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In this review, we briefly recall the fundamental processes allowing us to change

locomotion trajectory and keep walking along a curved path and provide a review of

contemporary literature on turning in older adults and people with Parkinson’s Disease

(PD). The first part briefly summarizes the way the body exploits the physical laws to

produce a curved walking trajectory. Then, the changes in muscle and brain activation

underpinning this task, and the promoting role of proprioception, are briefly considered.

Another section is devoted to the gait changes occurring in curved walking and steering

with aging. Further, freezing during turning and rehabilitation of curved walking in patients

with PD is mentioned in the last part. Obviously, as the research on body steering while

walking or turning has boomed in the last 10 years, the relevant critical issues have been

tackled and ways to improve this locomotor task proposed. Rationale and evidences

for successful training procedures are available, to potentially reduce the risk of falling in

both older adults and patients with PD. A better understanding of the pathophysiology

of steering, of the subtle but vital interaction between posture, balance, and progression

along non-linear trajectories, and of the residual motor learning capacities in these

cohorts may provide solid bases for new rehabilitative approaches.

Keywords: curved walking, aging, Parkinson’s disease, freezing of gait, curved walking rehabilitation

INTRODUCTION

Every day we frequently follow circular courses and turns when we move (1). Our
inherently unstable bipedal gait (2) requires adaptive control during curved walking (3). Stride
length and duration of the stance phase differ between the inner and outer leg (4–6), and the
center of mass moves toward the interior of the trajectory (7). This is made possible by appropriate
placement of the feet to create a gravity-dependent torque that counteracts the centrifugal force.
Central commands would take over the control of locomotion at the expense of the spinal
automatisms, very much as it happens for crayfish (8) and giant stick insects, where rotation of
the body is accomplished by modulation of ground reaction forces among legs (9). Obviously, the
brain generates ad-hoc activity that follows the basic laws of physics when moving along circular
trajectories, regardless of the number of legs (10).

A thoughtful study of walking and turning in humans had been done more than 140 years ago
by Eadweard Muybridge [see (11)]. Foot yaw orientation, body tilt in the frontal plane and pelvis
rotation over the stance leg could already be seen in his remarkable photographic freeze frames.
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Then, non-linear walking trajectories had been almost ignored
by scholars and scientist, until Takei et al. published a note (12)
about the walking trajectory of young and older subjects on a
circular path in darkness.

The interaction between the spinal circuits with the
descending command and the adaptation of the body medio-
lateral inclination and step length asymmetry to the progression
velocity would represent a challenge for the control system.
This task requires anticipatory adjustments (13–19) in advance
of taking the curve (5, 20–22). It is not implausible that basal
ganglia are subjected to an extra load during curved walking,
since they operate through two parallel distinct pathways having
opposing effects, allowing the execution of movement while
gating the antigravity activity of the postural muscles (14, 23).
This short review aims to summarize the characteristics of
curved walking in young and older adults, and to address gait
differences between people with Parkinson’s Disease (PD) and
healthy subjects. Proposals for an integrated rehabilitation
approach in PD are put forward.

STEERING THE BODY ALONG CURVED
PATHS

Successful locomotion along curved trajectories requires fine
coordination of body segments’ movements. Any minor change
in the adjustment of the asymmetric step length of the two
legs produces dramatic effects in the kinematics, very much as
it occurs with minimal changes in the localization of ground
reaction forces underneath the feet during the stance phases (6).
Therefore, accurate brain control is required for correct rotation
of the lower limbs and inversion or eversion of the ankle for
successful placement of the foot on the ground (4, 24–31).

During linear walking, the feet create mediolateral impulses
at heel strike that symmetrically move the body toward the
contralateral limb. In turning, the body is moved toward the
interior of the trajectory by both the internal and the external foot
(32). In order to exploit gravity, the center of foot pressure during
heel strike and toe off is being slightly displaced with respect
to its position under linear walking. This creates a mediolateral
torque that produces and controls trunk roll tilt and progression
along the circular trajectory (6, 33–35), and generates the proper
centripetal force to avoid going off on the tangent (4, 5, 27).
Appropriate braking of the body fall toward the interior of the
trajectory is exerted by the feet at foot-off (6, 36), such as to
counterbalance the reaction forces produced at heel strike (37).

In addition to studying walking along circular trajectories,
investigators have focused also on the strategies used to navigate
sharp turns (26, 30, 38–40). Others have exploited figures of eight
trajectories that include both clockwise and counter-clockwise
segments (3, 41–43). Consistently, turns imply reduction of
progression velocity, placement of the foot in the direction of
the new trajectory (25) and lateral translation of the body in
addition to body reorientation to align with the new travel
direction (15). Foot placement and trunk inclination move the
center of mass toward the new direction in the transition stride.
The top-down temporal sequence in body segments reorientation

slightly changes as turn proceeds (26, 44). This pattern is robust
to turning velocity, therefore inherent in the command to turn
(45). Gaze redirection accompanies steering, so that visual or
oculomotor deficits should be considered when assessing turning
behavior (24, 46).

WHAT DO WE KNOW OF THE NEURAL
COMMAND FOR STEERING?

Motor tasks employ muscle synergies, i.e., one or more sets
of muscles synchronously activated and specific to the task
(47). Synergy studies concluded that rectilinear and curvilinear
walking share the samemotor command; however, fine-tuning in
muscle synergies is necessary for circular trajectories, where the
kinematic strategy conforms to the physical laws that underpin
curved walking while keeping balance (14, 27, 48–50). Courtine
and Schieppati (28), using the principal component analysis,
found that both straight-ahead and curved walking were low
dimensional, and two components accounted for more than 70%
of the movement variability. Fine modulation of the muscle
synergies underlying the straight-ahead locomotion is sufficient
for generating the adequate propulsive forces to steer walking and
maintain balance (48).

Bejarano et al. (49) found four muscle synergies for both
walking conditions. Muscle activation profiles lasted longer
and were larger during curvilinear than straight walking, and
more so for the muscles of the limb inside than outside the
trajectory. However, several deep muscles responsible for intra-
and extra-rotation of pelvis on thigh had not been recorded. The
asymmetric activation of these muscles and the amplitude and
time-course of the modulation of their activity might configure
an additional synergy peculiar to turning. The contribution of the
gluteus medius to the trunk orientation during turning should be
also considered (51).

The origin of the adaptation of the motor command to
the curved path is a matter of speculation. Jahn et al. (52)
have described brain activation for imagined straight walking
and for imagined walking along a curved path (53). They
observed asymmetric basal ganglia activation at turn initiation,
enhanced activity in cortical areas associated with navigation, and
decreased activity in areas supposed to process vestibular input.
These findings point to the complexity of the organization of
the command for producing the curved walking trajectory, while
the deactivation of certain brain regions may explain why the
vestibular input seems to be down regulated during continuous
turning while stepping in place (54), similarly to what occurs at
the transition between stance and gait (55).

SENSORY FEEDBACK DURING WALKING
AND TURNING

Asymmetric proprioceptive input elicited by vibration of
axial (neck and trunk) muscles produces steering and
turning (29, 56–59), whereas proprioceptive input from
the leg contributes to fine adjustment of the spinal pattern
generators for walking (60, 61). Input from axial muscles
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FIGURE 1 | (A) The effect of the trajectory (curved with respect to linear) on spatiotemporal gait variables in older adults. Data are the sample-size-weighted mean of

Cohen’s d effect-size (ES) of the illustrated variables [calculated from a (82); b(41); c(83); d(42); e(87); f (86); g(88); h(85); i(84)]. Negative values in the x-axis represent a

decrease in the variables in curved compared to linear walking. Error bars represent 95% confidence intervals. There is an overall decrease in step length, cadence,

and step width during protracted curved path. On the contrary, during sharp turns, step width is increased in the older adults. (B) The effect of Parkinson’s disease on

walking along curved trajectories. Data are the sample-size-weighted mean of Cohen’s d effect-size of the illustrated spatiotemporal gait variables [calculated from
a(89); b(82, 90) d(91); e(92); f (85)]. Negative values in the x axis represent a decrease in the variable values in patients with PD compared to age-matched controls.

Error bars represent 95% confidence intervals. Step length and width decrease, while cadence is unaffected. Velocity is diminished mainly because of reduction in

step length.

would play the role of a servo-mechanism, whereby minor
asymmetries initiated by asymmetric foot placement (1, 62)
would affect the spinal generators to produce the necessary
fine changes in leg and foot kinematics accompanying
heading changes.

Whether or not continuous walking along a circular trajectory
is also favored by a shift in our straight-ahead goes beyond the
scope of this short review, but we would note that a shift in
subjective straight-ahead occurs after a period of stepping in
place on a rotating treadmill (63). In turn, it is not unlikely
that a shift in the straight-ahead is produced by the feedback
from the muscles producing the rotation of the pelvis and trunk
over the standing leg when walking along a curved trajectory or
when stepping in place and turning (54, 59). Vision is obviously
not necessary for implementing a curved trajectory (5), but the
continuous visual field motion would nonetheless favor the fine
tuning of the gait synergies underpinning the production of the
circular trajectory (24, 64).

These findings suggest that asymmetric proprioceptive
input, either produced by the asymmetric kinematics initially
produced by the central command to turn or by the artificial
activation through muscle vibration, would favor and sustain the
steering synergy.

AGING AFFECTS STEERING

Locomotor impairments are an inevitable consequence of aging,
and worsen with the associated cognitive decline (65, 66).
However, we did not expand here on the issue of the effects
of cognitive decline on locomotion. This was a deliberate
choice, because this would require an ad-hoc article, given
the growing number of papers on this complex topic [see
the reviews by (67–69)]. Furthermore, the effect of cognitive

decline on turning has not received the attention it would
deserve, yet.

Walking speed is definitely lower than in the young (70–72),
and older adults adopt a more cautious attitude when steering
(73–75). Normally, during the swing period, young subjects
reverse the fall of the center of mass before foot-contact by
active braking via activation of the triceps of the stance leg
(76, 77). The control of this braking phase is impaired in older
adults, and the braking phase is compensated for by reducing
the step length (78). Neurological (PD, cerebellar syndromes,
neuropathies, hemiparesis, dementia) and non-neurological
conditions (cardiovascular and respiratory) contribute to gait
problems (79, 80).

In young adults, curved walking significantly decreases
walking speed (by about 15%) and stride-length (more so in
the leg inner to curvature), whilst cadence is barely diminished
(5, 27). In older adults whose linear gait speed is within
the limits of normality (81), curved gait speed diminishes by
about 20%, with minor differences across the studied cohorts
(42, 82–86) (Figure 1A). In older adults with poor mobility
and linear walking speed below the 0.90 m/s, the reduction
in gait speed between linear and curved walking is of about
15% (41) and 5% (87). Likely, frailty and balance-related
anxiety (93) reduces speed during linear walking to such low
values that the time necessary for the added coordination
of posture and progression during curved walking becomes
proportionally negligible.

Cadence diminishes by <10% (84–86) for older adults during
curved when compared to linear walking. Step length is also
reduced by <20% (82, 84). While velocity, cadence, and step
length changes are common to different types of turning, step
width behaves differently between curved walking and sharp
turning. Older adults increase their step width during the
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transition phase from linear to curved path (88). On the contrary,
for protracted curved path, step width is narrow (89, 94) and
it decreases until 30% (84). Slow anticipatory adjustments may
play a role, as shown by abnormal turning pattern in older
adults with balance deficits when the command to turn is
unexpected (95).

The variability of step length, cadence, and step width
increases during curved walking (84, 89, 91, 96). However,
in older people who have not fallen, a moderate amount of
step variability is required to adapt to situations that challenge
postural control (97, 98), while too little variability is associated
with fall history in older adults (99). This could explain
why increased spatial variability during curved path identified
subjects with better motor skills of walking (86).

Additionally, older adults who frequently fall display a
reduced turning angle variability compared with non-fallers
(100), denoting a lack of dynamic balance skills necessary to
seamlessly modulate turning angles while maintaining balance
(101). It seems that the ability to vary step length and step width
enables both smooth continuity of the center of pressure path and
energy-efficient navigation of curves (86).

The multisegmental control has been studied during planned
turning on the spot (102–104). Older adults tend to reorient
their head, shoulder and pelvis simultaneously, followed by
foot displacement, regardless of visual condition. The command
to implement curved walking implies modification of all the
fundamental spatio-temporal variables of gait (105), more so in
older adults who frequently fall compared with non-fallers (100).
Interestingly, multiple fallers show a simplified turning pattern
to assist balance control (106). Moreover, changes in timing and
sequencing of segment reorientation produce earlier anticipation
of turns (102, 107). Activity in prefrontal cortex is increased
in older compared to young adults (108) suggesting a higher
cognitive cost for gait control even during linear walking. In
complex walking, known to depend on appropriate executive
function and balance control (109), obstacle negotiation further
increases prefrontal activity (110).

These studies point to definite changes in the spatio-temporal
gait variables between linear and curved walking. The increased
variability in the curved gait kinematics can be the result of a
coordination disorder but represents kind of a safety factor for
reducing the risk of falling. Adaptive strategies for turning might
be driven by the effort to diminish the cognitive cost associated
with turning.

PARKINSON’S DISEASE PROBLEMS
DURING STEERING

In patients with neurological disorders, impaired locomotion
is a frequent and serious symptom (111). Gait and balance
impairments are typical of patients with PD (112, 113). Impaired
locomotion is often associated with reduced ability to brake the
fall of the body in late stance compared to matched controls
(114). This may be a sign of poor coordination between trunk
and lower limb, and forces patients to take short steps. A study
of muscle synergies has identified a reduced number of synergies

during straight walking (115), providing evidence that control of
gait is less complex or flexible in patients with PD. Whether this
can affect the coordination between trunk and lower limbmuscle,
and whether synergies are further affected by turning, remains to
be established (115).

In neurological patients, additional problems emerge during
curved compared to linear trajectories (116–118). Patients with
PD are no exception, and all of them are indeed critically
challenged by curved walking (119–123), in spite of their
diverse phenotype and motor symptomatology. There is a strong
indication, based on functional MRI, that patients with PD have
reduced activity in the globus pallidus and enhanced activity
in the supplementary motor area during imagined walking
and turning (124). Functional near infrared spectroscopy shows
higher prefrontal cortex activity in the patients compared to
healthy subjects (125). Interestingly, prefrontal activation during
obstacle negotiation was increased more than during dual task
walking (126).

The changes observed in curved compared to linear walking
are usually non-negligible. Kinematic analysis demonstrated en-
bloc rotation of axial segments in patients with PD (127–131).
Coordinated axial muscle activation seems to be particularly
affected (132). This has been repeatedly shown and assessed
quantitatively (133–138). The en-bloc rotation of axial segments
in patients with PD contrasts with the lower extremity muscle
activation pattern that appears to be overall normal (131).
Huxham et al. (139) have shown that stride length reduction
appears to contribute more than downscaled rotation amplitude
to inefficient turning in patients with PD, possibly because of
reduced axial mobility. Compared to straight walking, during
curved walking speed diminishes by about 20% (90) and by about
35% (82, 91) in less and more affected patients, respectively.
Cadence also diminishes by more than 5% and step length
diminishes by about 20% (82, 89) (Figure 1B). In contrast to
age-matched controls, patients with PD turn with narrower steps
(89, 92, 122).

Greater variability of the temporal gait parameters is
detectable during curved but not linear walking, over and
above the increased variability exhibited by healthy subjects (6).
Problems in turning and curved walking are detectable even at
an early stage of the disease, and they persist while on-phase
(92, 140). Most interestingly, spatio-temporal gait pattern and
variability during curved walking are abnormal even in well-
treated, well-functioning patients with PD, exhibiting no change
in speed in straight-line walking compared to age-matched
healthy subjects (85). Anxiety should be considered when
evaluating walking performances, since well-treated patients with
fear of falling spend more time turning, both in the laboratory
and at home (141). This would be connected to the effect of
temporal pressure on the control of medio-lateral stability, a
critical issue when changing direction (142, 143).

All in all, it seems safe to posit that patients with PD suffer
from specific disorders of curved walking and turning, which
may not be obvious during straight walking. Again, it may not
be immediately clear whether some abnormalities are direct
consequences of the neuronal damage or, at least in part, the
outcome of a long-duration adaptive process.
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FREEZING IN PEOPLE WITH
PARKINSON’S DISEASE

Freezing can occur during all types of gait and is related to the
increased stride-to-stride variability (144). However, it is most
common during turning (22, 145–153) and is a major cause of
falling in these patients (154). Turning during daily activities is
more compromised in patients with than without freezing (155).

The increase in freezing events during turning may be
due in part to the asymmetric nature of the task and
the necessary anticipatory adjustment for ensuring postural
stability along the medio-lateral direction. The temporal and
spatial asymmetry of steps during turning represents a more
complex control problem than forward walking (30, 121, 149,
156, 157), as suggested by increased activation in prefrontal
areas accompanying freezing before anticipated turns (125).
Perhaps, these changes accompany and compensate for the
structural and functional alterations in the brain stem centers for
locomotion (158).

Neck and axial rigidity during turning may reduce forward

progression (159, 160). Patients take shorter turns with smaller

turn angles and more steps and exhibit larger variability with
respect to controls (161). Freezers, irrespective of freezing

episodes, adopt a narrower step width compared to controls and

non-freezers during turning (89, 91).
Problems in fast axial turning appear when stepping

is performed on a narrow base (160, 162, 163). Freezing

episodes are more frequent at sharp turns (91) and turning
in place (164), indicating that problems exist both in

adjusting the anticipation to the intended trajectory and

in controlling body segment coordination and balance
during rotation on the spot, regardless of the speed of

turning and the severity of the disease (22, 94). Again, this

speaks in favor of a delayed preparation for the change in

walking direction.
Anticipatory adjustments are indeed abnormal in patients

with PD (165–167) including eye and head anticipatory
movements for exploration (53) and movements to correct

a lateral disequilibrium (168, 169). Plate et al. (170) have

confirmed that anticipatory adjustments are slower and of

smaller amplitude, in keeping with the overall bradykinesia of the
patients. Interestingly, anticipatory postural adjustments are not

followed by coordinated steps (171). Anticipatory adjustments

associated with gait initiation may not be strictly abnormal per
se in patients with respect to age-matched subjects (169, 172),
but may be impaired in people with freezing of gait compared

to those without freezing (173). All in all, these findings are in

keeping with the hypothesis that freezing would depend on the
sheer control of the trunk rotation over the standing leg (54, 85).

Freezing is elusive. However, any voluntary humanmovement
requires a complex array of in-series and in-parallel processes,
from anticipatory postural adjustment to ongoing feedback-
related correction. No wonder some peculiar interaction of
aberrant events in patients with PD, from cognitive to reflex
nature, can finally produce what we call freezing, in our case of
gait, but not necessarily limited to gait [see e.g., (174)].

REHABILITATION OF CURVED WALKING

The ability to turn, above all in restricted spaces, is very important
in autonomy maintenance in everyday life. Furthermore, falls
during turning result in more hip fractures than falls during
linear gait (175). Therefore, rehabilitation of curved walking
and turning may be meaningful since turning impairments are
not improved by dopaminergic medication (92). Exercise has
potential to improvemany clinical issues in patients with PD such
as strength, balance, walking, and quality of life (176–179). A
recent review, not centered on curved walking (180), confirmed
the benefits of physiotherapy in most outcomes over the short
term. However, most of the observed differences between
treatments were considered of minimal clinical importance.

Rehabilitation should address the critical steps in producing
successful steering, the anticipatory adjustments in preparation
to turn and direct steps along the curved trajectory, the rhythmic
and regular production of steps, axial mobility and head-
trunk coordination, and the coordinated activity of the pelvic
muscles producing intra- and extra-rotation of the lower limbs.
Anticipatory postural adjustments can be possibly enhanced by
focused appropriate rehabilitation in older adults (181). This is
significant in consideration of the relevance of the delayed release
of anticipatory adjustments in these patients (92, 167).

The use of linear treadmill for the rehabilitation of gait in
patients with PD has produced modest but significant effects
on gait speed and stride length (182–185), indicating that
these patients can be trained on treadmill and show some
improvement. An earlier study with the use of the rotating
treadmill in two patients showed that a short period of walking
on the rotating treadmill reduces freezing episodes (186, 187).
However, training curved walking by a rotating treadmill
produced no improvements in gait or turning after 5 days of
training (90). A later study, administering a progressive training
with augmenting rotation velocity and trial duration through 10
daily sessions, showed instead a significant benefit on walking
velocity along a circular path (188). In the latter study, before
and at the end of the treatment, all patients walked over ground
along linear and circular trajectories, and the velocity of walking
bouts increased post-treatment, more so for the circular than
the linear trajectory. Therefore, in spite of their known problems
in attentional resources and cognitive strategies (189), patients
can learn to produce turning while stepping on the rotating
treadmill and this capacity translates into improved over ground
curved walking. These findings strengthen the conclusions of
independent reports by Cheng et al. (190, 191), employing a
complex walking program (S-shaped, figure-of-8, square- and
oval-shaped paths) or a rotating platform.

Notably, the synergies responsible for maintaining a fixed
body orientation in space while stepping on the rotating treadmill
(45) are the same that are put in place when stepping in
place while voluntarily turning (54). Prolonged stepping in
place and turning produces in normal subjects an after-effect
consisting in a long lasting spontaneous turning on the spot
(eyes closed), likely created by adaptation to the continuously
activated somatosensory channel (54, 59, 192). Time decay
of angular velocity, stepping cadence, and head acceleration
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were remarkably similar after both conditioning procedures
[voluntarily stepping-and-turning and the so-called podokinetic
stimulation by the rotating treadmill (193)]. Therefore, stepping
in place while voluntarily turning could be administered in lieu of
the rotating platform for training the turning task in patients with
PD. This treatment could be as successful as the rotating platform
for the purpose of exercising the coordinated movements
underpinning turning and of training curved walking. In this
connection, it is worthwhile to mention that Aman et al.
(194) have shown the effectiveness of proprioceptive training
in improving sensorimotor function, and Elangovan et al. (195)
proved that proprioceptive training is indeed effective in patients
with PD.

The responses of patients with PD to vibration of postural
muscles are largely normal, even if they show abnormal transient
postural responses to vibration-off, a sign of impaired sensory
reweighting in balance control (196). This is reminiscent of their
inappropriate response to light-off when balancing on a movable
platform (197). Similarly, alternate trains of postural muscle
vibration promote cyclic body displacement in standing patients
much as in age-matched subjects (198), showing that these
patients can integrate and exploit the vibratory proprioceptive
input to produce postural oscillations comparable to those
occurring during walking. Moreover, vibratory stimulation of
trunk muscles significantly increases stride length, cadence
and velocity in both patients and healthy subjects (199). As
far as curved walking is concerned, it is notable that, in
healthy subjects, vibration of trunk muscles interferes with
the above mentioned podokinetic aftereffect by enhancing—
or reducing—body rotation velocity depending on the vibrated
side (59). The summation of vibration and podokinetic effect
speaks for the capacity of the proprioceptive input from
the trunk and from the pelvis muscles to affect steering by
modulating the activity of the responsible brain centers through
a common mechanism. These interventions (unilateral axial
muscle vibration, stepping on the rotating treadmill, voluntarily
stepping-and-turning) might be considered when planning a
training protocol aimed at rehabilitating gait with emphasis on
curved walking.

Overall, it seems that interventions based on the new
evidence about planning, organization, and execution of curved

walking and associated postural control represent a promising
rehabilitation approach.We are now ready for undertaking large-
scale studies that address the effects of sensory feedback and
of stepping-and-turning task repetition on steering and turning
capacities in older subjects and patients with PD, also considering
patients with typical PD and atypical parkinsonism [see (200)].

CONCLUSIONS

The findings summarized here suggest that the turn-related
command operates by fine modulation of the phase relationships
between the tightly coupled neuronal assemblies that drive
motor neuron activity during walking. Aging and Parkinson’s
disease seem to affect steering by slowing the expression
of this modulation and simplifying the neural command by
coupling subroutines. Older adults and more so patients with
PD are compelled to modify the gait pattern, reduce some
spatiotemporal variables when facing curvilinear trajectories, and
adopt en-bloc rotation of axial segments. This strategy allows the
CNS to manage a less complex task, even if it does not fully
protect these subjects from the risk of falling, likely because of
persisting poor posturo-kinetic coordination. The cost of the
new control mode, implying a newly designed integration of
vestibular, proprioceptive, and visual information for equilibrium
control during curved walking, turns out to be substantial in
patients with PD, and would lead to freezing and frequent
falls. More research is needed on rehabilitative interventions
to train voluntary or treadmill-induced body rotation and
on their potential of improving walking performance during
curvilinear paths.
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