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Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by loss of

dopaminergic neurons in the substantia nigra. Recent evidence supports the involvement

of the gastrointestinal tract in PD pathogenesis, including alterations in microbiota

and intestinal permeability. Apart from being the preferred energy source for colonic

epithelial cells, butyrate is involved in anti-inflammatory, enteroendocrine and epigenetic

mechanisms that influence colonic and systemic health, including brain function. A few

studies using oral administration of sodium butyrate indicate beneficial effects in PD

animal models; however, prebiotic fibers that generate butyrate locally in the gut may

be more effective. The design and selection of butyrogenic prebiotic fibers would allow

preclinical studies to evaluate how gut-derived butyrate could affect PD pathophysiology.

This review describes potential benefits of increasing gut butyrate production in PD

through a prebiotic approach. Moreover, physico-chemical features of prebiotic fibers

that target butyrogenic colonic bacteria are discussed.
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INTRODUCTION

Parkinson’s disease (PD) is a relentlessly progressive neurodegenerative disease of aging, with a
considerable burden of disability. It is believed that PD pathology is a consequence of both genetic
susceptibility and toxic environmental factors, resulting in increasing neuronal oxidative stress (1).
The pathological hallmark of PD is neuronal inclusions termed Lewy bodies (LB) or Lewy neurites
(LN) whose main component is aggregated and phosphorylated α-synuclein and is responsible for
neurological symptoms and signs of PD (2).

Gastrointestinal involvement in PD may be pathogenic or a consequence of the disease. More
recently, researchers have provided evidence that supports a role for the gastrointestinal tract
and the enteric nervous system (ENS) in the pathogenesis of PD (3, 4). α-Synuclein aggregates
are present in Substance P containing neurons in the sigmoid colonic submucosal neurons in
patients with PD (5). Microbiota differs between those with PD and healthy controls; for instance,
those with PD have a lower abundance of Clostridium cluster XIVa and IV (6–10). Changes
in caecum mucosal-associated and luminal microbiota, including a significant decrease in the
relative abundance of the beneficial commensal bacteria genus Bifidobacterium, has been induced
by a mouse model of PD (11). Recently, evidence for proinflammatory dysbiosis in PD patients
has been shown, and researchers suggest that this dysbiosis could trigger inflammation-induced
misfolding of α-Syn and development of PD pathology (6). Additionally, intestinal permeability
was increased and beneficial metabolites of microbiota function, such as short chain fatty
acids (SCFA), were lower in those with PD compared to healthy controls (5). As evidence
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for gastrointestinal tract involvement in PD exists, this
suggests that therapeutic interventions may be warranted that
positively impact the intestinal milieu by changing microbiota
to produce less pro-inflammatory/injurious products and/or
prevent gut leakiness.

PREBIOTIC FIBER: DEFINITION,
STRUCTURE AND FUNCTION

The term prebiotics was first introduced in 1995 by Gibson and
Roberfroid as “a non-digestible food ingredient that beneficially
affects the host by selectively stimulating the growth and/or
activity of one or a limited number of bacteria in the colon,
and thus improves host health” (12). Since then, the original
definition has been revised several times and recently broadened
to ‘a substrate that is selectively utilized by host microorganisms
conferring a health benefit’ (13).This should not be confused
with probiotics, defined as “live microorganisms that confer
a health benefit on the host when administered in adequate
amounts” (14).

Although prebiotic definitions are general to all oligo-
and polysaccharide prebiotic substrates, researchers
up to 2010 have largely focused only on the use of
fructans (fructooligosaccharides [FOS] and inulin),
galactooligosaccharides (GOS) and, to a minor extent, lactulose,
to promote beneficial shifts in the gut bacterial community
(15). Prebiotic oligosaccharides were mainly used to promote
increases in Lactobacillus and Bifidobacterium species (16).
More recently, however, as the complexity and function of
gut microbial ecosystems have been unveiled, new microbial
groups or species of health interest have been identified, as well
as ways to promote them (17–19). The challenge of achieving
prebiotic effects favoring specific microbial groups requires the
understanding of how prebiotic structure relates to substrate
requirements of target bacteria and how they compete on
substrates relative to other microbial groups (20).

The majority of prebiotic substrates fall into the dietary fiber
classification—i.e., carbohydrate polymers not hydrolyzed by
endogenous enzymes in the small intestine (21). Carbohydrates
are the most abundant and heterogeneous class of molecules
found in nature. In plants, non-cellulosic carbohydrate fibers
include β-glucans, fructans, mannans, xylans, galactans,
arabinans, arabinogalactans, pectins, and resistant starch. Also,
carbohydrate fibers such as agars, sulfated carbohydrates,
alginates, fucoidans, α,β-glucans and chitin may be found in
other natural sources (22, 23). Apart from being a highly diverse
class of molecules, complex variations at the fine chemical
structure level (e.g., polymer size, linkage type, composition
and arrangement of side chains, degree, and identity of ester-
linked molecules) are possible within polymer class, resulting
in dietary fibers with distinct solubilization degree, viscosity
and tridimensional structure (20). For the complete hydrolysis
and utilization of such complex molecules, a given gut bacteria
should have within its genome the ability to produce recognition
and binding proteins, transporters and carbohydrate-active

enzymes (CAZymes) specific to a particular physicochemical
structure (24). As such, the ability and efficiency in utilizing
carbohydrates widely varies within gut individual bacteria or
bacterial groups (24, 25). In addition, overlapping abilities in
fiber degradation within bacterial species result in competitive
pressures within the gut. For instance, Xu et al. (26) showed that
strains of B. cellulosilyticus and B. ovatus both had the ability
to grow on simple arabinoxylan structures. However, when the
strains were cultivated together, B. ovatus outcompeted and
dominated over B. cellulosilyticus. Thus, prebiotic fibers with
specific physicochemical features can be selected to promote
certain bacteria based on the ability of a bacteria or bacterial
group to access and utilize them efficiently in the competitive
environment of the colon (20).

METABOLITES FROM COLONIC DIETARY
FIBER FERMENTATION IN PARKINSON’S
DISEASE

The colonic fermentation of dietary fiber by specialist microbes
in the gut leads to the formation of a variety of gases and
metabolites. SCFAs including acetate, propionate, and butyrate
comprise 90–95% of all microbiota metabolites produced in
the colon (27–29). SCFAs hold biological significance and may
act both locally in the gut and systemically to promote health
benefits at distinct body sites. In neurological disorders, SCFAs
are potentially important for their role in anti-inflammatory
processes (30–32), promotion of blood-tissue barrier integrity
(33, 34), and neuromodulation (35, 36). Moreover, local effects
such as triggering gut peristaltic reflexes (37) could be relevant,
as constipation is an usual clinical finding in many neurological
disorders, including PD (38, 39). Although there are no studies
evaluating acetate and propionate singly in PD, butyrate has been
studied and the majority of preclinical evidence suggests that it
specifically could be beneficial in many aspects of PD (40–45).

Butyrate
Butyrate is the preferred energy source for gut enterocytes,
responsible for most of their energy metabolism (46). Butyrate
also supports gut barrier function through the stimulation of
tight junction assemblies and mucus production. As mentioned,
hyperpermeability of the colonic epithelium occurs in PD (5);
thus, the action of butyrate on the gut barrier may have
clinical importance in PD. At the cell surface level, butyrate
elicits a variety of physiological responses through G protein-
coupled receptors (GPCR) in enterocytes (47). In particular,
butyrate regulates inflammatory pathways that are important
in maintaining gut homeostasis (48, 49) and stimulates the
production of enteroendocrine hormones such as glucagon-like
peptide 1 (GLP-1) and peptide YY (50, 51) (Figure 1). Both of
these hormones reach circulation and exert their action through
receptors spread at distinct body sites, including the brain. In
a mouse model of PD, oral administration of sodium butyrate
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FIGURE 1 | Dietary fiber approach to increase gut-produced butyrate and pathways that have potential benefits to Parkinson’s Disease. Insoluble dietary fibers with

specific chemical structures are fermented by butyrate producers in the gut (e.g., Clostridium Cluster XIVa and IV species). The butyrate produced during fermentation

supports gut barrier function through the stimulation of mucus production and tight junction assemblies, and minimizing antigen translocation and inflammation.

Butyrate also regulates inflammatory pathways through G protein-coupled receptors (GPCR) in enterocytes and through inhibition of histone deacetylase (HDAC) in

macrophages. GPCR signaling in enteroendocrine cells (EEC) induce secretion of hormones (e.g., glucagon-like peptide-1 [GLP-1] and peptide YY[PYY]) that act in

many organs, including the brain.

increased colonic GLP-1 levels as well as upregulated GLP-
1 receptors (GLP-1R) in the brain and resulted in improved
neurobehavioral impairment (52).

Butyrate also influences histone acetylation, a post-
translational modification that influences the propensity of
a gene to be transcribed or repressed (53). Butyrate acts as
a histone deacetylase inhibitor (HDACi) (54), attenuating
production and secretion of pro-inflammatory cytokines
in response to lipopolysaccharide stimuli in macrophages,
complementing analogous modulation of inflammatory process
via GPCRs (55) (Figure 1). Butyrate-targeted histone deacetylase
inhibition is also neuroprotective against dopamine cell death
(44) and DNA damage (42) in-vitro. In a rotenone-induced
drosophila model of PD, sodium butyrate was able to improve
locomotor deficits and reduce early mortality (40). Similar results
were observed in a 6-hydroxydopamine-induced rat model of
PD, in which sodium butyrate attenuated motor impairment
and increased dopamine levels (45). In addition, Zhou et al.
(43) showed that in a cell culture and a murine model of PD,
sodium butyrate was able to up-regulate gene expression of DJ-1,
a protein known to protect dopamine neurons from oxidative
stress and moderate protein aggregation.

All animal studies using PD models utilized oral
administration of sodium butyrate, rather than an approach
using butyrogenic prebiotics. It should be noted that sodium

butyrate is delivered differently to the body compared to
microbiota-produced butyrate from prebiotic fermentation.
Sodium butyrate is absorbed mostly in upper segments of
the gastrointestinal tract, it leads to significant increases in
plasma concentrations of butyrate (56). While this could result
in direct actions in the brain, upper gastrointestinal tract
absorption prevents most of the butyrate supplemented to
reach the large intestine, where it has functions that could
be relevant in PD (e.g., gut barrier function, regulation of
inflammatory pathways, enteroendocrine hormone release).
Microbiota-derived butyrate, on the other hand, generally is
considered to act locally in the gut, with the remaining portion
absorbed by the liver with no significant amounts reaching
bloodstream (57). Interestingly, some reports show increased
blood levels of circulating butyrate in healthy subjects in
response to dietary fiber interventions (58–60), indicating that
a portion of butyrate may escape liver absorption and could
have a direct action in the brain. Inflammatory conditions may
also cause an increase of SCFAs in peripheral venous blood
(61), and therefore, the extent of microbiota produced-butyrate
that reaches bloodstream in PD patients is still a matter of
investigation. Overall, the use of prebiotic dietary fibers to
increase butyrate in the colon could promote both localized
and systemic effects (Figure 1), which seems like a promising
approach in the management of PD. However, preclinical
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studies are needed to evaluate how gut-derived butyrate affects
PD pathophysiology.

Some controversy regarding the commonly accepted concept
of anti-inflammatory and neuroprotective action of SCFAs was
brought to light in a study using a mouse model of PD (62, 63).
Sampson et al. (62) reported that the oral administration of a
SCFA mixture, as well as a fecal transplant, to animals raised
in a germ-free environment or antibiotic-treated, enhanced
PD pathophysiology. It was not clear, however, if the SCFA
mixture dosage utilized corresponds to levels that can be
reached through gut-microbiota production. In this regard,
oral administration of 100 mg/kg of sodium butyrate (NaB),
but not 1,200 mg/kg, attenuated social deficits in an autism
mouse model (64), indicating that distinct outcomes may take
place by changing SCFA concentration. Another consideration
is that orally delivered butyrate is mainly absorbed in the upper
gastrointestinal tract and could have distinctly different outcomes
from the colonic-produced butyrate.

BUTYROGENIC BACTERIA IN THE LARGE
INTESTINE

A number of commensal gram-positive bacteria in the human
gut possess the ability to produce butyrate. The majority
of the butyrate producing bacteria belong to Clostridium
Clusters IV and XIVa of the Firmicutes phylum. These clusters
comprise highly oxygen-sensitive bacteria, which are estimated to
significantly contribute to colonic butyrate production (65, 66).
They also correspond to a numerically important portion of
colonic bacteria. Faecalibacterium prausnitzii from Clostridium
Cluster IV and Eubacterium rectale from Clostridium Cluster
XIVa comprise up to 14 and 13%, respectively, of total fecal
gut microbiota (67). Other major butyrogenic bacteria isolated
from the human colon are Roseburia spp., Eubacterium spp.,
Anaerostipes caccae, Butyrivibrio fibrisolvens, Coprococcus spp.
from Clostridium Cluster XIVa and Subdoligranulum variabile
andAnaerotruncus colihominis fromClostridiumCluster IV (66).
Many of commensal clostridial species preferentially colonize the
mucus layer (e.g., E. rectale, F. prausnitzii, and R. intestinalis)

which is in close proximity to gut epithelium. This strategic
position favors butyrate interaction and uptake by intestinal cells,
stimulating physiologic, metabolic and immunologic processes of
health significance. Nonetheless, species such as A. caccaemostly
inhabit the lumen of the colon where butyrate production helps
to reduce luminal pH, preventing the growth pathogenic bacteria
(68–70). Non-butyrogenic species also indirectly contribute to
butyrate formation through production of other SCFA as a more
acidic gut milieu favors the growth of butyrogenic species (71–
73). Also, many butyrogenic bacteria utilize lactate and acetate
from other bacteria to produce butyrate (66). The importance of
such crossfeeding mechanisms to improve butyrate formation in
the gut is still a matter of discussion as many butyrogenic bacteria
occupy spatially distinct niches different than non-butyrogenic
ones within the gut (70, 74, 75).

Depletion of butyrogenic bacteria from Clostridium Cluster
IV and XIVa, especially those found nearly associated to the
mucus layer is a common and potentially negative finding in the
elderly (68). On top of that, PD patients show lower abundance
of Lachnospiraceae family members (Clostridium Cluster XIVa)
(6–8) and Faecalibacterium (ClostridiumCluster IV) (6, 8–10), as
well as low production of all three SCFAs, including butyrate (9)
compared to individuals of similar age.

PREBIOTIC DIETARY FIBER TARGETING
BUTYROGENIC BACTERIA AND
BUTYRATE PRODUCTION

Colonic bacteria produce butyrate mainly through dietary fiber
fermentation, with proteolytic pathways contributing very little
to overall butyrate production (65). Consumption of a meat-
based diet for five consecutive days resulted in lower butyrate
levels in fecal samples of healthy volunteers when compared
to a plant-based diet. Butyrate reduction was accompanied by
decrease in abundance of butyrogenic bacteria from Firmicutes,
such as Roseburia and E. rectale (Clostridium Cluster XIVa).
Another study with obese individuals showed that 4 weeks
of a very low total carbohydrate intake (24 g/day), including
low dietary fiber, resulted in a 4-fold decrease in Roseburia

TABLE 1 | Examples of insoluble substrates capable of promoting butyrogenic colonic bacteria.

Dietary fiber Study design Butyrogenic bacteria positively affected Study

Chitin-glucan complexes Fecal analysis from diet-induced obese mice Clostridium Cluster XIVa, including Roseburia

spp.

Neyrinck et al. (80)

β-1,3/1,6-D-glucan In vitro human fecal fermentation Anaerostipes spp. and Roseburia Cantu-Jungles et al. (81)

Whole grain barley Fecal analysis from healthy human subjects Eubacterium rectale, Roseburia faecis and

Roseburia intestinalis

Martinez et al. (82)

Wheat bran Fecal analysis from obese males Members from Lachnospiraceae family Salonen et al. (83)

Acetylated galactoglucomannan and highly

acetylated arabinoglucuronoxylan (AGX)

In vitro human fecal fermentation Faecalibacterium prausnitzii La Rosa et al. (84)

Wheat bran In vitro human fecal fermentation Members from Lachnospiraceae family and

uncultured butyrate producers

Duncan et al. (85)

Coarse wheat bran In vitro human fecal fermentation Coprococcus eutactus, Roseburia and other

Lachnospiraceae family members

Tuncil et al. (86)
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spp. and E. rectale accompanied by the same magnitude
reduction in butyrate fecal content (76). These data suggest that
these colonic bacteria are particularly dependent upon dietary
fiber consumption.

Contrary to what is found in Bacteroidetes (known as
carbohydrate generalists, as many species have overlapping
nutrient utilization abilities), available data suggest that,
in addition to crossfeeding, butyrogenic bacteria are more
specialized to degrade unique fiber structures. For example,
Sheridan et al. (77) showed that even bacteria from the same
Roseburia genus (Clostridium Cluster XIVa) present variable
abilities to grow in distinct substrates in single cultures, with
little overlapping in fiber utilization capabilities within species.

As previously discussed, fiber physical features are also related
to its fermentation profile. Most bacteria attached to particles
recovered from human feces belong to Firmicutes (mean 76.8%
against only 18.5% Bacteroidetes), with high abundance of
species from Clostridium Cluster IV and XIVa (74). In vitro fecal
fermentation of wheat bran also showed that Clostridium Cluster
XIVa dominated amongst particle-associated bacteria (78). As
primary colonizers of insoluble substrates, these bacteria would
hold a competitive advantage to degrade insoluble fermentable
substrates. In fact, in pure cultures of R. intestinalis and
Bacteroides xylanisolvens, the former was shown to be strongly
associated with insoluble xylan, while B. xylanisolvens was
enriched in solubilized xylan fractions (79).

Corroborating these results, many insoluble substrates such
as chitin-glucan and β-glucan, as well as some cereals rich
in insoluble fractions, were shown to increase butyrate and/or
colonic butyrogenic bacteria (Table 1). Chitin-glucan complexes
were shown to specifically increase Clostridium Cluster XIVa,
including Roseburia spp. in high-fat (HF) diet-induced obese
mice and promoted desirable metabolic outcomes (80). In
our research group, insoluble β-glucans from fungi specifically
increased Anaerostipes spp. (Clostridium Cluster XIVa) from
<0.5% of the total bacteria in the initial inoculum to
approximately 24% after fermentation of such fiber in vitro (81).
This was accompanied by butyrate increase from 12.5 to 24–26%
after β-glucan fermentation (81). Whole grain barley (82) and
wheat bran (83, 85) were shown to be fermented by members
of Lachnospiraceae family (Clostridium Cluster XIVa) in human
colonic microbiota. Lignocellulosic dietary fibers from feedstocks
such as galactoglucomannan and arabinoglucuronoxylan were
shown to increase Faecalibacterium prausnitzii (Clostridium
Cluster IV) (84). In an indirect way, acetate producers, such as
Ruminococcus bromii through utilization of resistant starch, can
promote butyrate production through cross-feeding (87). These
studies confirm that insoluble polymers with distinct chemical
structures boost divergent butyrogenic bacteria in the colon.

Finally, besides solubility degree and chemical structure, particle
size may be an important fiber characteristic to consider in

butyrogenic prebiotic fiber design and selection. Tuncil et al.
(86) showed that in vitro fecal fermentation of larger wheat bran
particle size fractions led to higher butyrate production, as well
as increases in some members of the Lachnospiraceae family
(Clostridium Cluster XIVa). In contrast, smaller particles were
associated with higher propionate production.

Overall, the few studies using dietary fiber treatment in PD
patients have focused on intestinal constipation (39, 88) and its
pharmacokinetic effects on drug absorption (88). Metabolites
produced in the gut, and composition of gut microbiota in
response to dietary fiber treatment, have not been assessed.
Cross-sectional studies indicate that the microbial composition
in PD patients present distinct composition from healthy
controls (6–10). Although differences in microbial composition
varies between PD and healthy controls across studies, all
researchers report decreased abundance of butyrate producers,
such as bacteria from Clostridium Cluster XIVa and/or IV
(6–10). As butyrate is known to play important physiological
roles both within the gastrointestinal tract and in diverse body
sites, a dietary fiber approach targeting increases in colonic
butyrogenic bacteria (Figure 1) could be beneficial to PD. Studies
designed to evaluate dietary fiber effects on bacterial shifts and
beneficial metabolite production, especially butyrate, as well as
its relation to inflammation, gut permeability, and neurological
outcomes in PD, should be conducted. Dietary fibers with
specific chemical structures can be selected and/or designed to
evaluate if a targeted colonic increase in butyrate and butyrate
producers is beneficial to the management of PD outcomes
beyond intestinal constipation.

CONCLUSION

Promoting increases in gut-derived butyrate is a promising
approach in PD that could have implications in the management
of gut and systemic disturbances. Prebiotic fiber features such
as solubility degree, and chemical and physical structures may
be important in allowing butyrogenic bacteria to compete
against Gram-negative carbohydrate-utilizing bacteria for a more
targeted prebiotic approach. The use of specific butyrogenic
prebiotic fiber structures in PD models would allow for future
pre-clinical studies to understand the effect of gut-produced
butyrate in PD.
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