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Parkinson’s disease (PD) is a multi-systemic disease in the brain arising from the

dysfunction of several neural networks. The diagnosis and treatment of PD have gained

more attention for clinical researchers. While there have been many fMRI studies

about functional topological changes of PD patients, whether the dynamic changes of

functional connectivity can predict the drug therapy effect is still unclear. The primary

objective of this study was to assess whether large-scale functional efficiency changes

of topological network are detectable in PD patients, and to explore whether the severity

level (UPDRS-III) after drug treatment can be predicted by the pre-treatment resting-state

fMRI (rs-fMRI). Here, we recruited 62 Parkinson’s disease patients and calculated the

dynamic nodal efficiency networks based on rs-fMRI. With connectome-based predictive

models using the least absolute shrinkage and selection operator, we demonstrated that

the dynamic nodal efficiency properties predict drug therapy effect well. The contributed

regions for the prediction include hippocampus, post-central gyrus, cingulate gyrus,

and orbital gyrus. Specifically, the connections between hippocampus and cingulate

gyrus, hippocampus and insular gyrus, insular gyrus, and orbital gyrus are positively

related to the recovery (post-therapy severity level) after drug therapy. The analysis of

these connection features may provide important information for clinical treatment of

PD patients.

Keywords: fMRI, dynamic nodal efficiency, Parkinson’s disease, drug treatment, prediction of post-therapy

severity level

INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. It is clinically
characterized by some specific motor symptoms, including rigidity, slowness of movement, tremor
at rest, bradykinesia, and postural instability and some other non-motor symptoms such as
cognitive deficits, impaired olfaction, emotional problems (1, 2). PD can be considered as a
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multi-systemic disease in the brain arising from dysfunction
in several neural networks (3–5). The motor and cognitive
impairments in PD have been related to abnormal functional
connectivity and disrupted network integration in the
brain (6–8).

Several graph theoretic studies revealed an abnormal
topological organization of functional brain networks in PD
patients. Specifically, Skidmore et al. combined fMRI and
graph analysis to find a smaller global efficiency of brain
networks in advanced PD patients (9). Wei et al. found that
PD had significantly decreased efficiency in the cortico-basal
ganglia motor pathway (10). In addition, Dubbelink et al. using
magnetoencephalography and graph theory, reported that
impaired local network efficiency and network decentralization
are very early features of PD that continue to progress over time,
along with reductions in global efficiency (6). In summary, the
graph theory provides a powerful and general framework to
characterize brain connectivity at global and local levels, and
offers a collection of metrics that can quantify the segregation
and integration of information within functional networks
among the brain regions. However, most of the previous
studies did not consider the important dynamic properties of
FC over time, such as the dynamic nodal efficiency; instead,
FC was usually assumed to be constant during the rs-fMRI
experiment (8).

The graph theory-based approach applied to dynamic
FC show that the variability in brain network may also
provide important information on the underlying nature of
neurodegeneration. In a study by Yu et.al., the reduced variability
of local and global network efficiency was detected in a patient
with schizophrenia (11). In a more recent PD study, dynamic
topological properties of brain networks can characterize the
underlying nature of Parkinson’s disease and correlate with
clinical features (8).

The dynamic property of fMRI can enrich the graph theory.
We wonder if the dynamic nodal efficiency (dnE) can be used
to predict the recovery effect after drug therapy (i.e., post-
therapy severity level) of PD patients. If possible, it may provide
useful guidance information for drug therapy. Connectome-
based predictive modeling is a recently developed data-driven
method for identifying the relationship between functional
brain connectivity and the behavioral and cognitive variables of
interest, and then predicting the behavior of patients (12–14).
The predictive modeling procedure has been applied to analyze
connectivity, such as attention control and temperament trait
(14, 15). Its core idea is the cooperative analysis of the
relationship between behavior and FC, finally finding the strong
functional networks that are correlated to the behavior with
statistical significance. It provides an effective way to explore the
correlation between altered topological properties and clinical
indexes of interest.

In the present study, we used rs-fMRI and sliding-window
analysis to build the individual dnE network by computing
each nodal efficiency of each sliding-window and predicted
the post-therapy severity level of PD patients. The global
efficiency is chosen to calculate the dnE, since it may reveal
more PD properties than local efficiency, as indicated by

TABLE 1 | Participant demographic and clinical characteristics.

Mean(±SD)

Age (years) 58.5(±10.1)

Disease duration (years) 10.4(±4.4)

MoCA 21.6(±5.5)

Depression score (BDI-II) 8.5(±10.0)

Levodopa equivalent daily dose (mg) 720.4(±295.7)

Hoehn and Yahr stage 3.7(±0.6)

Frame-wise displacement (mm) 0.33±(0.20)

Medication-off UPDRS-III 44.1(±12.0)

Medication-on UPDRS-III 22.2(±11.8)

Values are given as mean and SD. MoCA, Montreal Cognitive Assessment; BDI-II, Beck

Depression Inventory-II; UPDRS-III, Unified Parkinson Disease Rating Scale III.

Kim et al. whose study showed a significant difference in global
efficiency between PD and the healthy control, but not in
local efficiency (8). Specifically, we proposed a rigorous cross-
validated prediction framework incorporating feature selection
and regression techniques, to predict the drug therapy effect
of levodopa (the most commonly used drug in PD treatment),
which is evaluated by Unified Parkinson Disease Rating Scale
III (UPDRS-III) (16) scores, using the rs-fMRI data from
62 PD patients. We aim to investigate the possibility of
predicting individual after-therapy UPDRS-III scores using
whole-brain dnE network. The post-therapy UPDRS-III scores
for certain patients was estimated, and the potentially important
connections that contribute to the recovery degree were predicted
by the rs-fMRI data.

MATERIALS AND METHODS

Subjects
Sixty-two subjects (mean age, 58.5 ± 10.1 years; 31 females
and 31 male patients) were recruited from Tsinghua University
Yuquan Hospital, Beijing, China. Patients were told to stop
taking drugs 12 h before the rs-fMRI scan (before therapy).
Patients diagnosed with PD based on the UK Brain Bank criteria
(17) were enrolled. Exclusion criteria includes a history of
psychiatric or neurological disease other than PD, other major
medical diseases, head injury, alcohol/drug dependency/abuse
(8). Disease severity of each patient was evaluated by the UPDRS-
III (16) scores given by an experienced specialist after taking
levodopa, including themedication-on andmedication-off states.
These PD patients took different doses of levodopa, according
to a widely used guidance (18) for each patient. None of
them have taken other medicines. Details of the demographic
information can be found in Table 1. All participants signed
the informed consent form before the experiment. This research
was approved by the Ethics Committee of Tsinghua University
Yuquan Hospital.

MR IMAGE ACQUISITION

All data were collected on a 3T Philips Achieva MRI
scanner (Philips Healthcare, Best, The Netherlands) with a
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32-channel head coil. Head motion was controlled by fixing
the head during scanning. Resting-state blood-oxygenation-level
dependent (BOLD) signals were collected with following imaging
parameters: 35 axial slices; repetition time (TR)= 2,000ms; echo
time (TE)= 30ms; flip angle (FA)=90◦; slice thickness=4.0mm;
slice gap =0.8mm; acquisition matrix = 64 × 64; field of view
= 224 × 224 mm2. All the PD patients have only experienced
one rs-fMRI scan, which was carried out before taking levodopa.
During the scan, the participants were instructed to keep their
eyes closed, relax their minds, and remain as motionless as
possible but not to fall asleep. The rs-fMRI scan with 240 dynamic
scans lasted for 8min. High-resolution T1-weighted structural
images in coronal view were acquired with slice thickness
of 1mm without slice gap. Other sequence parameters were:
TR/TE = 7.64/3.73ms, FOV = 256 × 256 mm2 (acquisition
matrix= 256× 256× 160).

Data Processing and Network Analysis
The pre-processing of rs-fMRI data was conducted using the
SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and GRETNA (19)
software. The first four scans were discarded to allow for
magnetization equilibration. Four subjects with the mean frame-
wise displacement value exceeding the maximum displacement
of 1mm were excluded from either the above demographic
information or subsequent data analysis. Data were realigned
to the first volume to correct for head movement. A 0.01–
0.10Hz band-pass was used to reduce the effects of low
frequency drift and high-frequency physiological noises. The
nuisance signal regression (24-parameter head motion profiles,
global signal, CSF signal, and WM signal) was performed.
Data were spatially smoothed with a 4mm full-width at half-
maximum Gaussian kernel. In order to perform group analysis,
the first scan of fMRI time series was co-registered to the
same participant’s T1-weighted images. The transformed T1
structural images were normalized to the Montreal Neurological
Institute (MNI) template space, using the voxel size of
3× 3× 3 mm3.

The flowchart of the subsequent data processing is shown
in Figure 1. The GRETNA software was used to construct the
whole-brain networks for each sliding-window (19). The human
Brainnetome Atlas (http://atlas.brainnetome.org/) was applied
to obtain 246 brain regions (i.e., nodes, with 123 in each
hemisphere), including 210 cortical and 36 subcortical regions
(20). The sliding-window approach was used to explore the time-
varying changes of FC. The window was slided by 2 s along the
240 dyanmic scans (480 s). We chose the window size of 50
time points for the trade-off between the accuracy of capturing
state transitions accurately and the number of overall state
transitions (21), resulting in 191 consecutive windows across
the entire scan. For each sliding window for a participant, the
nodal efficiency was computed, resulting in a 191 nodal efficiency
curve. For each patient, the dnE matrix (246 × 246) were
calculated by computing the inter-node pearson correlation of
the 191-time-point dynamic efficiency curve. The value of each
element in the dynamic nodeal efficiency matrix ranges between
−1 and 1.

Prediction Model
The least absolute shrinkage and selection operator (LASSO)
method (14) was performed to select the features and build
the model.

The least absolute shrinkage and selection operator (LASSO)
is a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces.
The object function is as below:

min
β

∥

∥y− xβ
∥

∥

2

2
+

1

2
λ ‖β‖1

where x denotes the dnEmatrix and y donates the actual UPDRS-
III scores. The objective of the whole regression process is to
solve thematrix β byminimizing the loss function. This L1-norm
regularization typically sets most coefficients to zero and retains
one random feature among the correlated ones, the selection
of parameter λ is a trade-off between the prediction error and
L1-norm regularization we used λ = 0.08 in this study.

The prediction model was chosen to depict the correlation
between the connectome-based feature and the UPDRS-III score.
Considering the size of the dataset, it is not convincing if we
only use part of the training-validate-test dataset. Therefore,
the Leave-One-Out-Cross-Validation (LOOCV) was used to
maximize the loss function (22, 23). In LOOCV, N-1 (N is
number of subjects, N = 62) samples were used as training data
and the remaining samples were used as validation data. The
left subjects were used as the input to the training model which
was derived with inner training data, generating the estimated
UPDRS-III scores. This loop was repeated N times to test all
subjects. Each time, the predicted UPDRS-III scores for the left-
one-out subjects, the identified FCs, and their corresponding
weights in the training model were obtained. By pulling all
testing subjects across N loops together, we obtained the
prediction results for all subjects. Thus, there were N regression
models of the same type with the same parameters for learning
and predicting different data. The prediction performance was
assessed by the Pearson correlation (with Bonferroni correction)
between the model predicted UPDRS-III scores and the actual
scores. Permutation test (1,000 times) was carried out to access
the significance (24). Mean Absolute Error (MAE) were used to
measure the magnitude of the error between the predicted and
the actual UPDRS-III scores.

FEATURE IDENTIFICATION

Since we applied a cross-validation strategy to estimate
the UPDRS-III scores, in each iteration, slightly different
connections were selected. The relative weights for all selected
connections were determined by averaging the regression weights
of all loops. For better interpretation and visualization (14, 15),
we grouped the 246 FC nodes into 24 relatively large brain
regions defined by the Brainnetome atlas (20), and estimated the
inter-region contributing power by averaging the weights of all
FCs connecting between two specific macroscale regions.

Frontiers in Neurology | www.frontiersin.org 3 July 2019 | Volume 10 | Article 668

http://www.fil.ion.ucl.ac.uk/spm
http://atlas.brainnetome.org/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Predicting the Post-therapy Severity Level of PD

FIGURE 1 | The prediction and validation flowchart incorporating feature selection and regression analysis. (A) shows the detailed steps of the data preprocessing

including parcellation, efficiency network computing, feature selection, regression model, and the final feature verification. (B) is the related information from the image

preprocessing to feature identified.

RESULTS

Clinical Data
Firstly, we compared the UPDRS-III scores before and
after levodopa therapy (“medication-off” and “medication-on,”
respectively). The paired t-test shows significant difference (p <

0.0001) of the UPDRS-III scores between medication-off (44.1
± 12.0) and -on (22.2 ± 11.8), which demonstrates the efficacy
of levodopa.

Feature Selection for Medication-off and
Medication-on
The mean contributing weights of whole-brain dnE network are
shown in Figure 2. For the medication-off status, MedioVentral
Occipital Cortex (MVOcC), are the important regions. For
the medication-on status, the important regions are frontal
regions including the Inferior Frontal Gyrus (IFG), Middle
Frontal Gyrus (MFG), Superior Frontal Gyrus (SFG) and Orbital
Gyrus (OrG).

Prediction Performance
The dnE network based prediction models achieved significant
correlation between the predicted and the true UPDRS-III scores
of either medication-off or -on for the 62 PD patients (Figure 3).
Specifically, Pearson correlation of r = 0.54 (p = 4.56 × 10−6,
MAE= 9.49) and r = 0.65 (p= 8.06× 10−9, MAE= 7.52) were
obtained for medication-off and –on, respectively. All the results
passed Bonferroni corrections for the multiple comparisons. The
p-value of the permutation test is 0.004 and 0.001 for medication-
off and –on, respectively.

Connections Identified
The relative weights of dnE network connecting between
each pair of the 24 anatomically defined macro-scale areas
are displayed in Figure 4. The identified features in the dnE
network of either medication-off or -on include the negative
connections (blue) and positive connections (red). The width of
the inter-node lines represents the strength of the connections.
For the negative connections, stronger connectivity reflects
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FIGURE 2 | Mean weights distribution of whole-brain dnE network for each of the two states including medication-off and medication-on. The mean contributing

weights of whole-brain dnE network connections for medication-off and medication-on were calculated by computing the correlation between connections of each

macro-scale with the traits of UPDRS-III. Blue represents negative correlation and red represents positive correlation. As shown in the matrix plot, the 246 FC nodes

are grouped into 24 macro-scale brain regions that are anatomically defined by the Brainnetome atlas. For the matrix plots, rows and columns represent predefined

macro-scale regions in the Brainnetome Atlas, and a bigger circle represents a higher predictive weight. Names of 24 macroscale regions were colored according to

their lobe locations. dnE, dynamic nodal efficiency.

lower disease severity thus better recovery after drug therapy.
The positive connection case reflects the contrary. Specifically,
for medication-off, dnE network connections show more

contributing power betweenMiddle Temporal Gyrus (MTG) and
STG, Postcentral Gyrus (PoG) and Superior Parietal Lobule (25).
The stronger the connections, the better the recovery of PD.
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FIGURE 3 | Scatter plot of the predicted four states of the UPDRS-III scores with respect to their true values based on the prediction framework using whole-brain

dnE network. With the connectome-based prediction framework, Pearson’s correlation of r = 0.54 (p = 4.56 × 10−6) and r = 0.65 (p = 8.06 × 10−9) were achieved

for medication-off and medication-on, respectively, in the nested cross-validation using whole-brain dynamic nodal efficiency network. The abbreviations of the brain

areas are from the Brainnetome atlas (http://atlas.brainnetome.org/) (20).

There is a negative correlation between the strength of some
connections and the UPDRS-III scores, such as the connections
between Precuneus (Pcun) and Orbital Gyrus (OrG), Inferior
Parietal Lobule (IPL), and lateral Occipital Cortex (LOcC), IPL,
and Fusiform Gyrus (FuG). The stronger the connections, the
worse the recovery of PD.

For medication-on, in terms of the feature analysis of
predicting recovery effect after the drug therapy, the contributing
power is mainly concentrated on hippocampus (Hipp), PoG,
Pcun, Cingulate Gyrus (CG), Insular Gyrus (INS), and OrG.
Particularly, the features of the connections between Hipp and
CG, INS, Pcun, OrG, respectively, have much influence on the
recovery after therapy. The stronger the connections, the better
the recovery. For other regions, such as MFG and MTG, the
stronger the connection between MFG and Inferior Temporal
Gyrus (ITG) or the connection betweenMTG and SPL, the worse
the recovery of PD. The prediction efficacy of each region is
shown in Figure 4C. The results are from the regression model
and are normalized to the range of 0 to 1.

DISCUSSION

Through analyzing the efficiency of correlation networks using
rs-fMRI, the present study investigated the important features
of connections that are correlated to the post-therapy disease
severity (UPDRS-III scores) after taking levodopa in the 62 PD
patients. Studying the effect of drug therapy is an important
topic in PD research. Finding what influences the effect of
drug therapy is of great significance. This work predicted the
correlation between the dnE network and the actual effect of drug
therapy by training a regression model. The major findings of
the present study are as follows: (1) The connection efficiency
of networks based on rs-fMRI can effectively depict the severity
of PD (UPDRS-III scores), and further predict the recovery
effect after drug therapy. (2) The Hipp region is an important
area that indicates drug therapy effect in the dnE network. (3)
Increased cortical functional connectivity from ITG and MTG
has a negative effect on the recovery. As such, these findings

provide new evidence that the rs-fMRI network connectivity
strengthening or weakening within key functional networks in
dnE network plays an important pathophysiological role in the
recovery of PD patients.

The FC analysis of the brain network has revealed that the
brain is organized according to a highly efficient small-world
topology, combining a high level of segregation (local efficiency)
with a high level of global integration (global efficiency) (26).
Most of the previous studies did not consider the important
dynamic properties of FC, as functional connectivity was
assumed to be constant during rs-fMRI scanning. However,
dynamic FC may yield novel insights into brain function and
dysfunction (8). The sliding window approach is commonly
used for examining dynamics in resting-state FC, resulting in
quantification of the time-varying behavior of a chosen metric.
In this study, we selected the nodal global efficiency (i.e., nodal
efficiency) as the metric, then obtained the time-varying behavior
of each nodal global efficiency. Global efficiency is a network
attribute that quantifies how easily information can be exchanged
over the network. It provides information on the communication
efficiency of a network as a whole, with higher values indicating
more efficient information transmission through the whole brain.
We further calculated the inter-node correlation of the dnE, to
further reveal the synchronization of the dynamic property of FC
between two regions.

The prediction model analyses demonstrated that some
specific subnetworks with decreased connectivity are correlated
with the recovery effect after drug therapy. The regions mainly
include parietal lobe, insular lobe, limbic lobe, and Hipp.
The connections between these regions are directly positively
correlated to the recovery after drug therapy: the stronger the
connections, the better the recovery (lower UPDRS-III scores).
Nonetheless, there are several key pathways in the SPL, ITG,
MFG, MTG showed negative influence on the recovery of PD.

Previous studies showed that the decreased functional
connectivity of the temporal cortex is related to the disease
progression of PD (27, 28). We drew the similar conclusion
here, especially for the connection between MTG and STG.
In addition, we found that a distributed set of regions in the
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FIGURE 4 | Continued

Frontiers in Neurology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 668

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Predicting the Post-therapy Severity Level of PD

FIGURE 4 | The identified features in the dnE network between medication-off (A) and medication-on (B), respectively, including the negative connections (NC)

represented by blue and the positive connections (PC) represented by red, respectively. The width of the inter-node lines represents the strength of connections. For

the negative connections, stronger connectivity reflects smaller disease severity and better recovery after drug therapy. The positive connection case is on the

contrary. The prediction efficacy of each node for medication-on is shown in (C). The results are from the regression model and are normalized to the range of 0 to 1.

As shown in the circle plots, the 246 FC nodes (inner circle) are grouped into 24 macro-scale brain regions (outer brain representations) that are anatomically defined

by the Brainnetome atlas. Specifically, nodes incorporated in each of 24 macro-scale brain areas are plotted with different colors, which delineate their corresponding

anatomy locations in the outer brain representations.

frontal lobe, temporal lobe, occipital lobe, and parietal lobe
showed decreased inter-node correlation of dnE in these patients.
The decreased correlation is related to the high post-therapy
UPDRS-III scores of PD patients. It reveals that these regions
are also related to the disease progression of PD. Among these
important connections exist, such as the connection between
the paracentral cortex and OrG. Some other studies have also
reported that connections among these regions is related to
cognitive decline (29).

This study shows that the Hipp region, which was previously
reported to influence dementia (30), is also an important area to
indicate drug therapy effect. Previous study also shows that there
is a high correlation between PD and dementia, i.e., PD with
dementia (31). This study reveals that individualized recovery
effect after drug therapy can be influenced by the functional
connections between Hipp and other areas, on which enough
attention should be paid before therapy.

The selected features (Figure 2) are not necessarily useful for
the following prediction. For example, the frontal area appears
to be important in the feature selection, but the Hipp area is
the dominant feature for prediction. Therefore, how to improve
feature selection needs to be further studied. Reducing feature
dimension while maintaining all of the connection information
might need to be carefully considered.

There are several limitations of this study. First, the number
of subjects was relatively small to draw firm conclusions. Second,
the dynamic property of FC we investigated in this study is only
the commonly used global efficiency. It should be noted that
choosing the global efficiency does not mean less importance
of other network properties. Other dynamic properties, such
as local efficiency, may provide additional information and are
worthwhile to be further investigated in future studies. Third, the
long-term follow-up study should be carried out in the future to
follow the outcome of patients.

CONCLUSION

In this study we studied a sample of 62 PD patients and calculated
the dnE based on rs-fMRI. With connectome-based predictive

models using LASSO, we demonstrated that the dnE properties
can successfully predict the post-therapy severity level of PD
patients after taking levodopa. The contributed regions for the
prediction include hippocampus, post-central gyrus, cingulate
gyrus, and orbital gyrus. Specifically, the connections between
hippocampus and cingulate gyrus, hippocampus and insular
gyrus, insular gyrus and orbital gyrus are positively related to the
recovery after drug therapy. The analysis of these connectivity
features can provide guidance information for clinical therapy in
PD patients.
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