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Background: Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension

of the polyglutamine tract within the androgen receptor (AR) gene, and results in

a multisystem presentation, including the degeneration of lower motor neurons. The

androgen receptor (AR) is known to modulate the expression of endogenous retrovirus-K

(ERVK), a pathogenic viral genomic symbiont. Since ERVK is associated with motor

neuron disease, such as Amyotrophic Lateral Sclerosis (ALS), we sought to determine if

patients with SBMA exhibit evidence of ERVK reactivation.

Results: Data from a pilot study demonstrate that peripheral blood mononuclear

cell (PBMC) samples from controls and patients with SBMA were examined ex vivo

for the expression of ERVK viral transcripts and proteins. No differences in ERVK

RNA expression was observed between the clinical groups. In contrast, enhancement

of processed ERVK Gag and integrase proteins were observed in SBMA-derived

PBMC as compared to healthy control specimens. Increased ERVK protein maturation

co-occurred with elevation in the expression of the pro-inflammatory transcription factor

IRF1 in SBMA.

Conclusions: Our findings indicate that ERVK viral protein maturation in SBMA is

an unrecognized biomarker and facet of the disease. We discuss how our current

understanding of ERVK-driven pathology may tie into key aspects of multi-system

dysfunction in SBMA, with a focus on inflammation, proteinopathy, as well as DNA

damage and repair.

Keywords: endogenous retrovirus-K (ERVK), spinal and bulbar muscular atrophy (SBMA), amyotrophic lateral

sclerosis (ALS), peripheral blood mononuclear cells (PBMC), inflammation, DNA damage, antivirals

BACKGROUND

Spinal and bulbar muscular atrophy (SBMA, also called Kennedy’s disease) is a rare
motor neuron disease with X-linked recessive inheritance. This adult onset neuromuscular
disorder clinically presents with progressive lower motor neuron dysfunction, skeletal muscle
wasting, and accompanying multi-organ involvement (1, 2). SBMA pathology is driven by
a polyglutamine (polyCAG) tract expansion in the androgen receptor (AR) gene, resulting
in polyglutamine (polyQ) repeats in the protein product. Notably, several other neurological
conditions with cognitive and motor involvement are associated with polyQ expansions:
huntingtin in Huntington’s disease (3), ATAXIN-2 in spinocerebellar ataxia 2 (SCA2) (4)
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and its pre-mutation expansion with Amyotrophic lateral
sclerosis (ALS) (5, 6), Atrophin-1 in Dentatorubral pallidoluysian
atrophy (DRPLA) and several genes implicated in distinct types
of spinocerebellar ataxia (4). Generational trinucleotide repeat
expansions in risk genes can lead to offspring with earlier disease
onset and more severe clinical symptoms in SBMA (2, 7). PolyQ
expansions in excess of 37 amino acids long are considered
pathogenic (8).

Trinucleotide repeat expansion disorders (TREDs) such as
SBMA have been associated with both loss-of-function and
gain-of-function effects (9). It remains uncertain how the CAG
repeat expansion induces neurodegeneration in SBMA. However,
similar to all other polyglutamine diseases, an accumulation of
intranuclear inclusions with misfolded polyglutamine-expanded
proteins are found in certain neuronal populations. In SBMA
cases, these deposits can occur in the anterior horn motor
neurons of the spinal cord (10). The pathogenicmechanism is not
well-understood, but increasing evidence suggests that toxicity of
the mutant AR protein is due primarily to androgen-dependent
impairment of its receptor, as well as having impacts in terms of
proteinopathy. When androgen binds mutant AR, this leads to
AR aggregation, nuclear inclusions in certain tissues, and altered
function as a transcriptional regulator (11–13).

Mutant polyQ proteins can accumulate into proteinaceous
deposits in neural cells, as well as peripheral cell types, such as
muscle (14) and immune cells (15). Our work has previously
demonstrated that aggregate-prone, mutated TDP-43 protein
can facilitate the accumulation of endogenous viral proteins
within cells (16). Amazingly, over 8% of human DNA is of
retroviral origin—scattered inside our genome are thousands of
retrovirus-like sequences called endogenous retroviruses (ERVs)
(17, 18). When activated by signals such as inflammation, select
pre-existing viruses in our DNA can produce viral proteins
within human cells (19). The cellular consequences related to the
expression of these viral proteins is largely unknown. However,
accumulating evidence points toward endogenous retrovirus-K
(ERVK) driving neurodegeneration in ALS (19–22). Therefore,
due to overlapping cellular mechanisms and aspects of clinical
presentation, we postulated that ERVK expression may be
enhanced in SBMA, as seen in ALS.

METHODS

Ethics Statement
All research involving human-derived samples was approved
by the University of Winnipeg Human Research Ethics Board
under a multi-site protocol GT916 (R1) and the University of
Saskatchewan Biomedical Research Ethics Board under protocol
17-26. All participants consented to blood donation, and samples

Abbreviations: ALS, Amyotrophic Lateral Sclerosis; AR, Androgen receptor

gene; AR, Androgen receptor protein; CA, Capsid; DNA, Deoxyribonucleic Acid;

ERV, Endogenous Retrovirus; ERVK, Endogenous Retrovirus-K; HIV, Human

Immunodeficiency Virus; IN, Integrase; LTR, Long Terminal Repeat; MA, Matrix;

NC, Nucleocapsid; polyQ, polyglutamine tract caused by CAG nucleotide repeats;

RNA, Ribonucleic Acid; SBMA, Spinal and bulbar muscular atrophy (Kennedy’s

disease); SU, Surface Subunit of Envelope protein.

were anonymized by clinician Dr. Kerri Schellenberg prior to
processing by the Douville lab.

Diagnosis and Demographics of
Participant Samples
Clinical examination and genetic screening for CAG repeats
in AR was used to confirm the clinical diagnosis of SBMA.
Genetic testing was not performed on control specimens. Table 1
indicates the individual patient diagnosis and number of CAG
repeats in AR for the samples used in this study.

PBMC Isolation
Whole blood samples were diluted in saline solution and
processed on a ficoll gradient (GE Healthcare 17-5442-02) as
previously described (23). The time from collection to processing
for all patient samples was <20 h. Extracted ex vivo PBMC were
counted and aliquoted into 5 x 106 cells per dry pellet and frozen
until subsequent batched analysis.

Quantitative Polymerase Chain Reaction
(Q-PCR)
Total RNA was extracted and purified from cells using
an Aurum Total RNA Mini Kit (Bio-Rad #732-6820)
and Q-PCR performed as previously described using
SYBR Green detection method (19). The primers used
were: ERVK gag F: 5′-TCGGGAAACGAGCAAAGG-
3′ and R: 5′-GAATTGGGAATGCCCCAGTT-3′; ERVK
pol F: 5′-TGATCCCMAAAGAYTGGCCTT-3′ and
R: 5′-TTAAGCATTCCCTGAGGYAACA-3′; IRF1 F:
5′-AAAAGGAGCCAGATCCCAAGA-3′ and R: 5′-
CATCCGGTACACTCGCACAG-3′. 18S rRNA was used as
the endogenous control (Ambion kit #1718). The mean of two
replicates per sample were analyzed using the 11CT (Livak)
method and normalized relative to calibrator sample control
03. GraphPad Prism was used to carry out statistical analyses
including column statistics and unpaired t-test.

Western Blots
PBMC were lysed on ice with 50 µl of in-house lysis buffer
(0.05M Tris (pH 7.4), 0.15M NaCl, 0.002M EDTA, 10% glycerol
and 1% NP-40 in ultra-pure water) to extract proteins. The
lysis buffer was supplemented with 1x HALT protease and

TABLE 1 | PolyQ expansions in SMBA patients.

Clinical group Identifier Sex Age Number of CAG repeats in AR

Controls 03 MM 36 Unknown

05 M 56

07 M 44

09 M 43

SBMA 01 M 49 60

02 M 50 58

06 M 60 52

08 M 33 55
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phosphatase inhibitor cocktail (Thermo Scientific #78442). BCA
assay (Thermo Scientific #PI23227) was used to determine
the protein content of each sample as per manufacturer’s
instructions. Cell lysates were prepared for SDS-PAGE and
heated at 95◦C for 10min. Proteins (15 µg per lane) were
separated by SDS-PAGE using a 10% BioRad Quick Cast gel
(#161-0173) and transferred onto a PVDF membrane (BioRad
#162-0260). The membrane was blocked in 5% skim milk
solution for 30min and probed with the desired primary
antibody overnight at 4◦C, followed by incubation at room
temperature for 2 h. Primary antibodies used were: mouse anti-
ERVK Gag (LifeSpan Biosciences # LS-C65287), rabbit anti-
ERVK integrase (Pierce, custom antibody), rabbit anti-ERVK
SU (Pierce, custom antibody), rabbit anti-human IRF1 (Santa
Cruz #SC497), chicken anti-human β-actin (Abcam # ab13822;
loading control). The membrane was probed with fluorophore-
conjugated anti-mouse, chicken or anti-rabbit IgG secondary
antibodies (1:1000 dilution; Molecular Probes #21449, A11072,
A21246) for 2 h at room temperature. Themembrane was imaged
using a Protein Simple FluorChem M chemiluminescent imager,
and multiplexed with readouts on the same blot in separate
fluorescent channels. Image Lab software was used to determine
the molecular weight and relative density (normalized to β-
actin) of each band. The identity of each band was based on
Gag-Pro-Pol processing, as previously described (24).

Statistical Analyses
GraphPad Prism version 8.1.2 was used to carry out statistical
analyses including column statistics and unpaired t-test used
to assess clinical group differences for western blot and Q-
PCR quantifications.

Nomenclature
As with human genes, ERVK viruses (or HERV-K) are assigned
names by the Human Gene Nomenclature Committee as
recommended by Mayer et al. (25). Gene names in the text are
italicized, whereas protein names are not.

RESULTS

A Pilot Cohort of Patients With SBMA
Kennedy’s disease is very rare and likely underestimated and
underdiagnosed, with prevalence estimates of 1–2 per 100,000
individuals (26, 27). Founder effects are associated with regional
increases in SBMA prevalence (28, 29).

With the goal of generating preliminary data for future
studies, we recruited four patients with SBMA and four control
participants to donate blood samples. The number of CAG
repeats in the AR gene of patients with SBMA in this study is
listed in Table 1. All SBMA cases had polyQ tracts extending
beyond 38 CAG repeats, which is representative of pathological
AR disruption (8).

Control of ERVK Expression
The ERVK provirus is comprised of the typical retrovirus genes
gag, pro, pol, and env. Multiple ERVK RNA transcripts are
produced from a provirus. An essential transcript encoding

both structural (Gag) and enzymatic (Pol) proteins is
translated to produce the Gag-Pro-Pol polyprotein, which
is cleaved by the mature protease enzyme to produce
individual viral proteins (Figure 1). Protease cleavage
sites in the ERVK Gag polyprotein are known, allowing
the identification of mature viral proteins (30). Many
inflammatory diseases are associated with elevated ERVK
expression; although putative pathological contributions remain
contentious (31, 32). Pro-inflammatory cytokine signaling has
repeatedly been shown to contribute toward reactivation of
endogenous retroviruses.

IRF1 Expression Is Elevated in PBMC From
Patients With SBMA
TNFα signaling can enhance IRF1 activity. The action of
this inflammatory transcription factor has previously been
implicated in the reactivation of ERVK (19). In PBMC,
TNFα treatment dose-dependently increases both IRF1
and ERVK reverse transcriptase (RT) protein expression
(Figure 1B). One notable observation in PBMC from patients
with SBMA is a 2.4-fold enhanced expression of IRF1 as
compared with controls (p < 0.05, Figure 1D), despite no
evidence of differences in the IRF1 transcript between clinical
groups (Figure 1C).

ERVK Expression in PBMC From Patients
With SBMA and Controls
We assessed the protein expression of the Gag-Pro-Pol
polyprotein (218 kDa), and its protease-derived cleavage
products, by targeting either an N-terminal Gag epitope
(Figure 2) or C-terminal integrase epitope (Figure 3) through a
multiplex western blot analysis of ex vivo PBMC.

Basal expression of ERVK is expected in many human
tissue types (33). Indeed, ERVK gag transcripts were readily
measured in both controls and patients with SBMA, with no
significant differences between clinical groups (Figure 2B).
Figure 2A depicts that ERVK Gag polyproteins are evident
in both controls and patients with SBMA. However,
samples from patients with SBMA display more viral
polyprotein processing leading to formation of mature viral
proteins than their control counterparts. This is evident
when examining the formation of mature structural Gag
proteins, capsid (CA−28 kDa), matrix (MA−15 kDa)
and nucleocapsid (NC−15 kDa). The sum of intensity
quantification of MA/NC bands indicates that there is a
trend toward more Gag polyprotein processing occurring in
PBMC from patients with SBMA as compared with controls
(Figure 2C, p= 0.06).

Figure 3 shows that there are similar levels of ERVK pol
transcript (Figure 3B) and ERVK Gag-Pro-Pol polyprotein (218
kDa, Figure 3A) in PBMC from controls and SBMA. Similar
to what was observed with the expression of ERVK Gag, the
processing of viral proteins containing an integrase epitope
was greater in SBMA samples than those of controls. Dimeric
integrase is required for enzymatic activity (34); we observed
monomeric (32 kDa) and an abundance of dimeric (52 kDa)
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FIGURE 1 | Genomic insertions of ERVK with intact open reading frames can produce a variety of mature viral proteins and are induced by pro-inflammatory signals.

(A) The ERVK provirus is comprised of the typical retrovirus genes gag, pro, pol, and env. Multiple ERVK RNA transcripts are produced from a provirus. This

diagram depicts the gag-pro-pol transcript. This transcript is translated to produce the Gag-Pro-Pol polyprotein, which is cleaved by the mature protease enzyme to

produce individual viral proteins. Gag structural proteins (capsid, matrix and nucleocapsid) and pol-derived reverse transcriptase (RT/RT-RH heterodimer) integrase

(IN) proteins were examined in this study. The cellular role of most ERVK proteins remains unknown; however, the ERVK Env protein is known to be neurotoxic (20).

(B) ERVK reverse transcriptase (RT) levels dose-dependently increase with pro-inflammatory stimulus in immune cells. Peripheral blood mononuclear cells (PBMC)

were treated with increasing doses of pro-inflammatory cytokine TNFα and evaluated for ERVK RT and IRF1 expression. As described elsewhere (19), the

pro-inflammatory transcription factor IRF1 participates in driving increased levels of ERVK transcription and RT protein expression. (C,D) Similar IRF1 transcript

expression in control and SBMA cases (C), despite evidence of elevated IRF1 protein expression in SBMA as compared with controls (D, *p < 0.05).

FIGURE 2 | Patients with SBMA exhibit increased levels of mature ERVK Gag proteins. (A) Ex vivo PBMC from controls (n = 4) and patients with SBMA (n = 4) were

evaluated for protein expression of ERVK Gag polyproteins and mature viral protein isoforms, capsid (CA), matrix (MA), and nucleocapsid (NC). Notable cleavage of

ERVK polyproteins into mature protein forms occurs to a greater extent in patients with SBMA than controls. SBMA patients had 60, 58, 52, and 55 CAG repeats in

their androgen receptor gene, respectively (left to right). Endogenous β-actin was used as a loading control. (B) Similar ERVK gag transcript expression in control and

SBMA cases. (C) Relative quantification of Gag MA/NC bands revealed a trend toward increased processed structural viral protein expression between controls and

patients with SBMA, with p = 0.06. Violin plots depict measured values from individual patients and the probability density of the grouped data.

integrase bands. Band intensity quantification of ERVK integrase
protein indicates that there is significantly more Pol polyprotein
processing occurring in PBMC from patients with SBMA as
compared with controls (Figure 3C, p < 0.01).

Together these data show that ERVK viral protein maturation
is enhanced in SBMA PBMC, as compared with control cells. The
implications of ERVK viral protein activity as it may relate to
SBMA will be discussed below.
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FIGURE 3 | Patients with SBMA exhibit increased levels of ERVK integrase protein. (A) Ex vivo PBMC from controls (n = 4) and patients with SBMA (n = 4) were

evaluated for protein expression of ERVK integrase (IN) polyproteins and mature isoform. Notable cleavage of ERVK pol polyprotein into mature 32 kDa monomer and

52 kDa dimer integrase forms occurs to a greater extent in patients with SBMA than controls. SBMA patients had 60, 58, 52, and 55 CAG repeats in their androgen

receptor gene respectively (left to right). Endogenous β-actin was used as a loading control. (B) Similar ERVK pol transcript expression in control and SBMA cases.

(C) Relative quantification of ERVK IN dimers (52 kDa bands) revealed statistical differences in IN protein expression between controls and patients with SBMA, with p

< 0.01 (**). Violin plots depict measured values from individual patients and the probability density of the grouped data.

DISCUSSION

PolyQ diseases highlight the complexity of translating the human
genome into a given cellular state. The role of endogenous
retroviruses further complicates matters. However, it is of critical
importance to consider both cellular and viral contributors to
disease processes. Here, for the first time we show evidence of
ERVK viral protein maturation in SBMA. Albeit a preliminary
study, our work points to additional avenues of investigation into
the role of ERVK in this motor neuron disease.

ERVK LTR and the AR Paradox
ERVK promoters contain binding sequences for AR. We have
shown that 5′ and 3′ long terminal repeats (LTRs—viral
promoters) which control ERVK expression contain conserved
androgen response elements (35). Experimental evidence also
supports a role for AR in enhancing ERVK expression (36).
Therefore, we hypothesized that disrupted AR activity in SBMA
would result in decreased ERVK protein levels; however, this
was not the case. Our results consistently show that there is
enhanced ERVK polyprotein processing and formation of mature
(and potentially pathogenic) viral proteins in SBMA PBMC.
This could be considered a novel gain-of-function in SBMA.
Further validation using tissue samples from individuals with
SBMA is warranted to confirm or refute a pathological impact
from mature viral proteins, as ERVK expression in PBMC
often co-occurs with evidence of viral proteins in other tissue
types (37, 38).

Inflammation as a Driver of ERVK
Expression in SBMA
Inflammation and chronic immune stimulation are becoming
recognized as a distinct feature of trinucleotide repeat expansion
disorders (15). Peripheral immune activation is observed before
clinical onset of Huntington’s disease and in several murine
models of polyQ disease (15, 39). Indeed, we observed enhanced
expression of IRF1 in ex vivo (non-cultured/stimulated)
PBMC from patients with SBMA, indicative of an ongoing
inflammatory response. IRF1-dependent enhancement of

inflammatory signaling is a potential underlying mechanism
for ERVK expression in SBMA tissues, based on experimental
cell culture models and observations in autopsied brain tissue
specimens from patients with ALS (19).

Failure to Degrade ERVK Proteins in
SBMA?
Ubiquitination and digestion of unwanted cellular proteins—
including protein aggregates and viral proteins—is crucial to
maintain cellular homeostasis and is particularly important for
neuronal health (40). Several studies indicate that similar to ALS,
SBMA is also characterized by a failure in protein clearance
mechanisms such as lysosomal degradation and autophagy
(41, 42). Given that we observed similar levels of ERVK-
derived transcripts between controls and patients with SBMA,
the elevated ERVK polyprotein processing and mature ERVK
proteins levels observed in SBMA may be related to a failure
to degrade these viral proteins. Cell culture models show that
inhibition of the proteasome can lead to an accumulation of
ERVK proteins (16). ALS-associated mutations in TDP-43 are
aggregate-prone and can facilitate the accumulation of ERVK
proteins within cells (16). PolyQ expanded AR also forms
proteinaceous toxic deposits in cells, which is associated with
a loss-of-function as a transcriptional regulator (9, 43, 44).
It remains unclear whether AR proteinopathy impacts the
accumulation of ERVK proteins in SBMA.

Potential Effects of ERVK on DNA Damage
in SBMA
Several polyQ diseases exhibit evidence of heightened DNA
damage and genomic instability (45, 46). In a murine model of
SBMA, the extended polyQ tract in AR100 mice is associated
with enhanced expression of DNA damage marker γH2AX in
motor neurons, in conjunction with decreased expression of
genes involved in DNA repair, such as p53, Sesn1, ATR, Gadd45,
Xrcc5, and Tp63 (42). Mutant AR protein can also act as a sink
for DNA repair protein PTIP by sequestering it away from sites
of DNA damage (47). Excessive ubiquitination of polyQ proteins
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may further compromise nuclear DNA repair processes through
depletion of nuclear ubiquitin and histone de-ubiquitination
(48). Enzymatic activity of retroviral integrase proteins can lead
to significant DNA damage accumulation over time (49). Given a
loss of DNA repair function in SBMA, this may render cells more
vulnerable to DNA damaging insults like ERVK integrase activity
(21) (unpublished data). Therefore, our observation of mature
ERVK integrase protein expression in PBMC from patients with
AR polyQ repeats is potentially pathologically relevant to the
underlying multi-system disease processes that occur in SBMA.

CONCLUSION

A novel gain-of-function effect in SBMA appears to be the
enhancement of ERVK polyprotein processing into mature viral
proteins in immune cells, despite an overall similar abundance
of viral polyprotein in controls and patients with SBMA. While
other ERVK-associated disease states exhibit increased levels
of ERVK transcripts and viral protein (32), only viral protein
processing seems to be altered in SBMA immune cells. As
PBMC models do not necessarily reflect disease-relevant tissues,
additional investigation into the role of endogenous retroviruses
in SBMA is warranted. Should ERVK be further shown to
contribute to the pathogenesis of SBMA, an antiviral therapeutic
opportunity could be identified for this disease.
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