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Neurocognitive computerized assessment tools (NCATs) were developed to assist

military clinicians with the tracking of recovery from injury and return to full duty decisions

with a recent focus on the setting of post-concussion evaluations. However, there is

limited data on the impact of deployment on neurocognitive functioning, sleepiness,

and mood in healthy, non-concussed Service members. Automated Neuropsychological

Assessment Metrics version 4 TBI Military (ANAM) data was obtained for a sample of

active duty deployed personnel (n = 72) without recent history of mild traumatic brain

injury (mTBI). A linear regression was conducted to examine the effects of sleepiness

and mood state on neurocognitive performance. The overall multivariate regression

was statistically significant. Negative mood states were the most salient predictors of

neurocognitive performance with higher levels of endorsement associated with lower

scores. The findings support measures of negative mood state, but not sleepiness, as

relevant predictors of neurocognitive performance as measured by the ANAM. These

results indicate that mood needs to be considered when reviewing neurocognitive data

to ensure that appropriate clinical decisions are made; in particular for return-to-duty

decisions in deployed settings after concussion recovery.

Keywords: assessment, depression, statistical methods, sleep disorders, military

INTRODUCTION

Traumatic brain injury (TBI), specifically mild TBI (mTBI), was considered to be the signature
battlefield injury of Operations Iraqi Freedom and Enduring Freedom (1). TBI is defined by the
United States Department of Defense (DoD) as “a structural or physiological disturbance of the
brain, caused by an outside force that is followed by clinical symptomology” (e.g., loss of memory,
slowed thinking, and confusion). It is recognized that some military Service Members (SMs)
diagnosed with mTBI, especially those experiencing multiple injuries, may also experience changes
in personality, sleep problems, and cognitive impairment and can increase the risk for suicide,
post-traumatic stress disorder, depression, and anxiety (2, 3).

Due to these immediate and long-term impacts of mTBI it has been of importance to
DoD clinical personnel to properly screen for injury and to monitor recovery from injury.
Neurocognitive assessment tools (NCATs), also known as computerized neuropsychological
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assessment devices (CNADs) and computerized neurocognitive
test (CNT) batteries, are often used to assess athletes and
US military service members following an mTBI. In 2008,
following the lead of the sports medicine community, Congress
mandated that all SMs receive a pre-deployment neurocognitive
assessment using an NCAT, the Automated Neuropsychological
Assessment Metrics 4 TBI-MIL (hereafter referred to as the
ANAM), prior to any deployment to a combat zone (4)
for the purposes of establishing a baseline for post-injury
comparative purposes. Such comparisons can be used to evaluate
neurocognitive functioning to screen for deficits in cognition
following an mTBI event in both the acute and post-acute
phases of injury, to track recovery, and provide data to assist
with return-to-duty decisions. However, it should be noted that
any comparison to pre-deployment data is only valid if the
assessment is an actual representation of an individual’s typical
neurocognitive functioning. Researchers have recently identified
numerous threats to the validity of baseline assessments,
including sleepiness, and mood (5).

Military personnel are especially vulnerable to any adverse
effect sleepiness may have on NCAT performance as chronic
insufficient sleep is prevalent among personnel deployed to
combat environments (nightly average of 6.25 h) (6). Chronic
insufficient sleep or sleep insufficiency occurs when sleep is
insufficient to support adequate alertness, performance, and
health, either because of reduced total sleep time (decreased
quantity), or fragmentation of sleep by brief arousals (decreased
quality). A recent meta-analysis reported sleep restriction
significantly impairs cognitive functioning across a numerous
cognitive domains (7). Insufficient sleep has been specifically
linked to impairments in attention, reaction time, learning and
memory, and decision-making (8–17). These impairments are
associated with altered functioning of the dorsolateral prefrontal
cortex and parietal regions of the brain (18). Research has
shown that even one night of insufficient sleep can alter the
connectivity of neural networks to the detriment of cognitive
processes (19). Numerous studies have reported that when sleep
is reduced to <7 h cognitive performance is lower in tests for
vigilance, alertness, reaction time, memory, and decision-making
(11, 12, 20, 21).

Abnormal mood may also challenge the validity of NCATs.
The ANAM contains a self-report mood scale designed to assess
several dimensions of mood (e.g., anger, anxiety, and depression)
(22). Post-injury assessments may be useful for detecting changes
in mood resulting from mTBI-related depression and heightened
anxiety. Research has established that both depression and
anxiety adversely affect cognitive processes (23, 24). Depression
has been linked to decreases in both short and long-term
memory, executive function, attention, and simple reaction time
(23, 25). Similarly, anxiety has been linked to decreases in
executive functioning and inhibition (24). Additional research

Abbreviations: ANAM, Automated Neuropsychological Assessment Metrics

version 4 TBI Military; DoD, Department of Defense; ImPACT, Immediate Post-

Concussion Assessment and Cognitive Test; NCAT, Neurocognitive Computerized

Assessment Tools; NCS, Neurocognitive Composite Score; SMs, Service Members;

TBI, Traumatic Brain Injury; mTBI, Mild Traumatic Brain Injury.

focusing on SMs who served in Operations Iraqi Freedom and
Enduring Freedom has indicated that combat exposure is a
risk factor for both anxiety and depression (26). All the studies
suggest that mood should be examined as part of any post-
injury assessment.

To best of our knowledge, no study has examined the degree
insufficient sleep affects performance on the ANAM4 TBI-MIL;
however, research involving previous iterations of the ANAM
have reported that both sleep restriction and deprivation were
associated with lower scores. None of these studies reported on
the relationship between insufficient sleep and the ANAMmood-
scale, but Acheson et al. (27) reported that insufficient sleep
resulted in increased fatigue and decreased positive mood states
as indicated by the Profile of Mood States (POMS). Other studies
focusing on military populations using NCATs other than the
ANAM have indicated that insufficient sleep associated with high
stress environments, such as high-stakes training, survival (28),
and/or simulated operational environments, results in decreases
in mood, and neurocognitive performance (29–32).

The aim of this study was to elucidate and compare the
relationships among self-reported sleepiness, mood state, and
neurocognitive performance in deployed service members as
measured by the ANAM.

MATERIALS AND METHODS

Records
The study used a retrospective cross-sectional design. A subset
of healthy non-concussed SMs who received medical care for
minor deployment-related orthopedic injuries at a concussion
care center were extracted from an archival database containing
demographic and neurocognitive assessment data from deployed
Marine Corps units. Inclusion criteria was based on no history
of any severity of TBI in the preceding 12 months based
on the DoD and Veterans Affairs consensus criteria. History
of concussion was based on the results of a self-report TBI
questionnaire that is administered as part of the ANAM and
determined by an endorsement of at least one of the following
symptoms immediately following the injury event: feeling dazed
or confused, experiencing loss of consciousness, or experiencing
loss ofmemory for the injury. After inclusion criteria was applied,
there were 72 SMs for analyses.

The original protocol was approved by the Naval Air Warfare
Center Aircraft Division institutional review board, Patuxent
River, MD (protocol NAWCAD.2011.0003-CR01-EMC) (33).
Data from that protocol were de-identified and archived for
further use. Subsequent analyses on the de-identified archival
database were reviewed by the Navy Experimental Diving
Unit Institutional Review Board and determined to be exempt
human subject research in compliance with all applicable Federal
regulations governing the protection of human subjects.

Neurocognitive Testing
The ANAM is an automated, CNT battery that includes
a sleepiness scale, mood scales, a questionnaire for self-
reporting TBI, and the following subtests: Code Substitution
(CDS), Matching-to-Sample (M2S), Mathematical Processing
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(MTH), Procedural Reaction Time (PRO), Simple Reaction
Time (SRT), Code Substitution Delayed (CDD), and Simple
Reaction Time Repeated (SR2) (34). Detailed descriptions of the
TBI questionnaire and subtests can be found elsewhere (35).
Throughput scores (mean correct responses per 60 s) from each
subtest were used in all analyses. The ANAM has been shown
to be a reliable and valid tool that has clinical utility as a
population screening tool for the detection of neurocognitive
dysfunction following a single, uncomplicated concussion within
a 72-h window (36).

The sleep scale (i.e., sleepiness) is a self-reported measure of
sleepiness rated on a 7-point Likert scale, with values closer to
7 indicating increased sleepiness and fatigue. The mood scale
is a self-reported measure assessing seven mood dimensions,
including happiness, vigor, restlessness, depression, anxiety,
fatigue, and anger. Each dimension consists of six adjectives,
rated on a 7-point Likert scale, with higher values representing
greater degrees of endorsement of eachmood state. Confirmatory
factor analysis supports a 7-factor model of the mood scale,
although there is evidence to suggest an alternative 2-factor
model encompassing positive and negative mood states (22).

Statistical Analyses
All analyses were performed with MATLAB 2013b (Mathworks,
Natick, MA) and SPSS Version 22 (IBM, Armonk, NY).

Normative Data
The use of normative data is a cornerstone of neuropsychological
assessment (37). An extensive normative database for the ANAM
exists with over a hundred thousand data points, which stratifies
the performance of healthy, non-concussed SMs according to
age and gender; these data were collected as part of SMs pre-
deployment baseline assessments (35).

Descriptive Statistics
Examinations of histograms, normality plots, and Lilliefors
statistics revealed that there were minor violations of univariate
normality. Thus, non-parametric statistics were used for any
comparisons of means. Outliers were assessed as three times the
interquartile range above the third quartile or three times below
the first quartile. All outliers were removed for the analysis.

Descriptive statistics were calculated for each subtest and
it was determined if any mean was outside the normal range
of functioning (i.e., normal limit; defined as within the 25th
to 75th percentile ranks of previously published normative
ANAM data) (35). Due to the normality violations, a series of
one-sample Wilcoxon signed rank tests were used to evaluate
differences in sleepiness, mood scale, and subtest data between
the sample and an-age matched normative sample. Effect size
was evaluated using rank biserial (rsb) correlations and the results
were interpreted using the following criteria for strength of
association: small = 0.1, medium effect = 0.3, and large effect =
0.5 (38, 39). No adjustment was made for multiple comparisons.
A p-value of ≤ 0.05 was considered significant.

Data Reduction
All data were converted to Z-scores using age-matched (21–25
years) normative data (35). The Z-score means for CDD, CDS,
M2S, MTH, PRT, SRT, and SRT2 were averaged to create a
neurocognitive composite score (NCS). Use of composite scores
in neuropsychological testing has been reported to minimize
floor and ceiling effects and reduce the risk of a Type I error (40).

Due to multicollinearity concerns within the mood scale,
a principal component analysis was conducted on the seven
mood subscales to reduce the dimensionality of mood data
to a smaller number of latent components. As a general
rule, mood dimensions that loaded below 0.4 on all extracted
components were removed and the principal component analysis
was repeated. The resulting uncorrelated principal components
were used as predictors in regression analyses.

Regression Models
Multiple linear regression models with simultaneous predictor
entry were run for each ANAM subtest and the ANAMcomposite
score using sleepiness and each mood scale principal component
as predictors. Collinearity diagnostics were run to ensure partial
regression coefficients derived from regression analyses were
estimated precisely and that the relative importance of each
predictor for neurocognitive performance could be assessed
reliably. Multicollinearity was measured using variable inflation
factors (VIF) for each predictor. Significant multicollinearity
was indicated if any VIF exceeded 4 (with values approaching
10 indicating serious multicollinearity) (41). Violations of
multivariate normality were checked using histograms and QQ-
plots of the standardized residuals.

RESULTS

Descriptive Statistics
Table 1 presents descriptive data. The available demographic data
for the overall record sample consisted of all males (100%),
who were enlisted (100%), with a mean age of 25.4 (SD = 5.0)
years. The majority of means fell within the range of normal
functioning with only PRT, SRT, and SRT2 falling below the 25th
percentile and anger and depression above the 75th percentile
compared to the age-matched comparative norm. There was
an indication toward lower scores in the deployment sample
for all of the subtests, with M2S having the most prominent
difference (−19%), and for vigor and happiness (one-sample
Wilcoxon signed-rank tests, all p < 0.05). There were also
indications of higher scores for sleepiness, restlessness, anxiety,
anger, and fatigue.

Table 2 presents correlations between NCS, sleepiness, and
mood. There were significant associations between NCS and each
of the predictor variables, with only vigor having lower than
a medium effect (r = 0.27). There were negative correlations
between neurocognitive performance and sleepiness (r=−0.34),
restlessness (r = −0.40), anxiety (r = −0.36), depression (r =
−0.40), anger (r = −0.34), and fatigue (r = −0.39), and positive
correlations between neurocognitive performance and vigor (r =
0.27) and happiness (r = 0.38).
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TABLE 1 | Descriptive Statistics of the ANAM Subtest, Sleepiness, and Mood Data.

Measures Normative data Sample

M SD M SD p ES

NEUROCOGNITIVE SUBTESTS

Code substitution delayed 48.20 15.80 42.25 17.76 0.008* −0.37††

Code substitution 54.60 11.20 50.46 11.95 0.004* −0.39††

Matching to sample 36.40 11.00 29.60 10.11 0.001* −0.65‡‡

Mathematical processing 20.80 6.20 18.30 6.10 0.001* −0.44††

Procedural reaction time 101.60 14.00 90.99† 21.37 0.001* 0.47††

Simple reaction time 237.80 28.40 210.69† 57.03 0.002* 0.42††

Simple reaction time repeated 237.40 30.60 204.27† 64.06 0.001* −0.44††

Sleepiness 2.40 1.20 2.77 1.30 0.004* −0.39††

MOOD SCALE

Anger 16.20 20.00 26.16‡ 24.41 0.010* 0.35††

Anxiety 14.80 15.00 20.46 19.92 0.049* 0.27**

Depression 12.20 17.20 17.45‡ 19.85 0.143 0.20**

Fatigue 24.40 19.00 30.75 21.47 0.032* 0.29**

Happiness 64.60 21.60 54.07 25.45 0.002* −0.42††

Restlessness 17.40 17.00 26.17 22.99 0.015* 0.33††

Vigor 57.60 19.60 48.16 20.83 0.001* −0.46††

M, mean; SD, standard deviation; ES, rank biserial correlations.
*Significant differences compared with the normative data (according to the Wilcoxon test).
†
Below the 25th percentile rank of normative data.

‡Above the 75th percentile rank of normative data.

**Effect size exceeds the threshold for small effect (rsb > 0.10).
††
Effect size exceeds the threshold for small effect (rsb > 0.30).

‡‡Effect size exceeds the threshold for small effect (rsb > 0.50).

Data Reduction
The Kaiser-Meyer-Olkin (KMO) Test of sampling adequacy
(KMO = 0.829) indicated that enough cases were present
in the dataset to support the PCA. The PCA converged
on a two-factor solution, with components accounting for
65 and 22% of variance, respectively. As shown in Table 3,
Component 1 included negative mood states (restlessness,
anxiety, depression, anger, and fatigue) whereas Component
2 included positive mood states (vigor and happiness). Vigor
and happiness negatively cross-loaded onto Component
1, although this was expected given negative associations
between self-reported negative and positive mood states.
For multiple linear regression analyses, the negative and
positive mood components, along with sleepiness, were used as
predictors of neurocognitive performance in lieu of individual
mood subscales.

Regression Models
Results of multiple linear regression analyses are presented in
Table 4. Only regression models for M2S, PRT, SRT, SRT2,
and NCS reached statistical significance at p < 0.05. Adjusted
R2 values indicated that sleep and mood accounted for ∼10–
20% of the variability in ANAM throughput scores for M2S
(Adjusted R2 = 0.11), PRT (Adjusted R2 = 0.12), SRT (Adjusted
R2 = 0.19), SRT2 (Adjusted R2 = 0.22), and NCS (Adjusted
R2 = 0.18). This relationship was driven by negative mood,
which emerged as the only significant predictor of ANAM
throughput scores in these models. Lower throughput was

associated with higher negative mood state values. There were
no indications of multicollinearity based on VIF and tolerance
values for sleepiness (VIF = 2.10, tolerance = 0.48), negative
mood (VIF = 1.82, tolerance = 0.55), and positive mood
(VIF = 1.28, tolerance = 0.78), nor were there violations of
multivariate normality.

DISCUSSION

This study was the first to examine the relationships between
measures of sleepiness, mood, and neurocognitive performance
in deployed SMs. Elucidating the relationships between
these variables is imperative for the proper interpretation
of neurocognitive assessment data as negative mood and
sleepiness have been reported to adversely affect neurocognitive
performance (42, 43). Thus, it is especially important
for clinical personnel to consider such relationships and
how mood may affect performance if the data are to be
used to make post-concussive injury decisions, such as
return-to-duty decisions. The primary findings of the
study were that measures of mood, particularly negative
mood states, within the ANAM predicted neurocognitive
performance during deployment. These negative effects
of mood on neurocognitive performance were most
pronounced for ANAM subtests indexing sensorimotor
speed (i.e., SRT, SRT2, PRT), as well as an overall ANAM
composite score.
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TABLE 2 | Correlations between the ANAM sleepiness, mood, and neurocognitive composite scores.

Measure 1 2 3 4 5 6 7 8 9

1. NCS 1

2. Sleepiness −0.365** 1

3. Vigor 0.274*,† −0.615**,‡ 1

4. Restlessness −0.386**,† 0.503**,‡ −0.143,† 1

5. Depression −0.364**,† 0.534**,‡ −0.274*,† 0.827**,‡ 1

6. Anger −0.341**,† 0.539**,‡ −0.236*,† 0.852**,‡ 0.830**,‡ 1

7. Fatigue −0.374**,† 0.684**,‡ −0.370**,† 0.765**,‡ 0.784**,‡ 0.714**,‡ 1

8. Anxiety −0.329**,† 0.337**,† 0.005 0.841**,‡ 0.804**,‡ 0.788**,‡ 0.637**,‡ 1

9. Happiness 0.375**,† −0.592**,‡ 0.834**,‡ −0.423**,† −0.514**,‡ −0.494**,† −0.524**,‡ −0.274*,† 1

NCS = neurocognitive composite score.
*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.001 level (2-tailed).
†
Effect size exceeds the threshold for small effect (r > 0.10).

‡Effect size exceeds the threshold for a medium effect (r > 0.50).

TABLE 3 | Component matrix loadings of unrotated components extracted by

principal component analysis.

Measure Component Matrix

Component 1 Component 2

Restlessness 0.91 0.26

Depression 0.92 0.13

Anger 0.90 0.15

Fatigue 0.87 −0.02

Anxiety 0.83 0.42

Vigor −0.41 0.88

Happiness −0.66 0.70

Bold values indicate membership of mood scales to respective principal components.

This is a key finding that needs to be considered when
examining post-injury data as changes in mood; specifically
changes in negative mood (e.g., fatigue, depression, anxiety,
irritability, and emotional lability) are commonly associated with
mTBI (44–47). Most mood-related symptoms, regardless
of injury severity, remain elevated for 2 weeks post-
injury (48); however, depressive symptoms have been
reported to remain elevated for a month or more post-
injury (49). Mood-related symptomology is so common
following TBI that a mood-related symptom profile is
one of the suggested symptom-based profiles for combat-
related mTBI (44) and one of the suggested clinical profiles
for sports-related concussion (50–53). To complicate
matters, mood-related symptoms are often comorbid with
cognitive symptomology (e.g., problems with attention,
multitasking, distractibility) (47) making it very difficult to
parse out the specific effects of mood-related symptoms on
neurocognitive functioning.

There were significant changes in our deployed sample
compared to normative data with decreases in neurocognitive
scoring and positive mood and increases in sleepiness and
negative mood. The overall mood state of the sample compared

to the normative data was expected due to the high levels of
psychological and physical stress associated with deployment
(54, 55). Recent research has linked deployment stressors
to negative post-deployment psychological health outcomes
including, but not limited to, increased risk of physical health
problems, increased fatigue, mood swings, suicidality, irritability,
anxiety disorders, major depression, and substance abuse (56).
Deployment-related stressors can also be compounded by other
stressors distinct tomilitary service, includingmission ambiguity,
engagement ambiguity, leader climate, cultural, and situational
ambiguity (56). To compound matters, the sampled Marine
units are known to have high rates of repeat deployments,
longer deployments, and less time between deployments, both of
which are associated with decreased morale, changes in mood,
decreased psychological health, stress-related work problems,
and sleep dysfunction (57–59).

Studies have reported that 75% of SMs rated their sleep as
worse during deployment compared to pre-deployment levels
(6) and that as many as 27% of SMs returning from Operations

Iraqi Freedom and Enduring Freedom have reported trouble

sleeping while deployed (56). The literature is clear that service
members are at risk for insufficient sleep; in terms of sleep
quantity and poor sleep quality and that, these risks are
aggravated by deployment, especially in redeployers (6, 59, 60).
Sleep dysfunction historically has been viewed as a symptom
of anxiety and/or depression with insomnia being common
between the two disorders. Research has shown that there is
bidirectional relationship where poorer sleep quality may be
a mechanism through which work stress results in increased
depression and that increased depressive symptoms may result
in poorer sleep (61, 62).

Ultimately, deployment-related increases in sleepiness
and negative mood states, particularly those associated

with depression and anxiety, are of concern as these factors
may confound the results of mTBI-related neurocognitive

assessments and lead to invalid patient dispositions. It should
be noted that there is currently no agreement on whether

anxiety and/or depression adversely affect neurocognitive
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TABLE 4 | Summary of multiple regression models predicting ANAM test performance.

ANAM subtest F-test Adjusted R2 Sleep Negative mood state Positive mood state

CDD F (3,68) = 1.55, p = 0.208 0.02 t = −0.22, p = 0.827 t = −1.74, p = 0.087 t = 0.01, p = 0.994

CDS F (3,68) = 1.47, p = 0.231 0.02 t = −0.18, p = 0.858 t = −1.35, p = 0.183 t = 0.07, p = 0.607

M2S F (3,68) = 3.98, p = 0.011* 0.11 t = −0.65, p = 0.518 t = −2.07, p = 0.042* t = −0.08, p = 0.934

MTH F (3,68) = 0.29, p = 0.830 0.00 t = 0.11, p = 0.912 t = −0.12, p = 0.476 t = 0.36, p = 0.722

PRT F (3,68) = 4.09, p = 0.01** 0.12 t = −0.30, p = 0.766 t = −2.24, p = 0.028* t = 0.87, p = 0.386

SRT F (3,68) = 6.45, p < 0.001*** 0.19 t = −0.33, p = 0.741 t = −2.93, p = 0.005** t = 0.81, p = 0.421

SRT2 F (3,68) = 7.59, p < 0.0001*** 0.22 t = −0.37, p = 0.711 t = −3.22, p = 0.002** t = 0.59, p = 0.557

NCS F (3,68) = 6.16, p < 0.001*** 0.18 t = −0.30, p = 0.763 t = −2.90, p = 0.005** t = 0.66, p = 0.513

CDD, Code Substitution Delayed; CDS, Code Substitution; M2S, Match to Sample; MTH, Mathematical Processing; PRT, Procedural Reaction Time; SRT, Serial Reaction Time; SRT2,

Simple Reaction Time Repeated; NCS, neurocognitive composite score.
*Coefficient is significant at the 0.05 level (2-tailed).
**Coefficient is significant at the 0.01 level (2-tailed).
***Coefficient is significant at the 0.001 level (2-tailed).

performance, with research supporting both sides (63–66).
However, there are numerous ways in which mood, depression,
and anxiety can be related to decreased neurocognitive
performance: changes in mood (i.e., depression and anxiety)
and decreased neurocognitive performance can be direct
symptoms of the same injury, the mood symptoms may be
a response to decreased cognitive functioning, or that mood
symptoms, in and of themselves, may adversely affect cognitive
functioning (67–69).

Although it is well-accepted that there is an association
between sleepiness and neurocognitive performance
(9, 70), sleepiness was not predictive of NCS when
controlling for the presence of negative and positive mood
states in regression models. This could be suggestive of
mediation by the positive mood factor for the effects of
sleepiness. It also could be speculated that a single Likert
scale may not accurately capture changes in sleepiness
that occur during deployment and a more objective
measure of sleep (i.e., quality or quantity) may have more
predictive utility.

Limitations
This study has substantial limitations. First TBI history
data were based on self-report rather than objective data;
therefore, the results are subject to recall biases (i.e., under-
reporting). Second, data were not screened for invalid test
performance (i.e., poor effort) as we did not have access
to all metrics produced by the ANAM. Third, there was
limited demographic and service-related characteristics available
in the dataset. This limited our ability to examine common
confounding factors of NCS (i.e., age, education, rank, time in
service, and number of deployments) in the current sample.
Additionally, no clinical information regarding the presence of
comorbid diagnoses, such as post-traumatic stress disorder, post-
concussive syndrome, depression, anxiety, and/or adjustment
disorders was available, which could also confound test results.
Finally, a single Likert scale may not accurately capture
changes in sleepiness that would have been hypothesized
to occur during deployment because of poor sleep quality
or quantity.

CONCLUSION

Measures of negative mood states were found to have significant
negative relationships to several neurocognitive performance
domains, whereas measures of positive mood states and
sleepiness did not. There were also significant differences in
neurocognitive performance, sleepiness, and mood between
our deployment sample and normative data. These results
taken together indicate that both changes in mood, particularly
negative mood states, need to be considered when reviewing
data from a neurocognitive assessment, especially if the SM
is deployed, to ensure that the appropriate clinical decisions
are made.
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