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Different subtypes of Alzheimer’s disease (AD) with characteristic distributions of

neurofibrillary tangles and corresponding brain atrophy patterns have been identified

using structural magnetic resonance imaging (MRI). However, the underlying biological

mechanisms that determine this differential expression of neurofibrillary tangles are still

unknown. Here, we applied graph theoretical analysis to structural MRI data to test

the hypothesis that differential network disruption is at the basis of the emergence of

these AD subtypes. We studied a total of 175 AD patients and 81 controls. Subtyping

was done using the Scheltens’ scale for medial temporal lobe atrophy, the Koedam’s

scale for posterior atrophy, and the Pasquier’s global cortical atrophy scale for frontal

atrophy. A total of 89 AD patients showed a brain atrophy pattern consistent with

typical AD; 30 patients showed a limbic-predominant pattern; 29 patients showed a

hippocampal-sparing pattern; and 27 showed minimal atrophy. We built brain structural

networks from 68 cortical regions and 14 subcortical gray matter structures for each AD

subtype and for the controls, and we compared between-group measures of integration,

segregation, and modular organization. At the global level, modularity was increased and

differential modular reorganization was detected in the four subtypes. We also found

a decrease of transitivity in the typical and hippocampal-sparing subtypes, as well as

an increase of average local efficiency in the minimal atrophy and hippocampal-sparing

subtypes. We conclude that the AD subtypes have a distinct signature of network

disruption associated with their atrophy patterns and further extending to other brain

regions, presumably reflecting the differential spread of neurofibrillary tangles. We discuss

the hypothetical emergence of these subtypes and possible clinical implications.
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INTRODUCTION

Three subtypes of Alzheimer’s disease (AD) based on the
spread of neurofibrillary tangles (NFT) have recently been
identified (1): typical AD has rather balanced NFT counts in
the hippocampus and the association cortex; limbic-predominant
AD has NFT counts predominantly in the hippocampus; and
hippocampal-sparing AD has NFT counts predominantly in
the association cortex. Structural magnetic resonance imaging
(sMRI) can reliably track these subtypes in vivo (2). Indeed,
the subtypes have been successfully identified by using both
advanced methods for MRI data analysis (3–11) and clinically
in-place visual rating scales of brain atrophy (12–16). A fourth
subtype with no or minimal signs of gray matter atrophy (i.e.,
minimal atrophy AD), but comparable clinical severity, has also
been described (6, 7, 10, 12–16).

However, it is still unknown how and why these patterns of
NFT and brain atrophy do emerge. The “staging hypothesis”
stands on the Braak and Braak (17) staging scheme, assuming
a stereotypical pattern of spread with the NFT initiating in
the entorhinal cortex and then progressively occupying the
association cortex. According to this theory, minimal atrophy
AD would be the earliest presentation, progressing to limbic-
predominant AD, and finally to typical AD. However, the
discovery of the hippocampal-sparing subtype challenges this
theory, since NFT can be found in the association cortex while
the medial temporal lobe is largely spared (1). Alternatively,
the “distinct subtypes hypothesis” conciliates these contradictory
findings by recognizing actual heterogeneity in disease expression
(1, 8, 12). To note, there is growing evidence supporting the
idea of distinct subtypes by proving, for instance, different
patterns of atrophy leading the AD patients to the same clinical
stage (1, 8, 11, 12, 15).

Although the “distinct subtypes hypothesis” is certainly
attractive, little is known about the factors that drive the NFT
to be expressed so differently across these subtypes. Two recent
studies have shown that factors such as cognitive reserve and
cerebrovascular pathology may play a role (13, 15). Findings
showing different APOE ε4 distribution, age of onset, and CSF
biomarker profiles across these subtypes have also shed some
light into this issue (1–4, 6, 8, 9, 12, 15, 18). However, the
underlying biological mechanisms that determine this differential
NFT expression are still completely unknown. The finding of
misfolded tau proteins first developing intraneuronally and then
spreading from neuron to neuron through brain networks opens
a promising door (19–21). In particular, sMRI and the study
of brain networks can reveal the underlying pathology and its
spread (2, 4, 11, 22, 23), thus, possibly helping to understand the
emergence of these subtypes through different brain networks.

Brain networks can be investigated using concepts from graph
theory (24). Within this framework, the brain is modeled as a
network (the human connectome) (25), which is represented
as a set of nodes connected by edges. In sMRI data, the nodes
correspond to anatomical brain regions and the edges to the
association between those regions, as estimated by statistical
correlations (26). A connectivity matrix (brain graph) is thus
created from all the possible pairwise correlations, and network

properties can be investigated through several graph measures.
For instance, global efficiency is a measure of integration, that is,
the capacity of the brain to rapidly combine information from
distributed brain regions (27). Transitivity, modularity, and local
efficiency are measures of segregation, that is, the biologically
meaningful feature of the brain to enable highly specialized
processing through densely interconnected communities of
regions (28–30). Graph theory provides rich information on
the networks beyond the regional pattern of brain atrophy
(31). Applied to the subtypes, graph theory is expected to
provide critical insights on how network disruption contributes
to cognitive impairment, for instance, in subtypes such as
hippocampal-sparing or minimal atrophy AD that lack atrophy
in the medial temporal lobe but show memory impairment
comparable to typical and limbic-predominant AD (11, 12).

The aim of the current study was to investigate potential
differences in network topology underlying the AD subtypes.
We hypothesized that the typical, limbic-predominant, and
hippocampal-sparing subtypes of AD would show regional
changes in network topology mostly paralleling the regional
pattern of atrophy that defines each subtype, but also extending
to other brain regions reflecting the involved networks (31).
Because previous studies have shown that network disruption
occurs before overt brain atrophy (31, 32), we also hypothesized
that minimal atrophy AD would show changes in network
topology in the absence of overt brain atrophy. Further, we
hypothesized that the graph results would support the “distinct
subtypes hypothesis,” showing signature patterns rather than a
temporal progression of network changes from minimal atrophy
to typical AD.

MATERIALS AND METHODS

Participants
A total of 198 AD patients and 230 healthy controls from the
ADNI-1 study were initially included in this study. The ADNI
study (http://adni.loni.usc.edu/, PI Michael M. Weiner) was
launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies,
and non-profit organizations (33). The project was established
to develop standardized imaging techniques and biomarkers in
AD research. Participants whose T1-weigthed data did not pass
quality control, presented image processing errors, or visual
ratings (see below) were not performed, were excluded (23
AD patients excluded and 40 healthy controls excluded). The
remaining individuals were classified into subtypes according to
their pattern of brain atrophy as detailed in the next section
below. The healthy controls with minimal atrophy were selected
for the current study in order to be able to determine how AD
affects network topology across a range of atrophy subtypes, from
minimal atrophy to widespread typical atrophy. Thus, the final
sample included 175 AD patients and 81 healthy controls.

The AD patients and healthy controls were clinically
diagnosed following standard procedures, as fully detailed
elsewhere (34). Briefly, AD diagnosis was based on the NINCDS-
ADRDA and DSM-IV criteria for probable AD, as well as a
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total Clinical Dementia Rating (CDR) (35) score of ≥0.5. The
inclusion criteria for the healthy controls were a mini-mental
state examination (MMSE) (36) score between 24 and 30, a total
CDR score of 0, and a Geriatric Depression Scale (GDS) (37)
score ≤5. Exclusion criteria for both AD and healthy controls
were significant neurological or psychiatric illness, significant
unstable systemic illness or organ failure, and history of alcohol
or substance abuse or dependence. All diagnoses were made
without the use of MRI. The study was approved by the
institutional review boards of all participating ADNI centers.
Written informed consent was obtained from all participants
or authorized representatives according to the Declaration of
Helsinki. All methods were performed in accordance with the
relevant guidelines and regulations.

Magnetic Resonance Imaging, Visual
Rating Scales, and AD Subtypes Based on
Patterns of Brain Atrophy
A 3D T1-weighted magnetization-prepared rapid gradient-echo
(MPRAGE) sequence was acquired on 1.5T MRI scanners (voxel
size 1.1× 1.1× 1.2 mm3) in all participants (33).

Three visual rating scales were applied to the T1-weigthed
images to measure regional brain atrophy, as previously
described (34). Briefly, medial temporal atrophy (MTA) was
assessed with the Scheltens’ scale (38), cortical posterior atrophy
(PA) with the Koedam’s scale (39), and atrophy in the frontal lobe
with the global cortical atrophy scale—frontal subscale (GCA-
F) (40). Reliability (weighted κ) for the visual ratings in 120
random cases was: Intra-rater (L.C.): MTA-left = 0.94, MTA-
right = 0.89, PA = 0.88; GCA-F = 0.83; Inter-rater (L.C. vs.
rater 2): MTA-left = 0.71, MTA-right = 0.70; PA = 0.88, GCA-
F = 0.79. Raters were blinded to patient information and each
other’s ratings.

AD subtyping was based on the combination of MTA, PA,
and GCA-F using recently proposed cut-offs (34), as previously
described (12). Briefly, typical AD was defined as abnormal MTA
together with abnormal PA and/or abnormal GCA-F. Limbic-
predominant AD was defined as abnormal MTA with normal
PA andGCA-F. Hippocampal-sparing AD included abnormal PA
and/or abnormal GCA-F, but normal MTA.Minimal atrophy AD
displayed normal scores in MTA, PA, and GCA-F. Examples of
the different subtypes and their respective MTA, PA, and GCA-F
scores can be found in Figure 1.

Automated Image Processing and Network
Construction
TheHiveDB Database system (41) was used to automatically
process the T1-weigthed images with FreeSurfer 5.3.0, following
standard procedures (42). This provides thickness estimations for
cortical regions, volume estimations for subcortical structures,
and an estimation of the total intracranial volume (TIV). Quality
control was performed both on the original T1-weighted images
(43) and the FreeSurfer output.

The cortical thickness from 68 cortical regions included in the
Desikan et al. (44) atlas, and the volumes of the hippocampus,
amygdala, thalamus, caudate, putamen, accumbens, and

pallidum from the Fischl et al. (45) atlas were selected as nodes
for network construction (82 nodes in total, Figures 2A,B).
These anatomical measures were corrected by age, sex, and years
of education (plus TIV only for subcortical volume estimations)
using multiple linear regression. The edges between the nodes
were calculated through group-specific association matrices
of Pearson correlation coefficients from each pair of nodes
(Figure 2C). The matrices were binarized by thresholding
the correlation coefficients at a range of network densities
(min = 5% to max = 40%, in steps of 1%. Figure 2D shows
the resulting brain graphs at the median density of 22%).
Network topologies were compared across this range, making
sure that disconnected networks and random topologies were
excluded from the analysis. Both self-connections and negative
correlations were excluded.

Once the networks were constructed, different global and
nodal measures were calculated. Nodal measures refer to each
specific node whereas global measures refer to the average
between all the nodes. Nodal measures are calculated first and
then corresponding global measures are calculated by averaging
all the nodes across the whole network. For each specific node,
global connectivity features (connections with the rest of the
network) as well as local connectivity features (connections with
the immediate neighbors) can be computed. The following global
measures were calculated: the transitivity [fraction of a node’s
neighbors that are also neighbors of each other in the whole
network, normalized by the whole network, reflecting how well
the nodes are connected to nearby regions forming cliques.
The transitivity is similar to the commonly used clustering
coefficient but is less vulnerable to methodological issues such
as edge definition, network size, and groups composition (46,
47)], the modularity (the extent to which a network can be
divided into communities of regions with a large number of
within-modules connections and a minimal number of between-
module connections), the average global efficiency (the average
inverse shortest path length between a node and the rest of the
network, which, in contrast to the characteristic path length,
can be meaningfully computed on disconnected networks), and
the average local efficiency (similar to the global efficiency but
restricted to a given node and its immediate neighbors). The
following nodal measures were calculated: the nodal global
efficiency (for a specific node, the average inverse shortest path
length between that node and the rest of the network) and the
nodal local efficiency (similar to the nodal global efficiency but
restricted to a specific node and its immediate neighbors).

Modular analyses were also conducted by applying the
Louvain algorithm (48) on weighted networks (i.e., the
correlation matrices before binarization) with a gamma value of
1. Thismethod is alternative to themodularitymeasure explained
above. While the modularity is a sophisticated quantitative
measure that reflects the existence of communities of regions
within a network (29), it cannot provide any information about
the specific belonging of brain regions to the actual communities.
This can in turn be qualitatively assessed by modular analyses as
shown in Figure 3.

The formulae used to calculate all these graph measures are
provided by Rubinov and Sporns (26). Network construction,
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FIGURE 1 | Visual examples of the brain atrophy patterns in the different AD subtypes. Atrophy patterns were determined based on the combination of MTA, PA, and

GCA-F visual rating scales. In the three visual rating scales, a score of zero denotes no atrophy, whereas scores from one to three (PA and GCA-F) or four (MTA)

indicate an increasing degree of atrophy. Typical AD was defined as abnormal MTA together with abnormal PA and/or abnormal GCA-F. Limbic-predominant was

defined as abnormal MTA alone with normal PA and GCA-F. Hippocampal-sparing included abnormal PA and/or abnormal GCA-F, but normal MTA. Minimal atrophy

AD was defined as normal scores in MTA, PA, and GCA-F. The figure shows examples for each AD subtype and the healthy controls. A, anterior part of the brain; AD,

Alzheimer’s disease; GCA-F, global cortical atrophy scale–frontal subscale; L, left; MTA, medial temporal atrophy scale; P, posterior part of the brain; PA, posterior

atrophy scale; R, right.

measures calculation, and graph analyses were performed using
BRAPH (www.braph.org) (49).

Demographic and Clinical Variables
Age, sex, and years of education were included for the
demographic description of the groups. Clinical severity
was assessed with the CDR (35) scale and global cognition
with the MMSE (36). Age at disease onset, disease
duration, and APOE ε4 status were also included. CSF
samples were available for 91 AD patients and 40 healthy
controls. Complete procedure descriptions are available
at http://www.adni-info.org/.

Statistical Analysis
ANOVA and the Kruskal-Wallis test were used for between-
group comparisons of continuous and dummy demographic
and clinical variables. P-values in all post-hoc analyses were
adjusted with the Hochberg’s (50) correction for multiple
comparisons. Model assumptions were tested in all the cases
by visual inspection of data distribution, as well as by
inspecting the pertinent statistical parameters. Results were
considered significant when p ≤ 0.05 (two-tailed). Between-
group comparisons of graph measures were conducted through
1000 nonparametric permutations at a range of network densities
(min = 5% to max = 40%, in steps of 1%). The 95% confidence
intervals of each distribution were used as critical values for
testing of the null hypothesis at p ≤ 0.05 (two-tailed). The false
discovery rate (FDR) correction (51) for multiple comparisons

was used at p≤0.05 (two-tailed) on the nodal measures at the
median density (22%). All statistical analyses were conducted
using SPSS v22, R, and BRAPH.

RESULTS

The main demographic and clinical characteristics of the study
groups are shown in Table 1. Groups mainly differed in age and
age at onset. In addition, the AD patients showed as expected
lowerMMSE scores, higher prevalence of the APOE ε4 allele, and
higher prevalence of abnormal CSF biomarker levels as compared
with the healthy controls.

Global Network Analysis
When comparing the AD subtypes with the healthy controls,
we found that the modularity was increased in all the AD
subtypes (Table 2A, Figure 4). The transitivity was decreased
in typical and hippocampal-sparing AD. The average local
efficiency was increased in hippocampal-sparing and minimal
atrophy AD, whereas no differences were observed in the average
global efficiency.

Nodal Network Analysis
When comparing the AD subtypes with the healthy controls,
typical AD showed significant differences in the nodal global
efficiency and nodal local efficiency (Tables 2B, 3, Figure 5).
The nodal global efficiency was increased in the left superior
frontal and temporal cortex, and in medial and lateral regions
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FIGURE 2 | Structural brain networks. A, anterior part of the brain; AD, Alzheimer’s disease; L, left; P, posterior part of the brain; R, right. (A) Brain regions included as

cortical nodes; (B) brain regions included as subcortical nodes; (C) weighted correlation matrices by study group; (D) brain graphs by study group.

of the right posterior cortex. In contrast, the nodal global
efficiency was decreased in the right superior temporal gyri.
The nodal local efficiency was increased in medial and lateral
posterior regions, while it was decreased in the right inferior
temporal gyri.

Interestingly, limbic-predominant showed decreased
nodal local efficiency in the hippocampus and amygdala
(Tables 2B, 3, Figure 5).

No significant differences with the healthy controls were
observed in hippocampal-sparing and minimal atrophy
AD when using two-tailed t-tests. However, multiple
trends for significance were observed and FDR-corrected
follow-up analyses using one-tailed t-tests were thus
conducted. These tests revealed that hippocampal sparing
had increased nodal global efficiency in the superior
frontal cortex and the left lateral occipital cortex (Table 2B,
Supplementary Table 2, Figure 5). Minimal atrophy AD had
increased nodal global efficiency in the superior frontal cortex
and several medial and lateral regions of the posterior cortex
(Table 2B, Supplementary Table 2, Figure 5).

Weighted Correlation Matrices
The weighted correlation matrices are displayed in Figure 2C

(Please see Supplementary Figures 1–5 for matrices with larger
size and labeled regions).

Visual inspection of the matrices reveals that the frontal and
subcortical gray matter regions were strongly correlated in the
healthy controls, both bilaterally with their homologous regions
and ipsilaterarly with each other (e.g., frontal and subcortical
regions with each other) (Supplementary Figure 1).

In contrast, different correlation patterns were observed in
the AD subtypes. Overall, the pattern of correlations was more
dedifferentiated (less segregated) in limbic-predominant and
minimal atrophy AD. In typical AD, medial regions of the
frontal, parietal, and occipital cortex were strongly correlated,
both bilaterally and ipsilaterarly (Supplementary Figure 2).
In limbic-predominant AD, lateral regions of the temporal
cortex were strongly correlated ipsilaterarly, and moderate
correlations between regions diffusively located across the
cortex were also observed, both bilaterally and ipsilaterarly
(Supplementary Figure 3). In hippocampal-sparing AD, lateral
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FIGURE 3 | Modules. Module I in yellow, module II in dark blue, module III in orange, module IV in light blue. A, anterior part of the brain; AD, Alzheimer’s disease; L,

left; P, posterior part of the brain; R, right. (A) Healthy controls; (B) Typical AD patients; (C) Limbic-predominant AD patients; (D) Hippocampal-sparing AD patients;

(E) minimal atrophy AD patients.

and medial regions of the parietal and occipital cortex
were strongly correlated, both bilaterally and ipsilaterarly
(Supplementary Figure 4). In minimal atrophy AD, lateral
regions of the parietal cortex were strongly correlated, both
bilaterally and ipsilaterarly (Supplementary Figure 5).

Brain Modules
The correlation patterns described above led to distinct modular
topology in the different groups, as shown in Figure 3 and
Supplementary Table 1.

Three modules were identified in the healthy controls
(Figure 3A). Module I included lateral frontal areas and
subcortical gray matter structures. Module II included the
orbitofrontal cortex, the cingulate cortex (both anterior and
posterior), medial and lateral regions of the temporal cortex,
and the insula. Module III mostly included the posterior cortex,
extending to the premotor cortex, the left superior frontal gyri,
and the banks of the superior temporal cortex.

Different modular organizations were identified in the AD
subtypes. Typical AD only showed two modules (Figure 3B). In
module I, the frontal cortex lost its modular connectivity with the
subcortical graymatter structures, and instead, clustered together
with lateral regions of the temporal, parietal, and occipital cortex.
Module II included most of the medial regions, similar to limbic-
predominant AD, but also included all the subcortical structures.

Limbic-predominant AD was the only subtype displaying
modular asymmetry (Figure 3C). The posterior cortex module
(module III) occupied regions of the lateral frontal cortex,
and extended to many regions of the temporal cortex, but
only on the right hemisphere. On the left hemisphere, a
totally new modular configuration emerged with module I
being the most prominent and occupying frontal, temporal, and
subcortical regions. Module II is diffuse and mainly included
medial regions.

Hippocampal-sparing AD displayed four modules
(Figure 3D). Interestingly, the regions of the medial temporal
cortex clustered together (module IV). The posterior cortex
module (module III) occupied regions of the lateral frontal
cortex. Several subcortical gray matter structures clustered
together (module II), resulting in modular disconnection with
the frontal cortex (module I).

Finally, minimal atrophy AD displayed three modules
organized in a rather similar manner as in the healthy controls
(Figure 3E), but the right and left thalamus emerged as a fourth
new and separate module (module IV). Also, the posterior
cortex module (module III) occupied more regions of the lateral
frontal and temporal cortex than in the healthy controls. Thus,
subcortical gray matter structures clustered together with the
remaining temporal regions (module II), resulting in modular
disconnection with the frontal cortex (module I).
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TABLE 1 | Characteristics of the AD subtypes and healthy controls.

Healthy

controls

(n = 81)

AD subtypes

Typical AD

(n = 89,

50.9%)

Limbic-predominant

(n = 30,

17.1%)

Hippocampal-sparing

(n = 29,

16.6%)

Minimal atrophy AD

(n = 27,

15.4%)

p-value

Age 74.8 (5.0) 77.8 (6.5)a 73.4 (6.1)b 78.0 (8.5)c* 69.2 (7.1)a,b,d <0.001

Sex, % female 57 37 57 52 74b 0.006

Years of education 15.8 (3.0) 15.1 (3.3) 14.4 (2.2) 15.6 (2.8) 13.6 (3.9)a 0.012

MMSEe 29.1 (1.1) 23.0 (2.1)a 23.2 (1.9)a 23.6 (2.2)a 24.1 (1.5)a,b <0.001

CDR totale

Score 0, % 100 – – – – <0.001

Score 0.5, % – 40 67 57 67

Score 1, % – 60 33 43 33

Age at onsetf – 73.8 (7.2) 69.7 (5.7) 75.8 (8.0)c 66.7 (7.4)b,d <0.001

Disease durationf – 3.7 (2.5) 3.4 (2.2) 3.1 (2.9) 2.7 (1.5) 0.324

APOE status, % ε4 allele 22 69a 73a 52a 70a <0.001

CSF Aß1−42, %

abnormalg
33 98a 94a 83a 91a <0.001

CSF T-tau, % abnormalh 18 55a 78a 78a 64a <0.001

CSF p-tau, % abnormal 52 78a 87a 79a 82a <0.001

The table shows mean (SD) except for sex, CDR scores, APOE status, and the CSF biomarkers, where percentage is reported. aSignificantly different from healthy controls; bSignificantly

different from typical AD; cSignificantly different from limbic-predominant; dSignificantly different from hippocampal-sparing. c*p=0.054. eN = 244; fN = 137; gN = 131; hN = 130. AD

= Alzheimer’s disease; APOE, apolipoprotein E; Aß1-42, amyloid-ß-peptide 1-42; CDR, clinical dementia rating; CSF, cerebrospinal fluid; MMSE, mini-mental state examination; p-tau,

level of phosphorylated tau protein; T-tau, total level of tau protein.

DISCUSSION

This is the first study assessing network topology in different
AD subtypes, to the best of our knowledge. Although signs of
disconnection were observed, the affected networks were fairly
different, matching to a large extent the regional pattern of brain
atrophy that defines each subtype. For instance, the hippocampus
and amygdala resulted disconnected from their neighboring
regions in limbic-predominant AD, presumably related to the
characteristic regional atrophy and NFT deposition in the medial
temporal lobe in this subtype. In typical AD, the frontal,
temporal, parietal, and occipital regions were disconnected from
long-distance regions, presumably related to the characteristic
widespread atrophy pattern and NFT deposition in this subtype.
Furthermore, network abnormalities were detected in the
absence of overt brain atrophy in minimal atrophy AD. Network
abnormalities also extended beyond the patterns of regional brain
atrophy, clearly showing that the disease is expressed differently
across the four investigated subtypes. Below we discuss our
findings more in detail.

The modular organization seen in the healthy controls
was lost in the four subtypes, but each subtype evidenced
its own signature reorganization, leading to disconnection of
different brain areas. The medial temporal lobe was found to
be isolated from the frontal and parietal association cortex both
in hippocampal-sparing and minimal atrophy AD. This finding
could be the basis for the cognitive results previously reported
in the same cohort, where reduced performance in traditionally

frontal and parietal cognitive functions was associated with
reduced memory in these two subtypes (12). On the contrary,
impairment in learning is prominent and sufficient to produce
impaired delayed recall in typical and limbic-predominant AD.
Hence, traditionally frontal and parietal cognitive functions
lack of a central contribution to the memory profile in these
two subtypes (12). Our modular analyses showed that, indeed,
regions of the medial temporal lobe clustered together with
the frontal and parietal association areas of the left hemisphere
in both typical and limbic-predominant AD. Thus, disruption
of this large network cannot be the explanation for memory
impairment in typical and limbic-predominant AD, in contrast
to hippocampal-sparing and minimal atrophy AD, but the
devastation of the medial temporal lobe may be.

Together with these changes in the modular organization,
the modularity measure was increased in the four subtypes,
further demonstrating that the brain connectome tends to get
fragmented into small isolated modules in the four AD subtypes.
Increased modularity has frequently been reported in previous
AD studies (49, 53). The novelty of our finding is the different
module reorganization shown by each subtype, in part likely
reflecting the differential spread of NFT and subsequent regional
atrophy in these subtypes (1, 23).

Other novel findings are the changes observed in global
segregation measures across the subtypes, which contrasted
with the lack of changes in global integration measures (54).
In particular, we detected abnormalities in the transitivity
and average local efficiency measures, but not in the average
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TABLE 2 | Summary of the global and nodal network results.

Measure Healthy controls vs.

Typical AD

Healthy controls vs.

Limbic-predominant

Healthy controls vs.

Hippocampal-sparing

Healthy controls vs.

Minimal atrophy AD

(A) GLOBAL MEASURES

Transitivity ↓ – ↓ –

Modularity ↑ ↑ ↑ ↑

Average global efficiency – – – –

Average local efficiency – – ↑ ↑

(B) NODAL MEASURES

Nodal global efficiency

Two-tailed t-test ↑ 5 regions

↓ 1 region

– – –

One-tailed t-test ↑ 10 regions

↓ 3 regions

↑ 2 regions

↓ 1 region

↑ 3 regions ↑ 9 regions

Nodal local efficiency

Two-tailed t-test ↑ 3 regions

↓ 1 region

↓ 2 regions – –

Results were considered significant when p ≤ 0.05 (two-tailed). Since trends to significant differences were observed in nodal measures in both hippocampal-sparing and minimal

atrophy AD, FDR-corrected one-tailed t-tests were conducted showing significant results in nodal global efficiency (displayed in the table). The one-tailed t-tests were also conducted

for typical and limbic-predominant AD, and the results are displayed in the table for completeness of information. AD, Alzheimer’s disease; ↑, higher values in AD patients; ↓, lower

values in AD patients; −, non-significant results.

FIGURE 4 | Comparison of the AD subtypes with the healthy controls in global network measures. Network densities are displayed on the x-axis from min = 5% to

max = 40%, in steps of 1%. Between-group differences in the global graph measures are displayed on the y-axis. AD, Alzheimer’s disease.

global efficiency. Transitivity was decreased in typical and
hippocampal-sparing AD. In contrast, the average local efficiency
was increased in minimal atrophy AD and hippocampal-sparing.

Decreases in transitivity have previously been reported in AD (46,
49, 53), suggesting the loss of connections between neighboring
regions. Increased average local efficiency can be interpreted as
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TABLE 3 | Nodal network measures.

Region Brain network Healthy controls Typical AD FDR-corrected p-value

Nodal global efficiency

Left superior frontal F-P (also S, DA/VA) 0.345 0.667 <0.001

Left superior temporal A 0.311 0.603 <0.001

Right superior temporal A 0.726 0.607 <0.001

Right isthmus cingulate DMN 0 0.657 <0.001

Right cuneus MV 0 0.604 <0.001

Right lingual MV 0 0.627 <0.001

Nodal local efficiency

Left isthmus cingulate DMN 0 0.891 0.002

Right isthmus cingulate DMN 0 0.756 0.002

Right inferior temporal LV 0.956 0.500 0.002

Right supramarginal DMN 0.521 0.820 0.002

Healthy controls Limbic- predominant

Nodal local efficiency

Right hippocampus DMN 0.839 0.300 <0.001

Right amygdala DMN 0.909 0 <0.001

A, auditory network; AD, Alzheimer’s disease; DA, dorsal attention network; DMN, default-mode network; F-P, fronto-parietal network; LV, lateral visual (also known as secondary visual);

MV, medial visual (also known as primary visual); S, salience network; VA, ventral attention network.

FIGURE 5 | Comparison of the AD subtypes with the healthy controls in nodal network measures. The right box shows examples of resting-state functional MRI brain

networks for interpretation of the nodal results obtained in the current study. Our graph nodes were assigned to the default-mode, fronto-parietal, and visual networks

according to a previous review (52). AD, Alzheimer’s disease; A, anterior; l, lateral; L, left; m, medial; MRI, magnetic resonance imaging; P, posterior; R, right.

a compensatory brain response (49). The involved regions might
increase their number of connections with the closest neighbors,
forming new paths to continue transferring information
along the network. This could result in a more segregated

network that looses specificity and effectiveness (55). However,
increased average local efficiency could also be interpreted as
a sign of neighboring regions sharing the same pathological
mechanism, which is justified by the assumption that the
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regions degenerate at the same rate and thus co-vary with each
other (22, 23).

Our results on nodal measures offer an interesting glimpse
on the regional signature of each subtype. Areas of the posterior
cingulate/precuneus showed increased efficiency measures
in both typical and minimal atrophy AD. The posterior
cingulate/precuneus is a key area of the default-mode network
that underpins episodic memory, semantic processing, and
attention by connecting medial frontal, lateral parietal, and
medial temporal regions (56). In typical AD, an increase in nodal
local efficiency was also observed in the right supramarginal
gyri, another region of the default-mode network. Increases in
local efficiency has previously been reported in AD (49). These
increases could thus reflect a shared neurodegeneration process
in the whole default-mode network (23, 57), which could explain
the impact of impaired semantic processing and attention in
memory performance reported in these two subtypes, i.e., typical
and minimal atrophy AD (12). We also observed network
abnormalities in medial temporal regions belonging to the
default-mode network. The nodal local efficiency measures
indicated abnormal connections of medial temporal regions with
their close neighbors in limbic-predominant AD, presumably
reflecting the devastation of the temporal cortex in this subtype
(2–6, 12, 18). Thus, cortical areas of the default-mode network
were clearly involved in typical, limbic-predominant, and
minimal atrophy AD. Disruption of the default-mode network is
indeed a consistent finding in studies of heterogeneous groups
of AD patients (56). Actual disconnection of the default-mode
network in typical, limbic-predominant, and minimal atrophy
AD should be investigated in future studies including functional
MRI data.

In addition, changes in the nodal measures extended beyond
cortical areas of the default-mode network in the four subtypes.
Nodal global efficiency was increased in parietal areas in minimal
atrophy AD, and in occipital areas in the four subtypes.
These areas are part of the fronto-parietal, dorsal attention,
sensory-motor, and lateral visual brain networks. Nodal global
efficiency was also mostly increased in frontal areas in all
the subtypes, although it was decreased in the middle frontal
cortex in typical AD. These areas are part of the fronto-parietal,
salience, executive control, and ventral/dorsal attention brain
networks. Both increases and decreases in typical AD, and only
increases in minimal atrophy AD, were observed in efficiency
measures in the temporal lobe. The affected areas are part
of the auditory and lateral visual brain networks. We should
note that some of the regions discussed in these paragraphs
may be part of more than one network (please see Table 3

and Supplementary Table 2). However, our current results in
connection with the atrophy patterns and the clinical and
cognitive profiles previously described (1–3, 11, 12, 58) suggest
that the main involved networks seem to be the default-mode,
fronto-parietal, and visual networks. Functional MRI studies
are warranted to further confirm this interpretation. We also
observed that differences in nodal global efficiency involved
many more regions in minimal atrophy AD than in limbic-
predominant and hippocampal-sparing AD. An explanation for
this is that given similar clinical severity across these subtypes,

more extensive network abnormalities may be needed to give
the clinical symptoms in minimal atrophy AD in the absence
of overt brain atrophy. Lower cognitive reserve (13) and small
vessel disease in strategic white matter areas (15) could increase
network vulnerability to more intense tau-related pathology
and neurodegeneration in minimal atrophy AD (59), which as
previously been demonstrated through elevated CSF total and
phosphorylated tau levels (12, 15).

The signature findings on the nodal measures could have a
biological interpretation related to different networks involved
in these subtypes. We hypothesize that changes in typical and
minimal atrophy AD are mostly related to the default-mode,
fronto-parietal, and visual networks. However, changes in limbic-
predominant AD would be mostly related to the default-mode
network, and changes in hippocampal-sparing could be entirely
confined to the fronto-parietal and visual networks. Especially
the default-mode and the fronto-parietal networks include long
and dense but poorly myelinated axons (60). Their central
involvement in high-order processing, as well as their constant
exposure to high energy demands and oxidative stress (60),
makes them especially vulnerable to pathology (22, 56, 57). Thus,
these networks may be the conduits used by the NFT to spread
differentially in the four subtypes, leading to the distinct patterns
of atrophy observed in sMRI data.

The changes in the segregated graph measures discussed
above could well be the mechanism behind the impairment of
segregated cognitive functions (e.g., learning of episodic memory
and semantic abilities), rather than integrated cognitive functions
(e.g., executive functions, processing speed, attention) in AD.
Indeed, impairment of segregated cognitive functions such as
learning of episodic memory is an early event and a hallmark
of AD (61, 62). This may be a relevant finding to explain the
memory impairment seen in hippocampal-sparing and, specially,
minimal atrophy AD, an explanation that remained elusive
until recently given their characteristic patterns of atrophy (or
no atrophy) (12). Integrated cognitive functions could also
be affected as a consequence of their segregated cognitive
components being primarily affected (e.g., lexical access after
disruption of the semantic system), but this would happen later
in the disease. For instance, impairment of integrated cognitive
functions such as executive functioning is common in the
advanced stages of AD. Notwithstanding, executive dysfunction
could also be an early symptom before memory impairment
in the atypical executive presentation of AD (62, 63). This is
presumably explained by the loci of atrophy in this presentation,
with involvement of the frontal lobe (40, 61). Therefore, changes
in segregated graph measures may also explain the executive
dysfunction previously seen in hippocampal-sparing AD (1–
3, 11, 12, 58), due to atrophy in the frontal lobe and/or
disconnection with the posterior cortex.

The clinical implications of these findings are important.
Cognitive interventions based on compensation and substitution
brain mechanisms are commonly used in patients with memory
impairment. In compensation mechanisms, the original brain
network is partially retained and alternative brain regions are
recruited for its rescue. In substitution mechanisms, the original
brain network is no longer functional and alternative brain
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regions are recruited to enable a new anatomical-functional
system. In practice, compensation has potential when the patient
retains some learning and encoding capacity. Substitution is
needed when this capacity is mostly lost. Our current data
indicates that compensation strategies should be primarily
used in hippocampal-sparing and minimal-atrophy, because
the learning and encoding capacity is partially spared (12).
Indeed, a study performed in the same cohort showed that
hippocampal-sparing and minimal-atrophy were the subtypes
getting greatest benefit from additional help when retrieving
stored information (12). The clinician needs to be careful and
explore the compensatory cognitive functions that may work the
best for each patient. The data on the disrupted brain networks
reported in the current study may be important for this purpose.
Cognitive interventions in typical and limbic-predominant AD
have however the great challenge of finding a good substitute of
the devastated medial temporal lobe. The strategy should thus be
substitutive, for instance, by training other memory systems such
as procedural memory.

Some limitations of the current study should be mentioned.
All our AD patients fulfilled the amnestic criteria at entry and
factors such as vascular pathology were excluded. Our results
should thus be replicated in amore heterogeneous clinical sample
that also includes non-amnestic AD presentations. AD patients
in the ADNI are clinically diagnosed and, among those with
CSF data, a very small proportion (7%) are amyloid negative in
our current study. We decided not to exclude amyloid negative
AD patients because that would lead to reduced size of some of
the subtypes. Future studies should thus recruit larger groups
and focus only on amyloid positive AD patients. Investigating
the relationship between APOE genotype and network topology
in larger subtype groups is also warranted. Although 1.5T MRI
data have some limitations in comparison with 3T MRI data, we
selected 1.5T MRI data because the size of this subsample in the
ADNI-1 cohort is appropriate for our aims, while the 3T MRI
data is very limited. Although cross-sectional data can provide
an important insight on pathology spread (22, 23), longitudinal
analyses are warranted to complement our current findings.
Likewise, our interpretations on pathology spread should be
substantiated with tau-PET data. Group-level analysis is the most
common form of studying network topology using structural
MRI data. However, future work should exploremethods that can
generate individual networks (64), so that correlations between
network measures and cognitive and clinical measures can be
performed in the different subtypes.

In conclusion, we demonstrated distinct signature patterns
of network disruption, which parallel the atrophy patterns
that define the four AD subtypes and, interestingly, extend
also to other brain regions presumably reflecting the spread
of NFT before overt brain atrophy can be detected in those
regions. The four AD subtypes presented network changes
consistent with the isocortical NFT stage (stage V) of the
Braak and Braak scheme (17), in which pathology occupies
most of the neocortical association areas, although largely
sparing the primary somatosensory and motor cortex. Thus,
our findings support the “distinct subtypes hypothesis,” with
pathology spreading through the brain in a different manner
in these subtypes, as opposed to the “staging hypothesis”

(1, 8, 12). We hope that our current findings can promote
personalized medicine approaches in the short term by guiding
tailored cognitive interventions, and help characterizing
more homogeneous AD groups for drug discovery in
the future.
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