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Epilepsy with Centrotemporal Spikes (ECTS) is the most common form of

self-limited focal epilepsy. The pathophysiological mechanisms by which ECTS induces

neuropsychological impairment in 15–30% of affected children remain unclear. The

objective of this study is to review the current state of knowledge concerning the brain

structural and functional changes that may be involved in cognitive dysfunctions in

ECTS. Structural brain imaging suggests the presence of subtle neurodevelopmental

changes over the epileptogenic zone and over distant regions in ECTS. This structural

remodeling likely occurs prior to the diagnosis and evolves over time, especially

in patients with cognitive impairment, suggesting that the epileptogenic processes

might interfere with the dynamics of the brain development and/or the normal

maturation processes. Functional brain imaging demonstrates profound disorganization

accentuated by interictal epileptic spikes (IES) in the epileptogenic zone and in remote

networks in ECTS. Over the epileptogenic zone, the literature demonstrates changes

in term of neuronal activity and synchronization, which are effective several hundred

milliseconds before the IES. In the same time window, functional changes are also

observed in bilateral distant networks, notably in the frontal and temporal lobes.

Effective connectivity demonstrates that the epileptogenic zone constitutes the key

area at the origin of IES propagation toward distant cortical regions, including frontal

areas. Altogether, structural and functional network disorganizations, in terms of: (i)

power spectral values, (ii) functional and effective connectivity, are likely to participate

in the cognitive impairment commonly reported in children with ECTS. These results

suggest a central and causal role of network disorganizations related to IES in the

neuropsychological impairment described in ECTS children.

Keywords: benign epilepsy with centro temporal spike, neurocognitive impairment, interictal epileptic spike, high

density EEG, time frequency analysis, connectivity
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HIGHLIGHTS

- The epileptogenic zone and distant areas are
structurally/functionally disorganized

- The functional disorganization is accentuated in the presence
of IES on scalp EEG

- Distant desynchronization begins before IES
- A causal role of IES in ECTS neuropsychological impairment

is highly suggested.

INTRODUCTION

According to the international classification of epilepsy (1),
Epilepsy with CentroTemporal Spikes (ECTS) is the most
common form of self-limited, drug-responsive, focal epilepsy (2–
4). ECTS accounts for 13 to 23% of all cases of new-onset epilepsy
in children (5–8) with an incidence of about 10–20/100 000
children under the age of 13 years (3, 8). The peak age of onset
of ECTS is 7 to 8 years and ECTS is slightly more common in
boys, with a sex ratio of 60:40 (9).

Clinical and Electroencephalographic
Features of Typical ECTS
Diagnostic criteria are characterized by onset in childhood,
absence of brain lesion on MRI neuroimaging, normal initial
psychomotor development, normal pregnancy and delivery,
sensorimotor seizures and focal centrotemporal or rolandic
spikes and waves activated with sleep on inter-ictal EEG
recording (2).

Neurological evaluation and cognitive development are
normal, but cognitive impairments such as attention deficiency,
visuomotor coordination impairment and specific learning
disabilities have been described (see below).

Onset of seizures is usually between the ages of 4 and 10 years,
and always before the age of 13 years (10). Seizures resolve by
the age of 13 years. More than 90% of children experience active
epilepsy for about 3 years (11). Seizures are uncommon, as more
than 90% of children experience fewer than 5 seizures (12, 13)
and they are usually closely related to sleep (55%) or appear
during wakefulness or drowsiness (9). Only 30% of children
experience seizures during wakefulness (2, 9). Eighty percent
of seizures are focal with inconstant secondary generalization
(13). Focal seizures involve sensorimotor areas. Motor signs
affect the face (37%) and oropharyngeal muscles (53%), including
guttural sounds, mouth movements, dysarthria and clonic jerks
(40%) and may be preceded by sensory sensations such as
hemifacial, perioral or intraoral paraesthesia, and jaw and tongue
stiffness (13). The upper limb (20%) and rarely the lower limb

Abbreviations: ABPE, Atypical Benign Partial Epilepsy; BCECTS, Benign

Childhood Epilepsy with Centro-Temporal Spikes; CSWS, epileptic

encephalopathy with Continuous Spikes and Waves during slow-wave Sleep;

DCM, Dynamic Causal Modeling; ECTS, Epilepsy with Centrotemporal Spikes;

FA, Fractional Anisotropy; HD EEG, High Density Electroencephalography; HFO,

High frequency Oscillations; IES, Interictal Epileptic Spikes; LKS, Landau-Kleffner

Syndrome; LPS, Lagged Phase Synchronization; MRI, Magnetic Resonance

Imaging; fNIRS, functional Near InfraRed Spectroscopy; REM, Rapid Eyes

Movements; TCI, Transient Cognitive Impairment.

(8%) are less frequently affected (13). Generalized seizures have
been reported in 24–80% of patients (9, 13), but probably
correspond to secondary generalization of focal seizures. Seizures
usually last only a few minutes, and always, less than half
an hour (9).

In typical ECTS, standard EEG shows centrotemporal spikes
on normal background activity (8). Interictal Epileptic Spikes
(IES) may be either isolated or occur in clusters and exhibit
a high voltage biphasic wave with centrotemporal negativity
followed by a positive frontal dipole (14–16). IES can be unilateral
(60%) or bilateral (40%), synchronous or asynchronous between
the two hemispheres (15, 17) and lateralization may change
between different EEGs in the same patient. IES are frequently
activated during non-REM sleep (15, 18–20) and diffuse in the
ipsilateral and contralateral hemispheres (21). About 30% of
patients only present spikes during sleep (18) EEG abnormalities
resolve at puberty, but frequently persist after the period
of seizures (11).

Typical ECTS in the Spectrum of Rolandic
Epilepsy
Typical ECTS belongs to the spectrum of rolandic epilepsy,
which encompasses typical ECTS, Atypical Benign Partial
Epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic
encephalopathy with Continuous Spikes andWaves during slow-
wave Sleep (CSWS) (22).

ABPE is defined by atypical seizures (long partial or
generalized motor, atonic seizures or negative myoclonus,
atypical absences, perioral myoclonia) (23, 24) associated with
peri-ictal symptoms, such as transient oro-motor dysfunction.
Atypical patterns are observed on EEG, characterized by an
intermittent slow-wave focus, multiple asynchrony spike-wave
foci, long spike-wave clusters, and “absence-like” spike-wave
discharges (25, 26). LKS and CSWS share several common
features with typical ECTS: onset of epilepsy during childhood,
remission before the end of adolescence, rare seizures, and
normal brain MRI. EEG abnormalities are associated with
deterioration of cognitive functions that were previously
normally acquired. LKS is defined by acquired epileptic aphasia
with verbal auditory agnosia and behavioral disorders associated
with a marked increase of IES during sleep, predominantly in the
temporal areas. CSWS is characterized by continuous spike-and-
wave discharges during slow-wave sleep, usually combined with
global intellectual deterioration and epileptic seizures (27).

Typical ECTS and rolandic epilepsy spectrum are
believed to represent a continuum of different clinical
phenotypes of self-limited focal epilepsy (28) but some
authors consider them to be fundamentally distinct
conditions (9, 15, 29–31).

Genetic Origin of Typical ECTS
The genetic origin of ECTS was first suggested on the basis of
clinical observations (32) comparing the incidence of ECTS in
twins and families with sporadic ECTS (33–37). However, the
direct causal role of monogenic mutations in typical ECTS has
not been clearly demonstrated. In contrast with LKS and CSWS
(38–42), monogenic mutations including GRIN2A (38, 39, 42),
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KCNQ2, KCNQ3 or duplications in PRRT2 gene (35, 43–48)
have been detected in only a small proportion of children with
typical ECTS. ECTS has therefore been attributed to a complex
interplay between brain development, maturation processes and
gene susceptibility with no evidence, at the present time, that
genetic factors are paramount (49, 50).

Neuropsychological Impairment in Typical
ECTS
Normal cognition was previously considered to be a prerequisite
for the diagnosis of ECTS, which is why this form of
epilepsy was initially called Benign Childhood Epilepsy with
Centro-Temporal Spikes (BCECTS) (ILAE, 1985; ILAE, 1989).
However, ∼15–30% of affected children show some degree of
neuropsychological impairment, including disorders of language
processing (51–55), attention (56–58), and executive functions
(59), verbal function (52, 60–64), short-term (52, 54), and
working memories (65), psychiatric status and general cognitive
functioning (66, 67). These neuropsychological impairments
impact academic achievement as a result of specific learning
disabilities (62, 68, 69).

The pathophysiological mechanisms by which ECTS
induces neuropsychological impairment remain unclear. The
neuropsychological impairments are not related to seizure
characteristics (26) and are observed even in children with
well-controlled seizures (70–72). The impact of antiepileptic
drugs has not been clearly determined (73). The role of
IES has been suggested but remains debated. The rate of
occurrence of IES in ECTS does not appear to be sufficient to
predict the individual cognitive outcome (26, 58, 62, 68, 73).
The morphology of interictal abnormalities appears to be
predictive of neurocognitive and clinical outcomes, as
combinations of various interictal EEG parameters (slow
wave focus, multiple asynchronous spike and wave foci, long
rhythmic spikes and clusters, generalized spike and wave
discharges, abundance of interictal abnormalities during
sleep and wakefulness, persisting for several months) precede
clinical worsening, but these parameters are considered to
be diagnostic criteria for ABPE (26). The localization of
interictal discharges might be partly related to the type of
cognitive deficit (74). Nevertheless, the correlation between
IES localization on the EEG and the neuropsychological
profile of children with ECTS has yet to be clearly defined
(75, 76).

Despite the large number of studies conducted since the
first description of ECTS by Nayrac and Beaussart (77), the
pathophysiological mechanisms that participate in ECTS and
relative neurocognitive impairment have yet to be defined.

The objective of this study is to review the functional
and structural disorganizations in the epileptogenic
zone, but also in remote areas, that may be involved
in cognitive dysfunctions in patients with typical ECTS.
Before addressing these disorganizations, we will review the
current state of knowledge concerning the epileptogenic
zone responsible for structural and functional interactions
with distant regions.

THE EPILEPTOGENIC ZONE AND THE
SPIKE ONSET ZONE IN ECTS

The epileptogenic zone is defined by the site of onset of epileptic
seizures and their primary organization (78). Due to the rarity
of seizures and the absence of intracranial recordings, the
epileptogenic zone is difficult to localize in ECTS. In rare ictal
scalp EEG recordings (25, 79–82), the onset of focal seizures
was predominantly observed in the centro-temporal region
(82), and occasionally in the parietal region (25) (Figure 1A).
Despite small differences according to the epileptogenic zone,
all EEG recordings show a similar pattern characterized by
low amplitude focal alpha-beta activity (9–14Hz), gradually
increasing in amplitude and decreasing in frequency to the alpha
band (6–8Hz), followed by rapid rhythmic spikes (79). This ictal
pattern mostly occurs after an increment of interictal spikes (79)
together with a reversal of the IES dipole (81). An ictal electrical
source imaging study also demonstrated an operculo-insular
origin of the initial rhythmic ictal activity (79).

The spike onset zone is defined by the site of generation of
the IES. The epileptogenic zone is usually included in the spike
onset zone (78). In ECTS, as in all forms of focal epilepsy,
the epileptogenic zone could be approximated by the spike
onset zone.

Studies using voltage gradient measures applied to IES in
ECTS have defined the spike onset zone in the mid-centro-
temporal region (85). Using Electrical Source Imaging, the source
of the IES has been modeled by a single tangential dipole located
along the central sulcus. This dipole is oriented tangentially to
the surface of the scalp (86–88). The negative pole is situated
in the posterior mid-temporal or central regions and a positive
pole is centered more anteriorly, involving frontal areas (83,
88–90) (Figure 1B). Although the posterior side of the central
sulcus was initially believed to generate the IES (90, 91), recent
studies have proposed that the IES originate from the rolandic
fissure of the somatosensory cortex (area 3b) (88–90, 92). More
precisely, superior finger/hand areas have been proposed as a
possible origin of IES, which may then propagate and extend
along the precentral sulcus to the mouth/tongue area (93).
Atypical generator characteristics have been proposed as criteria
to help clinicians to rapidly discriminate typical ECTS from
ABPE in individual patients (Figure 1C) (84, 94, 95). In these
atypical generators, the dipoles have a preferential posterior
orientation (84). Source locations are not tightly clustered around
the central sulcus (95) and could be located around the rolandic
sylvian regions, involving the motor cortex (91, 96) or even
more lateral and inferior areas than those reported in typical
ECTS (86).

STRUCTURAL DISORGANIZATION IN
ECTS

As ECTS is defined as an idiopathic or self-limited epilepsy
syndrome, no MRI abnormalities are expected. However, subtle
structural abnormalities have been described in the epileptogenic
zone and in distant brain structures, suggesting that the
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FIGURE 1 | Typical ictal aspect on standard EEG in ECTS and electrical source imaging of IES in typical and atypical ECTS. (A) Typical aspect of ECTS seizure

characterized by initial focal low amplitude alpha-beta activity (9–14Hz), gradually increasing in amplitude and decreasing in frequency to the alpha band (6–8Hz),

followed by rapid rhythmic spikes. Longitudinal bipolar montage, electrodes positioned according to the international 10/20 system. Band pass (0.53–70Hz), notch

filter (50Hz) (personal data). (B) Typical right centro-temporal IES on normal background activity recorded with HD EEG [averaging referential montage, band pass

(0.53–70Hz)] and electrical source imaging (HD EEG) of IES with tangential dipoles located along the central sulcus with the negative pole situated in the posterior

mid-temporal or central regions [adapted with authorization from Bourel-Ponchelet al. (83)]. (C) Comparison of typical (in green) and atypical generator (in red) of IES in

ECTS and Atypical Benign Partial Epilepsy, respectively. Compared to ECTS, in Atypical Benign Partial Epilepsy, IES dipoles have a preferential posterior orientation

[reproduced with authorization from Kim et al. (84). Averaged EEG spike dipole analysis may predict atypical outcome in Benign Childhood Epilepsy with

Centrotemporal Spikes (BCECTS). Brain Dev. 38, 903–908].

epileptogenic processes interfere with normal brain development
and maturation.

During normal neurodevelopment and under physiological
conditions, the gray matter volume increases until
preadolescence and decreases thereafter, whereas the volume
of white matter increases until adulthood (97–99). Synaptic
exuberance and pruning are thought to contribute to these
morphological changes (100, 101). Post-natal brain development
is associated with the generation of excess neuronal synapses. In
immature animals, the number of axonal branches, development
of the dendritic spine and synaptic connections exceed those
observed in mature animals. Connections may exist between
parts of the brain that are not interconnected in mature animals.
The generation of excess neuronal synapses is followed by decline
until adulthood throughout the cerebral cortex (102–106). This
selective elimination of synapses, called pruning, depends on
synaptic activity and promote the maintenance of more active
synapses, while removing less active synapses. Pruning is thought
to be necessary to refine the emerging brain circuitry (107–110).

ECTS could impact this ongoing neurodevelopment in
various ways. In newly diagnosed ECTS, neuroimaging studies
have revealed differences (increases or decreases) in the thickness
of the cortex (Table 1). These changes are not specifically
observed in the central epileptogenic zone, as they have been
observed in distant areas, notably in the frontal and temporal
regions (112–115, 118) and in subcortical structures, especially

the putamen (111, 114, 117). ECTS children also demonstrate
white matter abnormalities [reduced fractional anisotropy (FA)]
over the central epileptogenic zone (120) and over distant
regions (the splenium of the ipsilateral corpus callosum) (113,
121). These differences in brain volume and brain structural
connectivity suggest the presence of subtle neurodevelopmental
changes between typical development in normal children and
those with ECTS. This structural remodeling likely occurs prior
to the diagnosis of ECTS following onset of the first seizure
(61, 115, 118, 119).

Some studies have reported that this structural remodeling
evolves over time (61, 115, 118, 119), as, during the active
phase of ECTS (persistence of seizures and IES on interictal
EEG), differences in cortical and subcortical thickness have
been progressively observed compared to healthy age-matched
controls, especially in patients with cognitive impairment (111,
115, 118, 120, 122) (Table 1). Following ECTS remission (115,
119), changes in gray matter growth, notably in the frontal lobe,
tend to resolve, with more rapid recovery in ECTS patients with
a shorter active seizure period (123) (Table 1). The epileptogenic
processes related to synaptic hyperactivity and/or alterations of
physiological pruning might affect the dynamics of the brain
development and/or might interfere with the normal maturation
processes (61, 109, 115, 118–120, 122, 124, 125).

Functional correlations between structural remodeling and
cognitive deficits have been recently addressed (61, 113, 116,
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TABLE 1 | Structural brain disorganization in ECTS.

Study BECTS

(n = )

Control

(n = )

Sub-cortical gray matter Cortical gray matter Growth

disturbance

Cognitive

correlation

Putamen Caudate

nucleus

Amygadala Thalamus Frontal Temporal Parietal Occipital Cingular

gyrus

Lin et al. (111) 13 54 ↑* =* Executive

performance

Hermann et al. (112) 38 34 =* =* =* = * No

Kim et al. (113) 20 20 ↑* ↑* ↑ R sup $

↑ L

orbito-front *

↑ L pars

orbitalis *

↑ L precentral

*

↑ R sup $

↑ R middle $

↑ R

pre-cuneus *

↑ L ant *

↑ L post *

ADHD

Luo et al. (114) 21 20 ↑* ↑ R SMA *

↑ R Ant insula

*

↑ R

operculum *

↑ B

Paracentral lobule

*

↑ R Inf *

Pardoe et al. (115) 35 35 ↑ B sup *$

↑ B insula *$

↑ B inf *$

↑B supra-

marginal

$

Yes (1)

Overvliet et al. (61) 24 24 ↓ L sup $ ↓ L supra-

marginal $

↓ L

postcentral $

Yes (2) No

Saute et al. (116) 18

(ADHD+)

36

(ADHD -)

46 ADHD +:

↓ L insula $

↓ R sup $

↓ L

Paracentral $

↓ R pars

opercularis $

↓ L middle left

$ (ADHD-)

↓ L inf $

↓ L sup $

ADHD

Shakeri et al. (117) 41 38 ↑ R (3) *

Garcia-Ramos et al.

(118)

24 41 ↑* ↓ B rostral

middle *

↓ R inf *

↓ L lat * Yes (4)

Kanemura et al. (119) 2 (CI+)

5 (CI-)

11 Yes (5) Yes

Neuroimaging studies demonstrated structural disorganization in cortical and sub-cortical structures in newly diagnosed ECTS, which evolved with the brain development. Functional correlations between structural remodeling and

cognitive deficits have been inconsistently addressed. R, right; L, left; B, bilateral; sup, superior; ant, anterior; post, posterior; front, frontal; SMA, supplemental motor area; inf, inferior; lat, lateral; ADHD, Attentional Deficit with Hyperactivity

Disorder; CI, cognitive impairment; ↑, increase; ↓, decrease; * Volume gray matter, $ cortical thickness mapping. (1) Normalization with the age, (2) left-lateralized frontal, centro-parietal and temporal regions with pathological thinning

with the age, (3): in case of bilateral IES, (4) Pathological thickening and thinning with the age (5) deficit of frontal and prefrontal lobe volume growth in case of cognitive impairment.
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119). A correlation between ADHD in ECTS children and
structural impairment in the cortico-striatal circuitry has been
inconsistently reported (113, 116). Similarly, a decrease in frontal
and pre-frontal gray matter volume was more pronounced
in ECTS with cognitive impairment and behavioral issues
(119) (Table 1).

FUNCTIONAL DISORGANIZATION: FROM
THE EPILEPTOGENIC ZONE TO DISTANT
NETWORKS

Functional Disorganization in the
Epileptogenic Zone
As expected, an increase in θ, α, and ß power spectra and
cortical source densities (sensor space) (126) has been observed
in the epileptogenic zone over the centro-temporal areas in the
presence of IES (Figure 2). This increase in power spectrum
over the centro-temporal areas was accompanied by higher
phase synchronization when comparing EEG segments with and
without IES in ECTS children (126, 128). In parallel, High
frequencyOscillations (HFOs) (50–250Hz) superimposed on top
of IES were described in typical and atypical ECTS (129–131).
The hypersynchronization due to IES is associated with increased
local hemodynamic changes, as demonstrated by EEG-functional
MRI (132–135) and EEG-functional Near InfraRed Spectroscopy
(EEG-fNIRS) (136) (Figure 3A).

However, IES can no longer be simply considered to be due
to hypersynchronization of a single homogeneous population
of neurons. Using time-frequency analysis, complex sequences
of desynchronization-synchronization-desynchronization
have been demonstrated surrounding the IES in ECTS (83)
(Figure 4A). These sequences began 400ms before the IES,
suggesting complex disorganization of the network in the
epileptogenic zone starting before the onset of the neuronal
network process of the IES as recorded by EEG. These
phenomena are not specific to ECTS, as they have also been
described in animal models of epilepsy (137) and in non-
idiopathic frontal epilepsy in children (138) and could be
explained by various patterns of neuronal activation and
deactivation occurring 400ms before hypersynchronization
(139). Interestingly, these swings in synchronization are
observed in parallel with swings in membrane properties
observed on Fast Optical Signal (FOS) recordings in animals and
children with frontal epilepsy, which might result in sequences
of shrinking, swelling and shrinking of the neuronal population
involved in the IES process. These non-synaptic events around
the IES likely modify the extracellular space and consequently
the bioavailability of neurotransmitters that propels neurons to
hypersynchronization (137, 138).

Higher relative EEG power in the θ, α, and ß bands is still
observed in the centro-temporal area regardless of the presence
of IES in the EEG segments (126). Profound changes in terms
of spectral power (126), phase synchronization (140), network
degree and clustering coefficient (127, 141, 142) are observed
simultaneously in the epileptogenic zone, independently of the
presence of IES on EEG (Figure 2).

FIGURE 2 | Power spectrum analysis of functional disorganization in the

epileptogenic zone in remote regions. (Right Top) Increase in δ, θ, and α

power spectra (arrows) in the epileptogenic zone over the centro-temporal

areas in the presence of IES. (Right Bottom) Relative decrease in power

value (arrows) in θ and α frequency bands in frontal areas and in δ bands in

occipital areas. Statistical difference (t-value) maps of degree differences

between HD EEG segments with IES and HD EEG segments without IES. The

color bar indicates the t values projected onto a standardized head shape. The

significant increase (indicated by red) and decrease (indicated by blue) in

degree have been represented by positive and negative t values resulted from

statistical comparisons between IES condition and no IES condition [adapted

from Adebimpe et al. (127), reproduced under the Creative Commons CC-BY

license] (126).

Altogether, these results indicate profound disorganization of
the epileptogenic zone, not only in the time-window around
the IES, but also during the period during which IES are not
detected. IES are transient biomarkers of the local complex
disorganization that is consubstantial to the epileptic network
in ECTS. This disorganization is effective several hundred
milliseconds before the IES (83) and consists of aberrant local
synchronization/desynchronization and higher levels of neuronal
activity (142–144) that do not always reach the threshold of an
IES recorded on the scalp EEG.

From the Epileptogenic Zone to Distant
Networks
Involvement of Distant Areas
Functional MRI and HD-EEG studies in the interictal state,
regardless of the presence of IES, have demonstrated profound
changes of the spectral power in distant areas to the spike
onset zone (Figures 2, 4B). Desynchronization in the α and ß
bands observed in bilateral frontal and parieto-occipital areas,
suggests disengagement of the frontal and parieto-occipital
cortices (127, 140, 142). Using fNIRS and fMRI (132, 133, 136),
the hemodynamic response to IES (decrease in HbO, increase
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FIGURE 3 | Hemodynamic response of functional disorganization in the epileptogenic zone (A) in remote regions (B). A1 High density EEG-fNIRS drawing of the

bimodal EEG-fNIRS cap with optodes (detectors, green; emitters, red) and electrodes (black) positions. Twenty three channels per hemispheres have been considered

corresponding to distances between emitting and detecting fibers (1.5 to 4 cm). A2 Hemodynamic responses related to right centro-temporal IES in a patient with

typical ECTS. Statistical map of the hemodynamic response using a typical Hemodynamic Response Function (p < 0.05) and (3) Traces of the hemodynamic

response after averaging (0-20 seconds) of the related channel 10 (C10). IES in ECTS are associated with a typical positive hemodynamic response, as demonstrated

by EEG-fNIRS in the centro-temporal area [adapted from Bourel-Ponchel et al. [130]]. B1 Positive and negative neurovascular coupling areas (in red and green,

respectively) calculated from a typical Hemodynamic Response Function (HRF) (p < 0.05). B2 Negative neurovascular coupling obtained with averaging method

(range considered 0–20 s) in right frontal and left parieto-occipital areas (arrows). High density optical imaging found increase in HbR and decrease in HbO

(corresponding to a negative BOLD) in the same regions (bi-frontal areas and left occipital areas) (136). x Axis: time range between 0 and 20 s (interval between vertical

bars: 5 sec). y Axis: arbitrary unit (UA): relative concentrations variations related to IES. Red curve: HbO, Blue curve: HbR, Green curve: HbT.

in HbR) in distant areas, including the frontal and parieto-
occipital lobes, confirmed the widespread effect of IES on remote
networks (Figure 3B).

Functional Connectivity
Functional connectivity measurements have been used to
study functional alteration of the brain networks during the
interictal state.

In the human brain, inhibitory and excitatory circuits interact
by integrating information at local and global levels. It has
been shown that the normal brain has a small-world functional
topology, which can efficiently combine functionally specialized
(segregated) modules with intermodular links (integrating).
This type of organization reflects an optimal balance between
functional integration and segregation (145, 146). This small-
world functional topology is disrupted in ECTS.

A higher connection density around the epileptogenic zone,
including the motor areas, the central region and the ipsilateral
temporal region, has been described in all frequency bands (126).
Functional connectivity using Lagged Phase Synchronization
(LPS) analysis revealed higher θ and α and lower β LPS values
(141). Functional connectivity changes around the IES were
associated with lower segregation and higher integration, notably
in the θ and α bands, compared to controls, suggesting that
the ECTS brain network differs from the small-world features

observed in healthy controls in a frequency-dependent manner.
Loss of global processing and stronger integration have been
observed in the epileptogenic zone, but also between remote
brain regions, notably the frontal, parietal and temporal lobes
(126, 127, 140–142, 147). These results indicate that the ECTS
brain networks are less well-organized regardless of the presence
or absence of IES and regardless of the frequency band,
corresponding to alteration of global small-world properties
toward a more random network (126).

Dynamics and Directionality of Interictal Connectivity
The direction of information flow between the various brain
regions has also been studied in ECTS children using effective
connectivity analysis. Tools such as Dynamic Causal Modeling
(DCM) can be used tomeasure the effective connectivity between
selected brain regions (central epileptic region, temporo-parietal
junction, temporal pole and precuneus) (148). This study showed
that central rolandic regions constitute the key zone of origin of
IES propagation in ECTS. DCM analysis of the direction of flow
of information between brain regions from a causal perspective
showed that the central epileptogenic zone exerts a greater causal
influence on ipsilateral and contralateral distant cortical areas
including the prefrontal cortex, temporo-parietal junction and
temporal pole (148, 149). In other words, changes in distant
cortical regions, notably at the frontal and temporo-parietal
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FIGURE 4 | Time frequency analyses of functional disorganization in the

epileptogenic zone (A) in in remote regions (B). A1 Averaging of the selected

right centro-temporal IES in typical ECTS at electrode C2 [HD EEG, 64

electrodes positioned according to the 10/10 international system, band pass

(0.53 −15Hz), notch filter (50Hz)]. Bellow, Time frequency statistical analysis

at electrode C2 for the same patient [reference period (−1000; −600ms), (p <

0.0002)]. A2 Raw data of the time frequency analysis [Reference period:

(−3000ms −1000ms)] for the same patient. T0 was defined as the first

negative deflexion of the spike. Time-frequency analysis revealed complex

sequences of desynchronization (in blue) -synchronization (in red)

-desynchronization (in blue) surrounding the IES in ECTS for frequencies range

from 4 to 50Hz independently of the baseline considered [−1000; −600ms]

(1) or [−3000ms; −1000ms]. This desynchronization was localized near the

epileptogenic zone [adapted from Bourel-Ponchel et al. (83), reproduced

under the Creative Commons CC-BY license] (83). (B) Time frequency

representation of desynchronizations (in blue) occurring, in frontal and occipital

areas, distant to the epileptogenic zone located in central area, involving low

frequency bands (bellow 10Hz), in the same time window as local alternation

of synchrony around the IES (Figure 2) [−400ms; +400ms]. Significant

statistical (p < 0.0002) results of time frequency analysis at electrodes Fp2 and

O1 for the same patient (reference period [−1000; −600ms] [adapted from

Bourel-Ponchel et al. (83)], reproduced under the Creative Commons CC-BY

license) (83).

junction and in the temporal pole, are driven by the epileptogenic
zone (148, 150). Moreover, in an fMRI study, Wu et al. showed,
in addition to the driving effect from the epileptogenic zone
to cortical areas, a causal link from the epileptogenic zone to
subcortical structures (bilateral putamen, caudate nuclei) and
cerebellum (149).

Functional changes in terms of power spectral values,
functional and effective connectivity and small-world
properties can participate in the cognitive impairments
commonly reported in children with ECTS. The effect of
pathological epileptic HFO on cognitive function needs also to
be considered.

The epileptogenic zone induces functional changes in the
frontal lobes, which play a major role in the processing and
execution of higher cognitive skills and behavior (151). The
centro-frontal pathway is altered in ECTS patients with an
abnormal information flow arising from central areas during
IES. Frontal deactivation and disturbances of connectivity
are correlated with cognitive performances (140) and might
explain learning, memory and attention difficulties in ECTS
patients (73, 152–155). The causal link from the central to
the frontal areas constitutes a source of abnormal information
flow onto the frontal structures, suggesting that IES may play
a role in alteration of the attention network (148). In addition
to functional changes involving the centro-frontal network,
decreased functional connectivity in the dorsal attention
network (intraparietal sulcus and frontal eye fields of each
hemisphere) associated with increased functional connectivity
in the ventral attention network (temporo-parietal junction
and ventral frontal cortex) might also be responsible for
the attention deficit observed in ECTS (155). Functional
connectivity disorders with the right inferior temporal cortex and
bilateral primary auditory cortex may affect auditory processing
in both hemispheres, resulting in language processing and
speech processing deficits in ECTS patients (54, 141, 147,
156–158). The temporo-parieto-occipital areas are believed to
be involved in auditory, visual, somatosensory and memory
processes that can be impaired in ECTS children (142,
143). Finally, the reduced degree in occipital areas may
explain the poor visuospatial memory observed in ECTS
children (126, 159).

COGNITION AND BRAIN MATURATION IN
CHILDREN WITH ECTS

In summary, the available literature demonstrates the
existence of:

1) Complex functional disorganizations in the epileptogenic
zone that are accentuated in the presence of IES on scalp EEG

2) Complex functional changes in terms of activity and
synchronization in bilateral distant networks that are
accentuated in the presence of IES on scalp EEG

3) Complex functional changes in distant areas beginning
around 400ms before the IES in the same time window
as complex modifications of synchronization around IES
(-400ms;+400ms) in the epileptogenic area
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4) Complex functional connectivity changes including small-
world network impairment

5) Impaired structural brain maturation in children with ECTS
with no specificity for the epileptogenic area.

Altogether, these results suggest a central and causal role of
the functional and structural disorganizations of the neuronal
network that promote the IES in the neuropsychological
impairment described in children with ECTS. Two non-exclusive
hypotheses can be proposed to explain the pathophysiological
mechanisms of the neuropsychological impairment. First,
disorganizations related to IES might directly induce transient
inhibition of the networks. Second, disorganizations related
to IES might induce long-lasting effects on brain functioning
and maturation.

Disorganizations of the Neuronal Network
Related to IES-Induced Transient Network
Inhibitions
This hypothesis is supported by clinical observations of transient
cognitive impairment (TCI). Transient cognitive impairment
(TCI) (160, 161) is characterized by brief temporary deficits of
attention, visuospatial memory and learning strategies related
to IES on EEG. TCI is observed during the active phase of
ECTS and resolves after resolution of the EEG abnormalities
(62, 162, 163). TCI is considered to be the direct consequence
of IES on neuronal processing (74, 132, 158, 164, 165). TCI is
likely related to transient disruption of brain function occurring
around the IES in the epileptogenic zone and in distant functional
networks. Time-frequency analyses have demonstrated that
interferences in the epileptogenic areas and distant areas start
400ms before IES (83). Interestingly, TCI started 100–200ms
before the IES (166) and can last for up to 2 s following
a focal IES (160, 167–169), suggesting a direct link between
complex changes in terms of synchronization around IES
and TCI.

Disorganizations of the Neuronal Network
Related to IES Induces Long-Lasting
Effects on Brain Functioning and
Maturation
In addition to the short-lasting effects, network disorganizations
related to IES may have long-term effects on developing neural
networks (170, 171).

This abnormal brain neurodevelopment could be related to
reports that certain neuropsychological deficits persist despite
return to a normal EEG and clinical remission (62, 162, 163),
suggesting cumulative effects of IES on functional maturation
of neuronal networks (149, 172–176). The early onset, at a
critical period of maturation and the duration of active epilepsy
should be considered when assessing the functional outcome and
cognitive prognosis. Similarly, the potentiation of IES during
NREM sleep needs to be considered. The degree of cognitive
impairment is correlated to the amount of NREM sleep-related

IES and associated with the involvement of a widespread cortico-
subcortical network related to IES during (177). In addition, the
rate of pathological epileptic HFO during NREM sleep seemed
to be a marker of epilepsy severity. HFOs rate is higher in
atypical BECTS and Electrical status epilepticus in sleep. Absence
of HFO may predict a relative benign clinical entity, whereas in
the presence of several ripples, the child is likely to have more
seizures (129–131, 178).

Structural and functional disorganizations not related to IES
but participating in neurocognitive impairment in ECTS should
not be excluded.

CONCLUSION

The complexity of the interactions between the epileptogenic
network and remote functional networks has been demonstrated
in ECTS. Structural brain imaging suggests the presence of
subtle neurodevelopmental changes over the epileptogenic
zone and over distant regions in ECTS. Functional brain
imaging demonstrates profound disorganization accentuated
by IES in the epileptogenic zone which are effective several
hundred milliseconds before the IES. In the same time
window, desynchronization and changes in neuronal activity
are observed in bilateral distant networks. These functional
changes are associated with the alteration of global small-
world properties toward a more random network; the
direction of information flow between the brain regions
demonstrates that the epileptogenic zone constitutes the
key area at the origin of IES propagation toward distant
cortical regions.

Altogether, these results support the idea that disorganizations
of the neuronal network related to IES may disrupt local
and distant networks with a possible impact on functional
and the maturational processes. If the impact of IES on
cognitive impairments remains debated, these results suggest a
central and causal role of network disorganizations related to
IES in the neuropsychological impairment described in ECTS
children. These results suggest that therapeutic suppression of
IES should reduce the risk of neuropsychological impairment
in children with ECTS. However, the currently available
antiepileptic drugs are not suitable and, specific treatments for
disorganizations of the neuronal network related to IES need to
be developed.
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