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Concussion, or mild traumatic brain injury (mTBI), is a major public health concern, linked

with persistent post-concussive syndrome, and chronic traumatic encephalopathy. At

present, standard clinical imaging fails to reliably detect traumatic axonal injury associated

with concussion and post-concussive symptoms. Diffusion tensor imaging (DTI) is an

MR imaging technique that is sensitive to changes in white matter microstructure. Prior

studies using DTI did not jointly investigate white matter microstructure in athletes, a

population at high risk for concussive and subconcussive head traumas, with those in

typical emergency room (ER) patients. In this study, we determine DTI scalar metrics

in both ER patients and scholastic athletes who suffered concussions and compared

them to those in age-matched healthy controls. In the early subacute post-concussion

period, athletes demonstrated an elevated rate of regional decreases in axial diffusivity

(AD) compared to controls. These regional decreases of AD were especially pronounced

in the cerebellar peduncles, and were more frequent in athletes compared to the ER

patient sample. The group differences may indicate differences in the mechanisms of the

concussive impacts as well as possible compound effects of cumulative subconcussive

impacts in athletes. The prevalence of white matter abnormality in cerebellar tracts

lends credence to the hypothesis that post-concussive symptoms are caused by

shearing of axons within an attention network mediated by the cerebellum, and

warrant further study of the correlation between cerebellar DTI findings and clinical,

neurocognitive, oculomotor, and vestibular outcomes in mTBI patients.
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INTRODUCTION

Over 1.7 million Americans suffer a traumatic brain injury (TBI)
each year (1). Moderate to severe TBI can often be diagnosed
early through computed tomography (CT) and conventional
magnetic resonance (MR) imaging. Concussion, or mild TBI
(mTBI), however, makes up the great majority of TBI, but
cannot be reliably detected by CT or conventional MR imaging
techniques (2), which remain the standard of care.

The severity of a concussive injury is assessed by clinical
evaluation of symptoms (3). Many concussed patients have
symptoms including headaches, fatigue, insomnia, depression,
attention problems, and memory problems (3), and while the
majority recover within a few weeks, nearly a third continue
to have persistent post-concussive symptoms (4–6). Current
assessment does not reliably predict which mTBI patients will go
on to suffer post-concussive symptoms (7); therefore, objective
quantification of concussive injuries is needed.

Diffusion weighted imaging methods, including diffusion
tensor imaging (DTI), provide useful tools for probing
microstructural white matter changes in mTBI (2, 8). Traumatic
axonal injury (TAI) may be inferred from CT or conventional
MRI due to its association with small hemorrhages that those
modalities can detect, but DTI can more directly detect changes
in white matter microarchitecture (2). Past studies have found
changes in DTI scalar metrics such as fractional anisotropy (FA),
radial diffusivity (RD), and axial diffusivity (AD) in both acute
and chronicmTBI patients, indicatingmicrostructural alterations
to white matter even in cases where CT and MRI scans were
negative (7, 10). In the acute phase, FA has been seen to increase
overall, while RD and AD have been seen to decrease. At chronic
time points, the opposite effects are seen, with decreases in
FA and increases in RD and AD (2, 9). Abnormal DTI scalar
parameter values have been associated with cognitive functioning
in mTBI patients (2, 8, 10, 11).

Prior DTI investigations of white matter microstructure have
generally not studied different populations with concussions.
However, athletes make up a population at high risk for
concussive and subconcussive head traumas whose physical
manifestations of injuries may differ from those due to
mechanisms typically seen in the emergency room, such as
motor vehicle collisions, assaults, and falls. The present study
characterizes the early subacute abnormalities in DTI metrics in
both athletes and ER patients after concussion, and compares
the findings. In addition to the voxel-wise and tract-wise
group comparisons of the conventional DTI literature, we also
apply individual-patient tract-level analysis for greater clinical
relevance and better robustness to the spatial heterogeneity of the
white matter abnormalities associated with concussion (2, 7).

METHODS

Subject Recruitment
This study was carried out in accordance with the
recommendations of the institutional review board of the
Weill Cornell Medical College (WCMC). All subjects gave
written informed consent in accordance with the Declaration

of Helsinki except, in the case of minors, legal guardians gave
written informed consent with the assent of the subjects. The
protocol was approved by the WCMC institutional review
board, and data were collected from September of 2012 through
September of 2016.

A concussion was defined as an event of blunt impact on the
head with loss of consciousness (LOC), post-traumatic amnesia
(PTA), or at least one of the following symptoms: dizziness,
nausea, headaches, balance problems, blurred or double vision, or
feeling dazed/confused. Although for the purpose of this research
we did not rely on formal medical diagnosis of concussion
necessary for clinical management of the injury (12), this
definition is consistent with the guidance of the American
Academy of Neurology (13). Eighteen scholastic athletes between
ages 13 and 22 years were recruited for testing within 2 weeks
of a concussion, as were 42 ER patients with concussion aged
7 years and older, of whom 18 were selected to match the
age range of the athlete subjects. For the purpose of equity,
athletes were enrolled independently of the level of contact
involved in their participating sports. The recruited athlete and
ER subjects were scanned for MR imaging as soon as possible.
In addition, 38 control subjects aged 7 years and older with
no prior history of head injury were recruited and received
imaging, of whom 10 were selected to match the age range of the
athlete subjects.

Subjects over 18 were required to have a high school diploma
or GED; 18-year olds set to graduate high school on time were
also included. Exclusion criteria for subjects were a prior history
of eye disease, neurological/psychiatric conditions, or substance
abuse (Table 1). Subjects with contraindications for an MRI were
also excluded. For athletes and ER patients, additional exclusion
criteria were acute intoxication at the time of the concussion
and LOC or PTA for more than 24 h. Subjects’ symptoms and
cognitive performance were assessed with an extensive battery of
tests as reported elsewhere (14, 15).

Magnetic Resonance Imaging
MR imaging was performed at WCMC on a 3T Siemens
Trio scanner. In each imaging study, whole-brain diffusion
imaging was performed using an echo-planar imaging sequence
(TE= 85ms, TR= 7,500ms) with one b= 0 s/mm2 scan and b=
1,000 s/mm2 in 64 diffusion directions. Imaging was performed
with 128× 128× 60 cubic voxels of 2 mm dimensions.

Image preprocessing was performed using tools within the
FunctionalMRI of the Brain (FMRIB, OxfordUniversity, Oxford,
UK) Software Library (16–18). Correction for eddy currents and
subject motion was performed and registered to the b= 0 s/mm2

volume using the FMRIB Linear Image Registration tool (19).
Image volumes were checked for excessive subject movement
between diffusion weighted images and were accepted if mean
and median movement were <2 mm.

Non-brain voxels were then excluded using the
FMRIB Brain Extraction tool (20). Using the diffusion-
weighted data, a diffusion tensor model was generated
using the FMRIB DTIFit algorithm, from which
fractional anisotropy (FA), mean diffusivity (MD),
radial diffusivity (RD), and axial diffusivity (AD) were
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TABLE 1 | Exclusion criteria.

Basis Details

Neurological diagnosis Prior Diagnosis of one or more of the following: Stroke, multiple sclerosis, epilepsy, brain tumor/cancer, encephalitis, dementia,

movement disorder, spontaneous nystagmus

Eye-sight abnormalities Amblyopia, uncorrected myopia, uncorrected presbyopia, uncorrected farsightedness, astigmatism, color blindness, macular

degeneration

Eye diseases Cataracts, glaucoma, retinal disorder

Psychiatric history Any of the following: history of psychiatric hospitalization, history of legal trouble for violence, use of psychotropic medication other

than a stable dose of SSRI

Psychiatric diagnoses Prior Diagnosis of one or more of the following: Bipolar disorder, eating disorder, substance abuse disorder, personality disorder,

sleep disorder, depressive disorder, anxiety disorder, ADHD

Questionnaires Pediatric Subjects: T-Score ≥ 70 on Conners 3 Inattention Index or Hyperactivity Index, or T-Score ≥ 65 on BAI-Y or BDI-Y.

18+ Subjects: T-Score ≥ 70 on CAARS ADHD Index, ≥27 on CES-D, ≥26 on BAI.

Alcohol/drug abuse Any of the following:

• Score ≥ 6 on alcohol consumption survey

• Answering 3 of 7 yes on MINI for alcohol dependence

• History of daily/almost-daily use of illicit or prescription drugs

• Use of any illicit or prescription drugs in past week

• Past hospitalization/rehab for drugs

• Past loss of job or suspension/expulsion from school for drugs

• Multiple alcohol- or drug-related citation or arrest

MRI contraindications Metal in body, claustrophobia, possibility of pregnancy

FIGURE 1 | Fractional anisotropy and Axial Diffusivity in Athlete and Control Brains. (A,B) Fractional Anisotropy (A) and Axial Diffusivity (B) maps for one of the athlete

subjects in horizontal and coronal views. (C,D) FA and AD maps for one of the control subjects in horizontal and coronal views. The imaging data has undergone

image preprocessing, but has not yet undergone non-linear coregistration to a common template.

determined at each voxel. Typical image quality is shown
in Figure 1.

Tract-based Spatial Statistics (TBSS) were used to perform
non-linear registration on the FA volumes to the FMRIB58_FA
standard-space image, constructed from an average of 58
FA images taken of healthy subjects aged 20–50. After
brain volumes were registered into a common space, a

mean FA skeleton was generated using a threshold of FA
≥ 0.2 to limit the analysis to white matter voxels. TBSS
alignment and white-matter skeleton generation was performed
separately for each of the comparison groups (see Statistical
Analyses) (21).

In addition to voxel-based analysis, masks were applied
corresponding to the 27 white matter tracts previously labeled
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TABLE 2 | Subject demographics.

Athletes

(18 subjects)

ER Patients

(18 subjects)

Controls

(10 subjects)

Age 13–22 years

(17.7 ± 3.0)

13–25 years (17.1 ±

3.7)

13–25 yrs (21.2

± 4.0)

Gender 9 Female/9 Male 11 Female/7 Male 5 Female/5 Male

Time after injury 9.4 ± 5.2 days

(3–23 days)

10.4 ± 2.7 days

(4–14 days)

N/A

Inclusion criteria All athlete

subjects

Age-matched to

athletes

Age-matched to

athletes/ER

patients

in the Johns Hopkins University (JHU) white-matter atlas (16),
with bilateral tracts collapsed. Within each of these regions of
interest (ROI), mean values for the four DTI scalar parameters
were calculated for each subject.

Statistical Analyses
Using the FMRIB Software Library randomize tool, permutation
tests (n = 5,000) were performed to evaluate significant
differences between groups on a voxel-wise basis, using
Threshold-Free Cluster Enhancement, with correction for
family-wise error. For each comparison group, permutation tests
were performed for FA, MD, RD, and AD to control for false-
positive voxels (22).

Mean FA, MD, RD, and AD within each of the 27 white-
matter ROIs were compared between groups with two-sided t-
tests, with false-detection rate (FDR) correction for the multiple
comparisons. Comparisons were also made between the groups
in terms of the number of individuals with extremely high or low
parameter values for each of the four DTI metrics in each white
matter tract. For this purpose, an abnormal parameter value was
defined as>2.2 control group standard deviations above or below
the control mean, which is the threshold used by Yuh et al. (7)
in their DTI study of acute mTBI in ER patients. Significance of
these group differences were determined with Pearson’s χ

2 test.

RESULTS

Subject Demographics
Table 2 summarizes characteristics of the athlete and ER subjects.
In our dataset, patient, and control ages were imperfectly
matched, while differences in gender were not significant. Despite
the best effort to have the recruited athlete and ER subjects
scanned for MR imaging quickly, the timing of imaging since
concussion ranged from 3 to 23 days, with an overall mean (SD)
of 9.9 (4.1) days. There was no statistical difference in the timing
of imaging between the athlete and ER groups.

Voxel-Wise Group Comparisons
No significant differences between athlete and ER subjects were
found in the voxel-wise comparison. For athletes, significant
regional decreases were observed compared to controls in AD
(Figure 2). These differences were seen in the uncinate fasciculus,
external capsule, posterior limb of the internal capsule, and

regions of the thalamus. All three of the cerebellar peduncles also
saw significant decreases in AD.

White Matter Tract Group Comparisons
Comparisons of white matter ROI means of DTI metrics
demonstrated no significant group differences between athletes
and controls or between ER patients and controls when adjusting
for FDR (q= 0.2).

Outlier/Abnormal Tract Analysis Using
Normative Control Subjects
For each athlete and control subject, the number of high outlier
and low outlier regions were counted for each DTI parameter
(Table 3). Athletes had more abnormally low FA and AD, and
high RD ROIs. The finding of abnormal regional low AD
was the only one which remained significant after applying
a Bonferroni correction. In athletes, the most common tracts
with abnormally low AD were the middle cerebellar peduncle
(11 athletes), inferior cerebellar peduncle (8 athletes), superior
cerebellar peduncle (8 athletes), uncinate fasciculus (7 athletes),
and the superior fronto-occipital fasciculus (5 athletes).

The comparison of white matter ROIs in ER patients and
controls showed similar trends, with significantly more ER
patients demonstrating abnormally low FA and low AD in one
or more ROIs compared to controls (Table 4). In ER patients, the
most common tracts with abnormally low FA were the medial
lemniscus (6 patients), posterior thalamic radiation (4 patients),
and retrolenticular part of the internal capsule (4 patients). In ER
patients, the most common tracts with abnormally low AD were
the inferior cerebellar peduncle (6 patients), middle cerebellar
peduncle (5 patients), and the uncinate fasciculus (4 patients).

Athletes vs. ER Patients
Given the above results, we also compared the 18 athletes against
the 18 ER patients. For the outlier analysis, we treated the
ER patients as “controls” for determining means and standard
deviations in ROI.

No significant differences were seen between the patient
groups in voxel-wise or tract-wise group comparisons. However,
the outlier analysis at the individual-subject level showed a
significant number of athletes with one or more tracts exhibiting
extremely low AD compared to the group of ER patients
(Table 5). The athletes had the most low-AD counts in the
fornix/stria terminalis (4 athletes), middle cerebellar peduncle (4
athletes), and the superior cerebellar peduncle (3 athletes).

DISCUSSION

The present study shows early subacute post-concussion
abnormalities in regional white matter microstructures in both
scholastic athletes and ER patients. The abnormalities were
observed as a greater frequency of extreme deviations in
regionally defined DTI parameters, especially in the cerebellar
peduncles of scholastic athletes, with our ROI-based outlier
analysis. This method of analysis was modeled on that of
(11) for chronic mTBI and Yuh et al. (7) for acute mTBI,
in which high and low outliers in FA were compared
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FIGURE 2 | Cross-sectional voxel-wise comparison: Control > Patient Axial Diffusivity. Two cross-sections illustrating regions of significant decrease in athlete AD

(acute post-injury time point) compared to controls. TBSS Analysis with Threshold-Free Cluster Enhancement FWE corrected at p < 0.025. ACR, Anterior Corona

Radiata; EC, External Capsule; PLIC, Posterior Limb of Internal Capsule; Thal, Thalamus; SCP, Superior Cerebellar Peduncle; MCP, Medial Cerebellar Peduncle.

TABLE 3 | Proportion of 18 athletes vs. 10 controls with one or more abnormally high/low DTI parameter value in a JHU atlas white matter tract.

Contains ≥ 1 JHU tract more than 2.2 SD above

control mean

Contains ≥ 1 JHU tract more than 2.2 SD below

control mean

Fractional anisotropy Control: 2 (20%)

Athlete: 6 (33%) (p = 0.47)

Control: 1 (10%)

Athlete: 11 (61%) (p = 0.007)

Mean diffusivity Control: 1 (10%)

Athlete: 6 (33%) (p = 0.19)

Control: 2 (20%)

Athlete: 10 (56%) (p = 0.07)

Radial diffusivity Control: 0 (0%)

Athlete: 8 (44%) (p = 0.011)

Control: 1 (10%)

Athlete: 7 (39%) (p = 0.11)

Axial diffusivity Control: 1 (10%)

Athlete: 5 (28%) (p = 0.29)

Control: 2 (20%)

Athlete: 16 (89%) (p < 0.001)

P-values determined by Pearson’s χ
2 test. Significant values in bold.

TABLE 4 | Proportion of 18 ER patients vs. 10 controls with one or more abnormally high/low DTI parameter value in a JHU atlas white matter tract.

Contains ≥ 1 JHU tract more than 2.2 SD

above control mean

Contains ≥ 1 JHU tract more than 2.2 SD

below control mean

Fractional anisotropy Control: 2 (20%)

ER patient: 8 (44%) (p = 0.21)

Control: 0 (0%)

ER patient: 11 (61%) (p < 0.001)

Mean diffusivity Control: 0 (0%)

ER patient: 6 (33%) (p = 0.04)

Control: 2 (20%)

ER patient: 7 (39%) (p = 0.32)

Radial diffusivity Control: 0 (0%)

ER patient: 9 (50%) (p = 0.005)

Control: 1 (10%)

ER patient: 5 (28%) (p = 0.29)

Axial diffusivity Control: 1 (10%)

ER patient: 8 (44%) (p = 0.065)

Control: 2 (20%)

ER patient: 11 (61%) (p = 0.038)

P-values determined by Pearson’s χ
2 test. Significant values in bold.

between controls and patient subsets (7, 11). This method of
classifying individual patients as having or lacking abnormal
tracts can account for the spatial heterogeneity of mTBI,
which often confounds group comparisons at both the
voxel and tract spatial scales. This patient-specific analysis

is also much more clinically relevant than findings at the
group level.

Of particular note are our results demonstrating abnormally
low AD both in the athlete and ER cohorts. The large majority
of athletes had at least one white matter tract with a markedly
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TABLE 5 | Proportion of 18 athletes vs. 18 ER patients with one or more abnormally high/low DTI parameter value in a JHU atlas white matter tract.

Contains ≥ 1 JHU tract more than 2.2 SD

above ER mean

Contains ≥ 1 JHU tract more than 2.2 SD

below ER mean

Fractional anisotropy Athletes: 7 (39%)

ER patients: 4 (22%) (p = 0.29)

Athletes: 7 (39%)

ER patients: 3 (17%) (p = 0.15)

Mean diffusivity Athletes: 4 (22%)

ER patients: 4 (22%) (p = 1)

Athletes: 5 (28%)

ER patients: 2 (11%) (p = 0.22)

Radial diffusivity Athletes: 5 (28%)

ER patients: 3 (17%) (p = 0.44)

Athletes: 6 (33%)

ER patients: 3 (17%) (p = 0.26)

Axial diffusivity Athletes: 3 (17%)

ER patients: 4 (22%) (p = 0.68)

Athletes: 9 (50%)

ER patients: 3 (17%) (p = 0.034)

P-values determined by Pearson’s χ
2 test. Significant values in bold.

low AD value, and while these low values were spatially
heterogeneous, there was a striking consistency of having them
in at least one of the three cerebellar peduncles. Some ER
patients showed abnormally low AD values as well. Our direct
comparison of ER patients and athletes suggests that those with
sports concussions may be more prone to abnormalities in the
cerebellar peduncles than typical ER concussion patients. The
group differences may indicate differences in the mechanisms of
the concussive impacts as well as possible compound effects of
cumulative subconcussive impacts in athletes.

Our results are consistent with a prior DTI study showing
decreases of white matter AD in male scholastic American
football players at both 24 h and 8 days after concussion (23);
however, that investigation focused on cerebral tracts and did
not specifically investigate the cerebellum. A recent meta-analysis
has shown variable findings from various DTI studies of sports
concussions that may relate to differences in techniques and in
the timing of imaging relative to the injury (24). Despite such
differences, our study substantiates previous reports that suggest
selective effects of TBI on the cerebellar peduncles—cerebellar
white matter volume was found be reduced in children years after
a TBI, implicating lasting cognitive and behavioral consequences
(25), and FA alteration in cerebellum-related white matter tracts
and associated cognitive deficits were found in acute-phase adult
mTBI patients (26) and chronic phase combat veterans exposed
to mTBI (27).

Neuropathological studies have shown cerebellar Purkinje cell
loss in boxers (28) as well as in mice, non-human primates
and combat veterans exposed to blast injuries (29, 30). The
anatomic arrangement of the cerebellar peduncles as relatively
unsupported bridges of white matter between the bulk of the
cerebellum and the brainstem renders them uniquely vulnerable
to shear stress from acceleration/deceleration effects, as shown in
biomechanical studies (31–35).

These findings in the cerebellar peduncles provide some
support to the hypothesis of predictive brain state disruption in
TBI (36). By this hypothesis, the collection of clinically observed
post-concussive symptoms could be explained by timing-related
disruptions in an attention network mediated by the cerebellum
(36), which was supported by a study that combined DTI,
neurocognitive tests, and eye movement measurements (37). It
should be noted that our analysis was data-driven across all of
the major white matter tracts of the cerebrum and cerebellum;

therefore, it was not influenced by any hypothesis regarding the
location of injury such as the cerebellar peduncles. To further
test the predictive brain state hypothesis, future studies can and
should attempt to correlate cerebellar DTI findings to clinical,
neurocognitive, oculomotor, and vestibular outcomes relevant
to cerebellar function. This can pave the way toward targeted
rehabilitation strategies aimed at improving the affected domains,
especially attentional function which is one of the most disabling
impairments in activities of daily living and can be ameliorated
using goal-oriented mindfulness training regimens (38, 39).

A concern specific to our dataset is the wide window of
“early subacute” post-concussion scan latencies. The differences
between DTI parameters 3 days and 23 days after a concussion
could be significant (9). The ROI-based outlier analysis proved to
be a useful workaround for the range and variability in the timing
of MR scan. Another limitation of the present study is that age
matching between patients and controls was imperfect. On the
whole, the control cohort was older than the concussion cohorts,
as the total pool of control subjects was small. Since there are
non-linear age-dependent changes in DTI measures that are also
region-dependent, controlling for age by statistical regression is
difficult (40). A linear regression, even done on a tract-by-tract
basis, would not add any clarity to the results. Therefore, we
did not attempt to use regression to adjust for age differences.
However, the average age difference between the controls and
mTBI patients is not expected to produce meaningful differences
in the DTImeasures, especially for most of the whitematter tracts
shown here to be significantly different between mTBI subjects
and controls. Of special note, cerebellar white matter consists of
early-maturing tracts (41) that reach their asymptotic DTI metric
values during the first decade of life, with no significant changes
in FA or MD during the rest of childhood or adolescence (42,
43). In particular, DTI metrics of all three cerebellar peduncles
bilaterally plateau at 70 months of age (44). Therefore, no age-
related changes in the cerebellar peduncles would be expected in
the range of 13–25 years of the subject groups that we studied.
Instead, any age-related differences between groups would have
been observed in slower-maturing cerebral white matter, such as
that of the frontal lobes. Finally, overall sample size was small. A
larger statistical power may reveal more subtle group differences.

We did not exclude patients based on lesions that would be
visible on routine clinical MRI. However, these otherwise healthy
young athletes suffered concussions that rarely produce visible
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brain lesions, especially not in the cerebellum. Also, as our results
are not explained by one or two outliers, we believe our results
cannot be explained by lesions that could be detected by routine
clinical MRI.

In designing future studies of athlete populations, it
would perhaps be best to design image acquisition protocols
that allow for more advanced diffusion models than DTI.
For instance, neurite orientation dispersion and density
imaging (NODDI) uses high angular resolution diffusion
data with multiple b-values, and applies a three-compartment
model that takes into account the neural microstructure
in describing the diffusion pattern within a voxel (45).
The NODDI model rests on certain assumptions regarding
normal brain physiology, so in studying pathology such as
mTBI, it is possible that the resulting NODDI parameters do
not accurately describe the underlying brain architecture.
However, Palacios et al have recently shown greater
sensitivity in mTBI when studying changes in NODDI
parameters compared to the DTI parameters analyzed in
this study (46).
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