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Introduction: Mobility declines with age and further with neurodegenerative disorders,

such as Parkinson’s disease (PD). Walking and turning ability, in particular, are vital

aspects of mobility that deteriorate with age and are further impaired in PD. Such

deficits have been linked with reduction in automatic control of movement and the need

for compensatory cognitive cortical control via the pre-frontal cortex (PFC), however

the underlying neural mechanisms remain unclear. Establishing and using a robust

methodology to examine PFC activity during continuous walking and turning via mobile

functional near infra-red spectroscopy (fNIRS) may aid in the understanding of mobility

deficits and help with development of appropriate therapeutics.

This study aimed to: (1) examine test re-test reliability of PFC activity during continuous

turning and walking via fNIRS measurement; and (2) compare PFC activity during

continuous turning and walking in young, old and Parkinson’s subjects.

Methods: Twenty-five young (32.3 ± 7.5 years), nineteen older (65.4 ± 7.0 years),

and twenty-four PD (69.3 ± 4.1 years) participants performed continuous walking

and 360◦ turning-in-place tasks, each lasting 2min. Young participants repeated the

tasks a second time to allow fNIRS measurement reliability assessment. The primary

outcome was PFC activity, assessed via measuring changes in oxygenated hemoglobin

(HbO2) concentrations.

Results: PFC activity during continuous walking and turning was moderately

reproducible (Intra-class correlation coefficient = 0.67). The PD group had higher PFC

activation than young and older adults during walking and turning, with significant group

differences for bilateral PFC activation (p = 0.025), left PFC activation (p = 0.012),

and the early period (first 40 s) of walking (p = 0.007), with greater activation required

in PD. Interestingly, older adults had similar PFC activation to young adults across

conditions, however older adults required greater activation than young adults during

continuous turning, specifically the early period of the turning task (Cohens d = 0.86).
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Conclusions: PFC activity can be measured during continuous walking and turning

tasks with acceptable reliability, and can differentiate young, older and PD groups. PFC

activation was significantly greater in PD compared to young and older adults during

walking, particularly when beginning to walk.

Keywords: Parkinson’s disease, fNIRS, turning, walking, pre-frontal cortex

INTRODUCTION

Decline in mobility occurs with age (1–3), and gait and turning
impairments, which are central to reduction in independence,
with links to increased falls risk (4–6), occur early in Parkinson’s
disease (PD) (7–9). Previous studies have shown that gait and
turning are slower in PD, with shorter steps during walking and
a greater number of steps required during turns (10–12). Turns
during walking have been found to be impaired in PD (13, 14),
and continuous 360◦ turning-in-place is particularly complex for
people with PD and elicits intermittent mobility issues (15), such
as freezing of gait (11, 16). While the motor contributions of
mobility decline in older adults and people with PD have been
well-studied through static imaging assessments (1), considerable
evidence is building for non-motor contributions, such as the
role of cognition (17, 18). Deficits in cognition can occur with
age and are common in PD, with early impairment of executive
function, visuo-spatial ability, working memory, and attention
(19). Executive-attentionmay be an important contributor to gait
and turning control in older adults and more so in PD, with
associative and dual-task studies highlighting a strong association
between them (20–25). Executive-attentional projections stem
from the pre-frontal cortex (PFC), and may become over-active
during gait or turning in PD compared to healthy controls
(26, 27) to compensate for the impaired basal ganglia output that
affects the automaticity of movement (28).

Technological advancement has recently allowed monitoring
of PFC activity during mobility tasks, using methods such as
mobile functional near infrared spectroscopy (fNIRS) (29) or

electroencephalography (EEG) head caps. These devices are a

valid means to measure cortical activity in humans (30, 31) and
can be used in a variety of different motor tasks, from static seated

tasks tomore dynamicmobility tasks, such as walking in different

conditions (32–41). The majority of previous studies that have
used mobile fNIRS or EEG during walking have examined
healthy young or older adults (33), with few investigating changes
in PD (32, 36–40). Measurement of PFC activity via fNIRS in
individuals with PD may be particularly useful, as it is relatively
quick and easy to set-up and use compared to EEG (42). The
previous studies that have examined PFC response using fNIRS
in PD during dynamic mobility tasks have generally shown
increased PFC activity in people with PD, generally tested ON
dopaminergic medication, compared to older adults (32, 33, 37–
41, 43). However, the majority of these previous studies have used
different protocols and two recent reviews of this research area
have highlighted methodological issues with previous studies
that may prevent the generalization of results (32, 33). In
fact, the majority of the studies have examined relatively small

cohorts (N < 15), and have lacked short-separation reference
channels (emitter-detector distances<1.5 cm apart) that are used
remove peripheral hemodynamic response (i.e., increased skin
or superficial blood flow due to physical activity rather than
cortical activity) from regular channels (3 cm apart) (44), which
limits or possibly inflates interpretation of results. Similarly,
previous studies have provided no information on the reliability
of findings, with little information on how reliable findings are in
different populations, such as differences with age or neurological
disease. Therefore, using a mobile fNIRS system with short-
separation reference channels, this study aimed to: (1) examine
test re-test reliability of PFC activity during turning and walking
tasks in young adults; and (2) compare PFC activity during
turning and walking tasks in young, old and people with PD.

METHODS

Participants
A total of 68 participants participated in this study; twenty-
five young adults (YA), nineteen older adults (OA) and twenty-
four people with PD. Young and older adult participants
were recruited via local advertisement (i.e., posters within
campus notice boards and e-mails circulated to students and
staff members). People with PD were recruited from local
Neurology clinics via referrals frommovement disorder specialist
neurologists. All study procedures were approved by the Oregon
Health and Science University Institutional Review Board, with
written informed consent obtained before participation.

Participants were included if they were aged 20–40 (young
adults) or 50–90 (older adults or PD) years, able to stand
or walk for 2min without assistance. People with PD were
included if they had a diagnosis of PD as defined by the UK
Brain Bank criteria, Hoehn and Yahr score II-IV and were
taking anti-Parkinsonian medication. Exclusion criteria were;
musculoskeletal, vestibular, visual, or other medical condition
that affected gait or balance.

Experimental Design and Equipment
Participant characteristics of age, sex, height, and weight were
recorded. Global cognition was measured with the Montreal
Cognitive Assessment (MoCA) (45). All testing in people with PD
was performed in the OFF medication state, ∼12 h after taking
last medication dosage. Disease severity was measured using the
Movement Disorders Society (MDS-revised) unified Parkinson’s
disease rating scale (MDS-UPDRS) (46), freezing-status was
measured using the new Freezing of Gait Questionnaire
(nFOGQ) (47), and levodopa equivalent daily dosage (LEDD)
was calculated (48). Specifically, out of twenty-four participants
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with PD, twelve had freezing of gait, as reported by the
nFOGQ (nFOGQ>1).

The participants completed two different motor tasks at self-
selected pace; (1) a 2-min 360◦ turning-in-place task, alternating
360◦ turning to the left and 360◦ turning to the right; and (2) a
2-min walking task. Each condition included a baseline of 20 s of
standing at the start and end of the task (with 80 s of performing
the turning or walking task in between). The walking condition
was conducted over-ground with participants walking back and
forth over a 9m straight path, with a 180◦ degree turn at each
end. Condition order was randomized for the participants, with
breaks between tasks if needed. A research assistant walked with
the participants and stood by the participants during turning to
ensure their safety.

Test re-test reliability of the fNIRS measurement of PFC
activity during the continuous turning and walking trials was
conducted within the young adult subjects. The young adult
group performed the same walking and turning tasks for a
second time after having the fNIRS device removed and replaced
following a short break (∼5–10 min).

A mobile fNIRS system (Oxymon, Artinis, Netherlands) was
used to record changes in oxygenated hemoglobin (HbO2)
and deoxygenated hemoglobin (HHb) within the PFC at a
sampling rate of 50Hz. Distance from transmitter to detector
was 3.5 cm (38) and data was collected and processed in line
with previous studies (32, 33). Additionally, two short-separation
reference channels at a distance of 1.5 cm (one left and one
right hemisphere) were used to allow for removal of peripheral
interference (i.e., from blood flow changes in the extra-cerebral
layers of the head) in the long source-detector separation
channels (44).

Data Processing and Analysis
All processing of fNIRS signals followed current
recommendations where possible. A digitizer (PATRIOT,
Polhemus, VT, USA) was used to provide 3-dimensional
morphological locations for cortical regions of interest relative
to scalp position and the fNIRS optode measure. Data from
the digitizer was entered into the software package NIRS-
statistical package metric mapping (NIRS-SPM, http://www.
nitrc.org/projects/nirs_spm) (49), which was implemented
within MATLAB 2017a (Mathworks, MA, USA). NIRS-SPM
allows registration of fNIRS channel data onto the Montreal
Neurological Institute (MNI) standard brain space (50). NIRS-
SPM used probabilistic registration of the fNIRS co-ordinate
data to determine channels that related to ROIs at the group
level [described in detail elsewhere (51)]. HbO2 changes were
recorded bilaterally (left and right) within the pre-frontal cortex
(PFC). The Brodmann areas (BA) that corresponded to the PFC
consisted of BA9 and BA10 for all of the participants.

The fNIRS data were processed within custom-made
MATLAB algorithms, which consisted of several steps:

1. Data filtering: After zeroing data to the initial time-point,
a low-pass filter with a cut-off frequency of 0.14Hz, based
on canonical hemodynamic response function, removed high-
frequency noise (52).

2. Baseline correction: Removing the median of the initial 20 s
of baseline standing fNIRS signal from the entire trial (i.e.,
subtracting the baseline period from the rest of the signal).

3. Reference channel correction: This step corrected signal
distortions due to artifact caused by breathing, cardiac cycle,
vasomotor or other error related to movement (53, 54). First, a
scaling factor was determined by detecting the peaks (positive
and negative) of the heart rate within the long and short-
separation channel signals, then dividing them to produce the
scaling factor. This was then used to remove the noise detected
within the short-separation reference channels within the
long-separation channels. The following formula describe the
reference channel correction:

Scaling factor =
Peak to peak difference in heart rate in long seperation channel

Peak to peak difference in heart rate in short separation channel

fNIRS signal = long separation channel signal

− (short separation channel signal × Scaling factor)

4. Visual signal inspection: All of the fNIRS signals were
visually examined to ensure divergence between the HbO2

and HHb traces. This step allowed exclusion of trials that had
poor fNIRS signal collection from participants, as a lack of
divergence in HbO2 and HHb indicates noise interference.

5. Averaging across fNIRS channels: In line with previous
research (32), bilateral signals from fNIRS optodes over the
PFC were median averaged for further analysis. We also
median averaged the left and right sided fNIRS optodes
separately for further analysis.

Primary Outcome
The primary outcome for this study was change in oxygenated
hemoglobin (HbO2) from baseline standing to walking or
turning, which is a proxy for cortical activation. The fNIRS
system used emitter-detector pairs to emit light into the skull that
diffused through brain tissues resulting in scattering of multiple
photons (55). These photons were then detected by the fNIRS
detector channels when exiting the skull after passing through
the cortical brain layers (typically∼1–2 cm deep, with an emitter-
detector optode distance of 3.5 cm). Importantly, HbO2, and
HHb have different absorption rates for different wavelengths of
near-infrared light, which can be analyzed with Beer-Lamberts
law equations (56) within the fNIRS software to calculate the
relationship between an exciting photon intensity and incident
photon intensity to derive changes in HbO2 and HHb (57).
Therefore, the fNIRS system measured optical density of the raw
signal and converted this to HbO2 andHHb using Beer-Lamberts
law (57). HbO2 rather than HHb was reported as our primary
outcome due to its sensitivity to walking and cognitive tasks
(58, 59). Additionally, changes in HbO2 concentration within
local brain capillary networks are caused by neuron firings with
brain activity, which is commonly referred to as neurovascular
coupling (60). Relative changes from baseline standing (initial
20 s) in HbO2 concentration was reported in an attempt to
account for between individual physiological variations (33); see
below calculations.
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Walking and turning periods;

1. Early=Median HbO2 first 40 s of task—Median HbO2 initial
standing period (20 s)

2. Late = Median HbO2 second 40 s of task—Median HbO2

initial standing period (20 s)

Statistical Analysis
Statistical analysis was conducted in SPSS (v.24, IBM, Armonk,
NY, USA) and Shapiro-Wilks tests determined data normality
with parametric analysis used throughout. Mean differences
with paired-sample t-tests, intra-class correlation coefficients
(Absolute Agreement: ICC2,1) and Bland-Altman plots with 95%
limits of agreement (LoA 95%) were used to determine the test
re-test reliability of PFC activity measurement via fNIRS between
the first and second data captures in young adults. Acceptance
ratings for ICCs were set at excellent (>0.75), moderate (0.40–
0.75), and poor (<0.40) agreement (61).

TABLE 1 | Participant demographic characteristics.

YA (n = 25)

Mean (SD)

OA (n = 19)

Mean (SD)

PD (n = 24)

Mean (SD)

Group

p

DEMOGRAPHICS

Age (years) 32.3 ± 7.5 65.38 (6.95) 69.29 (4.05) <0.001*

Gender F (15)/M (10) F (10)/M (9) F (8)/M (16) 0.160

Height (cm) 1.70 (0.11) 1.67 (0.10) 1.62 (0.13) 0.035*

Weight (kg) 70.86 (13.95) 73.51 (15.42) 77.47 (14.56) 0.287

MoCA 28.67 (1.24) 27.47 (3.91) 27.69 (3.29) 0.227

CLINICAL

Disease duration (years) – – 9.88 (6.37) –

MDS-UPDRS III – – 36.54 (11.90) –

FOGQ – – 6.54 (8.18) –

LEDD – – 861.34 (499.07) –

H&Y – – I (0)/II (21)/III (3) –

UPDRS III, unified Parkinson’s disease rating scale—motor subsection, FOGQ, freezing of

gait questionnaire, LEDD, levodopa equivalent daily dosage, H&Y, Hoehn and Yahr scale.

*Significance p < 0.05 should be in bold.

PFC HbO2 activation during turning and walking in young,
older and PD groups was reported via mean and standard
deviation. Separate linear mixed-effect models compared groups
(YA, OA, PD), Periods (Early vs. Late) and PFC regions (Left
vs. Right), with a random intercept for each subject within
the models. Post-hoc independent t-tests explored significant
differences between specific groups (YA vs. OA, YA vs. PD, OA
vs. PD). We also compared between groups differences using
Cohen’s d effect sizes based onmean (SD) scores. Effect sizes were
interpreted as small (0.2), medium (0.5), and large (0.8) (61). Due
to the exploratory nature of the analysis, statistical significance
was set at p < 0.05.

RESULTS

Participants
Demographic characteristics of the participants are shown in
Table 1. Groups were significantly different for age (p < 0.001),
but age was not significantly different between older adults and
PD groups (p= 0.166). Similarly, young adults tended to be taller
than the older adults and PD subjects, but the older adults and
PD groups did not significantly differ for height (p = 0.146).
The groups were well-matched for gender (p = 0.160), weight
(p= 0.287), and cognitive ability (p= 0.227).

Test Re-test Reliability of fNIRS
Measurement During Turning and Walking
Following removal of fNIRS data that had poor signal quality,
data from 19 young adult subjects were analyzed for walking
(n = 6 young adult walking trials were excluded following visual
signal inspection: 4 first trial and 2 second trial errors) and
25 subjects were analyzed for turning to determine test re-test
reliability of fNIRS measurement.

On average, there was moderate (ICC2,1 = 0.67) reliability
of PFC activity measured via mobile fNIRS during turning and
walking in young adults (Table 2). There were no significant
differences between any of the outcomes over the two sessions,
with very low average difference between testing sessions (Mean
Difference = 0.03µm, Figures 1, 2). Reliability across the

TABLE 2 | Reliability of fNIRS recording of PFC activity in young adults.

Task Time PFC region Trial 1

Mean (SD)

Trial 2

Mean (SD)

Mean Differencea p ICC2,1 (95% CI) LoA 95%

Turning (n = 25) Overall B/L −0.02 (0.25) −0.01 (0.33) 0.02 0.859 0.673 (0.245 to 0.857) 0.819

L −0.02 (0.19) 0.03 (0.55) 0.12 0.297 0.512 (−0.093 to 0.784) 1.162

R 0.03 (0.28) 0.01 (0.27) −0.01 0.745 0.658 (0.213 to 0.850) 0.823

Early B/L −0.02 (0.19) −0.02 (0.27) 0.02 0.863 0.793 (0.517 to 0.911) 0.616

Late B/L 0.01 (0.33) 0.01 (0.43) 0.00 0.959 0.709 (0.316 to 0.875) 0.919

Walking (n = 19) Overall B/L −0.19 (0.24) −0.18 (0.41) 0.04 0.940 0.714 (0.239 to 0.891) 0.925

L −0.23 (0.33) −0.19 (0.64) 0.09 0.786 0.685 (0.164 to 0.880) 1.355

R −0.15 (0.32) 0.18 (0.36) −0.03 0.682 0.709 (0.231 to 0.889) 0.938

Early B/L −0.16 (0.26) −0.17 (0.34) −0.04 0.897 0.520 (−0.511 to 0.846) 0.831

Late B/L −0.17 (0.34) −0.17 (0.51) 0.07 0.977 0.707 (0.220 to 0.888) 1.224

Average Overall B/L – – 0.03 – 0.668 (0.154 to 0.867) 0.961

aTrial 2 minus Trial 1, PFC, pre-frontal cortex; ICC, Intra-class correlation coefficient; CI, confidence interval; LoA, limits of agreement; B/L, bilateral; L, left; R, right. * p < 0.05.
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FIGURE 1 | Bland Altman plots demonstrating agreement between the two 2-min trials of walking for overall PFC activity, Left and Right PFC activity, and Early and

Late PFC activity. Dashed lines represent LoA.

different time periods (early vs. late) and regions of interest
(Left, Right or combined) within the PFC ranged from moderate
(ICC2,1 = 0.52) to excellent (ICC2,1 = 0.79). Importantly, the
primary outcome over the duration of themotor tasks (combined
left and right PFC regions) had moderate reliability (turning;
ICC2,1 =0.67, walking; ICC2,1 0.71) (Table 2).

PFC Activity During Continuous Turning
and Walking in Young, Old, and Parkinson’s
Table 3 shows the relative change in HbO2 during continuous
turning and walking in the groups. Overall, the PD group had
higher average levels of PFC activation during turning and
walking than young or older adults across the majority of the
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FIGURE 2 | Bland Altman plots demonstrating agreement between the two 2-min trials of turning for overall PFC activity, Left and Right PFC activity, and Early and

Late PFC activity. Dashed lines represent LoA.

time-points and PFC regions. Older adults also had higher
average PFC activation during turning and walking compared to
young adults.

During walking the groups were significantly different for
overall PFC activation (p= 0.025), left PFC activation (p= 0.012)
and for the early period (first 40 s) of walking (p = 0.007)
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TABLE 3 | Relative change in HbO2 during turning and walking in young, old and Parkinson’s participants.

Task Time PFC region YA

Mean (SD)

OA

Mean (SD)

PD

Mean (SD)

Group

p

Period

(early vs. late)

p

Hemisphere

(L vs. R)

p

Post-hoc

Turning Overall B/L −0.01 (0.25) 0.01 (0.30) 0.06 (0.35) 0.464 0.647 0.059 –

L −0.06 (0.34) 0.03 (0.30) 0.05 (0.28) 0.198 –

R 0.03 (0.28) 0.08 (0.33) 0.09 (0.41) 0.573 –

Early B/L −0.17 (0.19) 0.04 (0.31) 0.10 (0.26) 0.114 –

Late B/L −0.01 (0.31) 0.02 (0.41) 0.05 (0.46) 0.646 –

Walking Overall B/L −0.26 (0.28) −0.25 (0.36) −0.03 (0.37) 0.025* 0.012* 0.185 0.025* (YA < PD)

L −0.29 (0.32) −0.21 (0.33) −0.03 (0.37) 0.012* 0.017* (YA < PD)

R −0.21 (0.36) −0.18 (0.40) 0.02 (0.49) 0.065 –

Early B/L −0.18 (0.30) −0.14 (0.32) 0.07 (0.29) 0.007* 0.008* (YA < PD)

0.037*(OA < PD)

Late B/L −0.29 (0.37) −0.25 (0.43) −0.10 (0.44) 0.136 –

*Significance p < 0.05 should be in bold. PFC, pre-frontal cortex; YA, young adults; OA, older adults; PD, Parkinson’s disease; B/L, bilateral; L, left; R, right.

(Table 3). There was also a significant difference in PFC
activation between early and late periods of walking across
the groups (p = 0.012), with higher PFC activity in the
early period. Post-hoc testing indicated that the PD group had
significantly higher PFC activation during the early period of
walking compared to the young (p = 0.008) and older adults
(p = 0.037). The PD group also had significantly higher overall
(p = 0.025) and left side (p = 0.017) PFC activation than the
young adults. However, the older adult group did not have
significantly different PFC activation compared to the young
adults, with small effect size differences between groups (Table 4).
Overall, the PD group had moderate to large differences (Cohen’s
d 0.52 to 0.86) in PFC activation during walking compared to
young and older adults (Table 4), particularly for the early period
and left PFC region.

Tables 3, 4 demonstrate that the effect of turning on PFC
activation was similar across groups, as during continuous
360◦ turning there were no significant group differences
for any outcome. However, there was a trending difference
between PFC regions during turning (left vs. right, p = 0.059),
with higher right PFC activity compared to left (Table 3).
Despite the lack of a significant difference, effect sizes
showed that the early period of turning differentiated
the young group from the older adult and PD groups
(Table 4; Cohens d of 0.86 and 1.21, respectively), with
young adults having the lowest activation of the three
groups (Table 3).

DISCUSSION

To the best of our knowledge, this is the first study to examine

the test re-test reliability of PFC activity measurement via
fNIRS during continuous walking and turning tasks. Findings
demonstrate that the measurement of PFC activity during
continuous (2min) turning or walking has acceptable reliability,
as there was little difference in HbO2 measurement between
separate re-test trials. With a growing interest in understanding
brain activity during motor tasks, our results contribute to the

TABLE 4 | Effect sizes (Cohens d) for differences in HbO2 during turning and

walking between groups.

Task Time PFC region YA vs. OA YA vs. PD OA vs. PD

Turning Overall B/L 0.08 0.24 0.16

L 0.28 0.36 0.07

R 0.17 0.18 0.03

Early B/L 0.86 1.21 0.22

Late B/L 0.09 0.16 0.07

Walking Overall B/L 0.03 0.72 0.62

L 0.25 0.77 0.52

R 0.08 0.55 0.45

Early B/L 0.13 0.86 0.71

Late B/L 0.10 0.48 0.35

Bold indicates effect size > 0.50 (medium effect). PFC, pre-frontal cortex; YA, young

adults; OA, older adults; PD, Parkinson’s disease; B/L, bilateral; L, left; R, right.

development of robust protocols to examine PFC activity using
fNIRS during continuous walking or turning tasks.

This study also reports differences in PFC activation during
continuous (2min) 360◦ turning and walking in young adults,
older adults and people with PD. Specifically, people with PD
had significantly higher PFC activation during walking compared
to young and older adults; however, older adults were not
significantly different compared to young adults. Increased PFC
activation may indicate greater cognitive demand during walking
in PD due to impaired movement automaticity.

Reliability of fNIRS Monitoring of PFC
Activation During Turning and Walking
The mobile fNIRS device used in this study is a commercial
device that allows access to the raw data that registers HbO2

concentration and subsequent implementation of our custom-
made algorithms for data analysis. Re-test reliability of HbO2

signal recorded with the mobile fNIRS device was conducted
within our young adult group with some variations across the
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conditions (walking or turning), as well as when the HbO2 signal
was broken into different PFC hemispheres (left or right) or trial
times (early or late). When using our fNIRS system with short-
separation reference channels and fixed data analysis pipeline we
found moderate reliability (ICC2,1 0.67) of the PFC HbO2 signal
during the continuous walking and turning tasks. These results,
together with small LoA between trials, indicated that we could
be confident that this signal is reliable, as reported in Figures 1,
2. However, there were changes in reliability when breaking the
fNIRS signal down into individual hemispheres or times of the
signal (early vs. late), which is similar to previous static fNIRS
findings (62). On the basis of our results, it can be stated that
HbO2 outcomes measured using a mobile fNIRS device during
continuous (2min) walking or turning are relatively stable.
However, when breaking the signal into specific features, such as
hemispheres or time-periods, the stability of the HbO2 signal can
be altered.

Impact of Aging and PD on PFC Activation
During Turning and Walking
This study confirms that PFC activity, measured through mobile
fNIRS, can show differences in PFC activation during continuous
walking and turning between young, older and subjects with PD.
Specifically, we found that people with PD, OFF their medication,
had significantly higher PFC activation during walking than
young and older adults, in line with previous studies where
PD subjects were ON medication (32, 33, 37–40). Higher levels
of PFC activation during continuous walking, particularly the
early period of walking, in PD compared to the other groups
likely reflects the need to use executive-attentional resources
even during relatively simple tasks (i.e., usual walking) (21,
26). The use of cognitive resources to compensate for PD
related deficits is similar to previously reported theories of PD
walking, which hypothesized that to compensate for movement
automaticity deficits people with PD increased cognitive control
(63), particularly executive control (26). However, executive-
attentional deficits are common in PD (64) and these impact
the ability to effectively compensate for underlying deficits.
Therefore, when tasks become more challenging (such as dual-
tasks, obstacles etc.) people with PDmay not be able to effectively
respond (24), which impacts gait and mobility, with implications
for falls risk. Future studies may uncover further age or PD-
related deficits with the use of more complex tasks that provide
additional cognitive burden to participants.

Interestingly, although older adults had slightly greater PFC
activation levels than young adults during walking, our findings
were not significantly different which is in agreement to another
previous fNIRS study (32). This demonstrated that healthy young
and older adults may use their executive-attentional resources
in a similar manner when walking, with little need to activate
the PFC due to intact lower-level neural structures and activity
compared to people with PD. Similarly, there were limited
group differences found during the continuous 360◦ turning-in-
place task, which may indicate that this complex task requires
cognitive resources regardless of age or disease. Indeed, average
PFC activation was higher in young adults, older adults and
PD during continuous turning compared to walking, with PD

participants having the highest HbO2 concentrations across
groups. Interestingly, although there were no significant group
differences, there were large between group effects for PFC
activation during the early period of the turning task. This
highlighted that young adults had much lower PFC activation
during the early period of continuous turning than older adults
or people with PD. Aging and PD may therefore lead to greater
cognitive control being required to begin complex continuous
motor tasks, however less cognitive control is required once the
task underway.

Clinical Interpretation
PFC activation appears to increase with walking in PD, but
not with age. This may represent cortical compensation for
sub-cortical dysfunction with PD. Findings suggest that targeting
cortical activation, particularly executive-attentional activity
within the PFC, with interventions such as pharmaceuticals,
cueing strategies (visual, auditory or proprioceptive) or
transcranial magnetic or direct current stimulation may help to
alleviate the cortical burden of walking in PD. However, future
studies are needed to establish findings and examine response
to such interventions. Specifically, future studies should assess
whether the observed increase in PFC activation is related to
PD itself or to freezing of gait. In fact, as freezing of gait could
represent a disruption of gait automaticity, people experiencing
freezing of gait, even without PD, may show an increased cortical
control of gait.

Study Strengths and Limitations
A key strength of this study was the use of short-separation
reference channels (1.5 cm apart) to account for the peripheral
hemodynamic response that is associated with physical activity
(44). Short-separation channels have only been used in one other
mobile fNIRS study (65), but they should be used within future
work to reduce noise and ensure repeatable findings. Another
strength is that we have provided detailed data analysis steps
from our fNIRS signal processing, whereas other previous studies
often use ‘black-box’ data analysis tools such as NIRS-SPM (66)
or Homer2 (67).

A limitation of this study was that, despite being the first to
asses test re-test reliability of fNIRS HbO2 measurement during
walking and turning, test re-test analysis was only conducted in
young adults. Reliability could possibly change in older adults or
PD, as previous studies have shown this in patients with TBI (68).
However, we may expect that reliability would even be higher
in older adults and further in PD as, unlike young adults, they
require more cognitive control of movement due to a loss of
motor automaticity (1, 28), therefore findings in these groups
may be more consistent. However, this is mainly speculative
at this point, future studies could examine re-test reliability
in older adult and PD using the same protocol developed
here. Additionally, we did not examine the influence of disease
stage, duration or other clinical factors (e.g., freezing of gait)
in PD, which future studies should examine to provide greater
understanding of cortical activation during walking and turning
in PD.
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CONCLUSIONS

This study has demonstrated that the measurement of PFC

activation during continuous turning and walking using

a mobile fNIRS system with short-separation reference

channels is repeatable. PFC activation during continuous
turning and walking differs between young adults, older
adults and PD, with greater activation required in PD
compared to control groups for these motor tasks. Using
the robust method developed in this study, future work
could establish these findings within larger cohorts
and examine the impact of more complex tasks on
PFC activation.
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