of the
cerebral vasculature in Aβ accumulation (16). In addition to
animal models, a pivotal role of CVD in AD pathogenesis has
also been revealed by clinical studies. Cerebrovascular injury,
including blood brain barrier (BBB) dysfunction (17, 18) and
decreased cerebral blood flow (19), was found to precede
neurodegeneration in AD patients. As such, the importance
of vascular contributions to AD is now emphasized in a
scientific statement from the Alzheimer’s Association (20), and
the close interrelationship between neurodegeneration and CVD
has become a major focus of recent research in dementia
(21, 22).

LIFESTYLE INTERVENTIONS TO PREVENT
COGNITIVE IMPAIRMENT

Management of Vascular Risk Factors
AD and CVD share several risk factors (23, 24). For example,
hypertension, diabetes mellitus, and dyslipidemia are related
to the risk of progression to dementia (25, 26). Conversely,
intensive management of vascular risk factors was associated
with reduced risk of dementia (25), as well as amelioration of
cognitive decline in AD patients (27). Several epidemiologic
reports have also revealed a decrease in dementia prevalence over
the last few decades, which is considered to be, at least in part,
attributable to well-controlled vascular risk factors (28–32). Thus,
the importance of risk controls in AD is established.

The FINGER Study
Although pharmacological intervention is a fast and effective
approach in treating vascular risk factors, lifestyle intervention
remains important for prevention and treatment of AD and
CVD. A population based randomized controlled trial, the
Finnish Geriatric Intervention Study to Prevent Cognitive
Impairment and Disability (FINGER) study clearly revealed
the importance of life-style modification (33). In that study,
a multi domain intervention successfully prevented cognitive
decline in elderly subjects. The multi domain intervention
consisted of nutritional guidance, exercise, cognitive training,
and social activity, while the control group received regular
health advice. Metabolic and vascular risk factors were carefully
monitored in the intervention group, and when the adjustment
of pharmacologic treatment was needed, participants were
recommended to contact primary health care centers (34).

Interestingly, the beneficial effects in the FINGER study
were not modified by baseline status of sociodemographic,
socioeconomic status, cognitive function, cardiovascular
factors, or cardiovascular comorbidity, indicating that life-style
intervention is universally effective in the elderly (35). Of all the
subdomains of cognitive function, substantial positive effects
were found in executive function and processing speed (33).
However, because no pathological analysis was performed in
that study, it remains unclear whether lifestyle intervention has
any effect on reducing Aβ and tau pathologies and reducing
neurodegeneration. Ongoing replica studies around the world
may answer this important question (36).

MIND Diet
In the FINGER study, the intervention group was recommended
to consume whole grains, fruits, vegetables, and oils, while
low-fat options were recommended over milk and meat
products (34). These foods are well-known components of the
Mediterranean diet (37). Improvement in cognitive function with
the Mediterranean diet was shown in a multicenter randomized
clinical trial for community-dwelling people with vascular risk
factors (38). The Dietary Approach to Systolic Hypertension
(DASH) diet, which aims to reduce blood pressure, was also
reported to prevent dysexecutive function in patients with
hypertension and obesity (39). Combining these two diets, the
Mediterranean and DASH Intervention for Neurodegenerative
Delay (MIND) diet was proposed in the RushMemory and Aging
project in the United States. The MIND diet places a strong
emphasis on natural, plant-based food, specifically promoting
increased consumption of berries and green leafy vegetables,
with limited intake of animal-based and highly saturated fat
foods (40). Surprisingly, the incidence of AD in participants who
strictly followed the MIND diet was reduced by half compared
with those who did not follow it (41). The improvement in
cognitive function was particularly significant in the domains
of episodic memory, semantic memory, and perceptual speed
(42). Replica studies are required to verify these favorable effects
(43), although some modification may be required when the
MIND diet is applied to other countries. For example, larger
fish consumption and excessive salt intake are more common in
East Asian than inWestern countries. Thus, taking the local food
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TABLE 1 | Original and Japanese-modified version of the MIND diet.

Original version Japanese version

Green leafy vegetables ≥6 servings/week ≥6 servings/week

Other vegetables ≥1 serving/day ≥1 serving/day

Berries ≥2 servings/week Strawberries, ≥2 servings/week

Nuts ≥5 servings/week ≥5 servings/week

Olive oil Primary oil used Primary oil used

Butter, Margarine <1 tablespoon/day Minimum amount

Cheese <1 serving/week <1 serving/week

Whole grains ≥3 servings/day Brown rice, ≥3 servings/day

Fish (not fried) ≥1 meal/week Primary choice

Beans >3 meals/week >3 meals/week

Poultry (not fried) ≥2 servings/week ≥2 servings/week

Red meat products <4 servings/week <4 servings/week

Fast fried foods <1 time/week <1 time/week

Pastries and sweets <5 servings/week <5 servings/week

Wine 1 glass/day Wine or green tea

The Japanese version of the MIND diet was modified from the original edition (41). These

changes were introduced because berries and whole grains are less available in Japan

than in Western countries. In Japan, more strict salt restriction is needed; most Japanese

eat fish more than once a week, and low alcohol tolerance is more common in Japanese.

culture into consideration is important when designing a feasible
diet therapy (Table 1).

PHARMACOLOGICAL INTERVENTIONS
FOR THE PROMOTION OF Aβ CLEARANCE

Vascular Mediated Aβ Elimination
The amyloid hypothesis suggests that Aβ precedes tau pathology
(44). Both Aβ overproduction and elimination failure have been
demonstrated as a cause of AD (45), although the latter plays a
major role in the pathogenesis of sporadic AD, which is especially
more common in the elderly (46, 47). Thus, promotion of Aβ

clearance has been proposed as a new therapeutic approach for
sporadic AD (48).

In mice, >80% of 125I-labeled Aβ40 was found in the blood
or cerebrospinal fluid (CSF) at 5 h after Aβ40 injection into
the caudate nucleus, with minimal remaining in the brain
parenchyma (49). Several mechanisms of Aβ clearance have been
identified (50), with the major routes of Aβ elimination being
vascular-mediated clearance systems, including transcytosis
and glymphatic/lymphatic drainage. Thus, there is increasing
interest in treatments based on promoting vascular-mediated
Aβ elimination.

Transcytosis
Transcytosis in the cerebral capillaries is considered a major
route of material exchange between the blood and the brain.
The capillary lumen and brain parenchyma are separated by the
BBB, which is composed of endothelial cells connected by tight
junctions (51). The BBB prevents passive exchange between the
blood and brain, and only allows controlled carrier-mediated
bidirectional transport of nutrients and waste products (52).

Transcytosis is a major Aβ elimination system, and several
molecules have been reported to be involved in Aβ transcytosis.
Endothelial low-density lipoprotein receptor related protein-1
(LRP-1), a multifunctional scavenger and signaling receptor, is
expressed in neural cells and cerebral microvessels (49, 53). Aβ

binds to LRP-1 at the abluminal side of the endothelium, either
as a free peptide or bound via ApoE2 and ApoE3. Aβ-ApoE2 and
Aβ-ApoE3 complexes are rapidly cleared across the BBB into the
blood, while Aβ bound to ApoE4 interacts poorly with LRP-1,
and is removed from the brain by much slower and less efficient
very low-density lipoprotein receptor clearance mechanism. Aβ

transcytosis via LRP-2 was facilitated by clusterin in the brain
(54–56). The importance of LRP-1 has also been shown by genetic
linkage of LRP-1 with AD (57–59), and by the co-localization of
LRP-1 with Aβ in senile plaques (60). LRP-1 staining in vessels
was reduced in AD patients (49, 60). The transcytosis of Aβ

was reported to be regulated by the phosphatidylinositol-binding
clathrin assembly (PICALM) protein, a known genetic risk factor
for AD (61).

The receptor for advanced glycation end products (RAGE),
an immunoglobulin supergene family member, is another key
molecule in Aβ transcytosis (62). Strong staining for RAGE was
reported in the vessels of AD patients (60, 63), and RAGE was
shown to mediate influx of circulating Aβ into the brain across
the BBB (64). RAGE expression in microglia is also involved in
microglial activation induced by Aβ (63, 65, 66). These findings
prompted researchers to target RAGE for the treatment of AD.
For example, inhibition of RAGE ameliorated cerebral Aβ burden
and normalized cognitive performance in APP transgenic mice
(67). A phase II clinical trial of the RAGE inhibitor TTP488
targeting mild-to-moderate AD patients was also associated with
improved cognitive function as assessed by Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS-cog) (68). However,
a phase III trial was recently terminated as there was no positive
effect using TTP488 treatment (69).

Glymphatic and Lymphatic Drainage
The central nervous system was previously thought to be devoid
of systemic lymphatic vessels. However, two recent investigations
have clearly shown the presence of lymphatic vessels adjacent
to meningeal vessels (70, 71). Ablation of meningeal lymphatic
vessels also aggravated Aβ accumulation in AD model mice,
suggesting that promoting intracranial lymphatic systemsmay be
a potential therapeutic approach for AD (72).

The glymphatic paravascular drainage system is considered
one of the Aβ clearance systems (Figure 1), consisting of the
para-arterial CSF influx, convective bulk fluid flux, and para-
venous interstitial fluid (ISF) efflux routes (73, 74). Tracers
injected into the cisterna magna were found to gradually flow
into the brain parenchyma through the perivascular space (PVS)
around the arteries, and then flow out along the veins (75,
76). The PVS (also known as Virchow-Robin spaces) is a gap
between the brain parenchyma derived from the ectoderm and
the cerebral perforating arteries derived from the mesoderm. The
fluid circulation from the subarachnoid space to the PVS was
initially described in the 1980s (77). At first, the paravascular
drainage was considered to be dependent on astroglial water
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FIGURE 1 | The glymphatic and IPAD systems. Schematic (A) and differences (B) of the glymphatic and IPAD systems. Note that the directions of the two clearance

systems are the opposite. Blue, glymphatic system; green, IPAD. The IPAD is a more rapid clearance system than the glymphatic system. Note the differences in the

tracer distribution pattern after fluorescent Aβ40 and Aβ42 injection.

transport via the astrocytic aquaporin-4 (AQP-4) water channel,
because CSF influx was severely impaired in Aqp-4 knockout
mice (75). However, in a replica study, Aqp-4 gene deletion did
not affect fluid transport (78). In addition, the PVS is separated
from the subarachnoid space by the pia matter (79, 80), and
the degree to which these spaces communicate with each other
remains unclear. Further studies are required to unravel the
molecular mechanism of the glymphatic systems.

Clinical MRI often reveals an enlarged PVS in the basal
ganglia in patients with hypertensive arteriopathy (81–84).
Morphological changes in the PVS were also reported in
patients with hereditary arteriopathy including Cerebral
Autosomal Dominant Arteriopathy with Subcortical Infarcts
and Leukoencephalopathy (CADASIL) (85) and Cerebral
Autosomal Recessive Arteriopathy with Subcortical Infarcts
and Leukoencephalopathy (CARASIL) (86). Both sporadic and
hereditary arteriopathies are cerebral small vessel diseases (SVD),
and expansion of the PVS is considered an imaging marker of
SVD (87, 88). The presence of a large PVS was associated
with a steeper decline in information processing speed, and
an increased risk of developing vascular dementia (89). AD
patients were also reported to show an increased ratio of total
PVS to white matter volume (90). A mouse model of AD showed
suppression of glymphatic paravascular fluid transport caused by
accumulation of toxic Aβ (91), suggesting that PVS enlargement
in AD patients may be associated with an impaired glymphatic
system. An enlarged PVS is commonly observed in the centrum
semiovale in both AD and cerebral amyloid angiopathy (CAA)
(83, 84). CAA is another subtype of SVD observed in >80% of
AD patients, as well as in∼10% of vascular cognitive impairment
cases with a general absence of AD pathology (92, 93). After
being generated in neurons, Aβ accumulates in the vessel
walls (45), resulting in degeneration of smooth muscle cells,
vessel wall thickening, luminal narrowing, and concentric wall
splitting (double barreling) (94). The degeneration of mural

cells and injury to vascular endothelial cells cause various forms
of CVD, including ischemic stroke, hemorrhage, and white
matter changes. Impaired BBB function likely interferes with Aβ

transcytosis, leading to exacerbation of AD and CAA (21, 52).
The driving force behind paravascular clearance is thought

to involve cerebral arterial pulsation. Indeed, reduced arterial
pulsatility by unilateral carotid artery ligation prevented CSF-
ISF exchange, while the opposite effect was observed following
administration of the adrenergic agonist dobutamine (95).
However, no studies have clearly shown that promotion of
the glymphatic system can ameliorate Aβ pathology and
cognitive function. In addition, several recent studies argued
against the proposed glymphatic mechanism (78, 96–98). As
Aβ rarely accumulates in the venous system, and as arterial
Aβ accumulation is most prominent within the tunica medina,
not the PVS (99), it remains unclear whether promotion of
the glymphatic pathway may be a disease-modifying therapy
for AD and CAA. Recent technological advances in imaging
have enabled visualization and monitoring of PVS structure and
change in AD patients (90, 100, 101). Clinical evaluation of the
glymphatic system in AD patients may help to determine the
relationship between the glymphatic system, PVS, and CAA.

Aβ distribution in CAA closely corresponds to the intramural
periarterial drainage (IPAD) route, suggesting that congestion
of this drainage pathway plays a major role in the pathogenesis
of CAA (102). The IPAD system is also termed perivascular
lymphatic drainage (103). ISF and solutes including Aβ are
thought to be cleared from the gray matter through the IPAD,
which is a space between two basement membranes in the walls
of the cerebral capillaries and arteries (104, 105). Interestingly,
IPAD was impaired in the aging mouse brain and in the presence
of CAA (106). It was also reported that the IPAD and glymphatic
systems are not independent, but rather communicate with each
other (107). For example, Aβ tracer injected into the cisterna
magna flowed into the PVS, while after reaching the deep brain
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parenchyma, some of the tracer drained out of the brain via the
IPAD system. Because use of animal models with tracer injection
is far from physiological, the precise relationship between the
glymphatic system and IPAD remains elusive, and further studies
are required.

The importance of the IPAD was demonstrated in a clinical
trial of Aβ immunization. In AN-1792 vaccinated AD patients,
parenchymal Aβ plaque was diminished while cerebrovascular
Aβ accumulation was increased (108, 109). Considering that
decreasing CSF Aβ was correlated with severity of CAA-causing
CVD, the ineffectiveness and side-effects of AN-1792 may be
partially explained by the excessive antibody-solubilized senile
plaque Aβ that is re-deposited in the cerebral vasculature, and
impaired Aβ clearance through IPAD (110, 111). Combination
therapy of Aβ immunization and promoting Aβ clearance
through IPADmay provide a solution for the problem in removal
of solubilized Aβ from the brain. The fact that cerebral Aβ

clearance was delayed after middle cerebral artery occlusion
(112) and after bilateral common carotid artery stenosis (113)
emphasizes the importance of cerebrovascular integrity for the
promotion of Aβ clearance through IPAD.

Promoting IPAD by Cilostazol
Cilostazol is a type 3 phosphodiesterase (PDE) inhibitor that is
currently prescribed for secondary prevention of ischemic stroke
and peripheral vascular disease, especially in Eastern Asia. PDE-
3 can hydrolyze both cAMP and cGMP, while increasing cAMP
level is a major pharmacological action of cilostazol (48). PDE-3
is widely expressed in the central nervous system, and is up-
regulated in Aβ-positive vessels, especially in vascular smooth
muscle cells (114), suggesting that PDE-3 inhibition may be an
effective target for treatment of AD and CAA.

We previously demonstrated that cilostazol promoted IPAD,
resulting inmaintenance of vascular integrity, amelioration of Aβ

deposits, and prevention of cognitive decline in AD model mice
(114). Further, cilostazol possesses a wide range of pleiotropic
effects, including neurogenesis (115, 116), differentiation of
oligodendrocyte precursor cells (117), inhibition of lipid
peroxidation (118, 119), enhancement of cholesterol efflux from
macrophages (120), amelioration of insulin resistance (121),
reduction of inflammatory burden (122–124), stabilization of

BBB function (125), and improvement of systemic lymphatic

function by inducing proliferation and stabilization of lymphatic
endothelial cells (126). A nationwide cohort study in Taiwan
showed that cilostazol treatment was associated with reduced
risk of dementia (127). Favorable effects were also described
in observational studies, which demonstrated the efficacy of
cilostazol in patients with mild cognitive impairment (128)
and AD (129–132). A phase-II, randomized clinical trial (the
COMCID study) was started in 2015 (133), in which MCI
patients received 100mg daily cilostazol or placebo for 96 weeks.
The results will be announced in 2020.

CONCLUSIONS

AD, especially in the elderly, is a syndrome concomitant
with CVD and neurodegeneration. The commonly used
expression amongst clinicians, “a man is as old as his
arteries,” is thus as relevant to patients with dementia as
for many other age-related disorders (134). The influence of
vascular factors should be given more consideration, as it
may represent a future therapeutic target for dementia. The
existence of multiple Aβ elimination mechanisms suggests the
requirement for several different treatment approaches in AD.
Further studies are essential for the development of novel
treatments for dementia.
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